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Abstract: Two Boolean functions are affine equivalent if one can be obtained from the other by applying an
affine transformation to the input variables. For a long time, there have been efforts to investigate the affine
equivalence of Boolean functions. Due to the complexity of the general problem, only affine equivalence
under certain groups of permutations is usually considered. Boolean functions which are invariant under
the action of cyclic rotation of the input variables are known as rotation symmetric (RS) Boolean functions.
Due to their speed of computation and the prospect of being good cryptographic Boolean functions, this class
of Boolean functions has received a lot of attention from cryptographic researchers. In this paper, we study
affine equivalence for the simplest rotation symmetric Boolean functions, called MRS functions, which are
generated by the cyclic permutations of a single monomial. Using Pólya’s enumeration theorem, we compute
the number of equivalence classes, under certain large groups of permutations, for these MRS functions in
any number n of variables. If n is prime, we obtain the number of equivalence classes under the group of all
permutations of the variables.
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1 Introduction

The subject of Boolean functions is well established and constitutes a cornerstone of cryptography and cod-
ing theory. Let F2 be the binary finite field and Fn2 be the n-dimensional vector space over F2. A Boolean
function on n variables may be viewed as a mapping from Fn2 → F2. The set of all n-variable Boolean func-
tions is denoted byBn. Functions which are invariant under the action of the cyclic group are called rotation
symmetric functions. These functions were first introduced by Pieprzyk and Qu in 1999 [19] and used as
components in hashing algorithms to speed up the implementation of a cryptographic hash function. Since
then, rotation symmetric Boolean functions have proven to be very useful in several areas of cryptography
[3, 9, 10, 14, 19, 22]. These functions are extremely rich in terms of cryptographically significant functions.
A Boolean function is said to be monomial rotation symmetric (MRS) if it is generated by the cyclic permuta-
tions of the variables in a single monomial.

The problem of enumerating the types of Boolean functions under the group of variable permutations
and complementation was first stated by Jevons in the 1870s, but not solved in a satisfactory way until the
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work of Pólya [20] in 1937.Anaffine transformationprovides amethodof grouping similar Boolean functions
into classes. It is meaningful for the following two reasons: first, equivalent functions have similar properties
like Hammingweight distribution and same nonlinearity; second, the number of representatives ismuch less
than the number of Boolean functions. Two functions f, g ∈ Bn are said to be affine equivalent if there exist
a nonsingular n × n matrix A over F2 and a vector b ∈ Fn2 such that g(x) = f(Ax ⊕ b). We say that f(Ax ⊕ b)
is a nonsingular affine transformation of f(x). The first notable effort to solve an affine equivalence problem
is found in a 1964 paper of Harrison [12]. In 1972 Berlekamp and Welch [1] identified and described the
complete set of equivalence classes for functions of five inputs using their algebraic normal form. In 1991,
Maiorana [17] computed150,357 equivalence classes of six variable Boolean functions. Due to its complexity
and size, affine equivalence still remains a toughproblem todealwith, especially for a general solution,which
addresses any n ∈ ℕ. In 2009 Kim, Park and Hahn [15] studied the affine equivalence of the quadratic MRS
Boolean functions. Cusick [4] found the affine equivalence classes in certain cases for the cubicMRS functions
by introducing a new concept called patterns. An exact formula for the number of classes was given in the
casewhere the number of variables n is a prime. In 2014, Cusick and Cheon [6] extended thework of [4] to the
quartic MRS Boolean functions, including an exact formula for n prime. In 2015 Stănică [23] used ideas from
the theory of circulant matrices to give a new proof of the results of [6] and also obtained an exact formula
for the case where n is a prime power. Recently Cusick and Stănică [8] derived an asymptotic formula for the
number Ad,p of affine equivalence classes under all permutations for degree dMRS Boolean functions where
the number of variables p is prime, namely

Ad,p =
1
d!p

d−2 +
1
d!
d2 − d − 2

2 pd−3 + O(pd−4) if d ≥ 5.

They also gave an exact formula for the quintic MRS functions when n is a prime power. Still the enumer-
ation of affine equivalence of MRS Boolean functions of degree d for an arbitrary number of variables was
unanswered.

We solve a special case of this problem of enumeration of affine equivalence of MRS Boolean functions
using Pólya’s theory. We define a certain permutation group, the action of which on the set of monomials in n
variables gives the affine equivalence of MRS Boolean functions under that permutation group.

The rest of the paper is organized as follows: In Section 2, we provide basic definitions and notations. In
Section 3, we state Pólya’s enumeration theorem for the sake of completeness. In Section 4, we explain the
results that we need for the study of affine equivalence. In Section 5, we prove the theorems which give the
counts of the equivalence classes for monomial rotation symmetric Boolean functions under some groups of
permutations. This section contains themain results in this paper. In Section 6, we discuss some possibilities
for future work and finally, in Section 7, we summarize the paper.

2 Preliminaries

A Boolean function on n variables may be viewed as a mapping from Fn2 → F2 and can be represented as
a multivariate polynomial over F2, that is

f(x1, x2, . . . , xn) = ∑
j=(j1 ,j2 ,...,jn)∈GF(2)n

ajx
j1
1 x

j2
2 ⋅ ⋅ ⋅ xjnn ,

where aj ∈ F2 and the addition and multiplication are over F2. This representation is called the algebraic
normal form (ANF). The algebraic degree of f is defined as the maximum number of variables in the terms in
theANF of f . If all the terms in theANF of f have the samedegree then the function is said to be homogeneous.

Definition 2.1 (Cyclic rotation). Given variables xi, for any 2 ≤ i ≤ n and 0 ≤ k ≤ n − 1 we define

ρkn(xi) =
{
{
{

xi+k if i + k ≤ n,
xi+k−n if i + k > n.
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Let x = (x1, x2, . . . , xn) ∈ Fn2 . Then we can extend the definition of ρkn to tuples and monomials as follows:

ρkn(x) = (ρkn(x1), ρkn(x2), . . . , ρkn(xn)) and ρkn(xi1xi2 ⋅ ⋅ ⋅ ) = ρkn(xi1 )ρkn(xi2 ) . . . .

Definition 2.2 (Rotation symmetric Boolean function). A Boolean function f is called rotation symmetric if,
for each input (x1, x2, . . . , xn) ∈ Fn2,

f (ρ1n(x1, x2, . . . , xn)) = f(x1, x2, . . . , xn).

Note that the rotation symmetric Boolean function f possesses the same value for each of the subsets gener-
ated from the rotational symmetry. The inputs of a rotation symmetric Boolean function can be divided into
orbits so that each orbit consists of all cyclic shifts of one input. An orbit generated by (x1, x2, . . . , xn) is

On(x1, x2, . . . , xn) = {ρkn(x1, x2, . . . , xn) | 0 ≤ k < n}

and the function has the same value for all inputs in the same orbit. Let gn be the number of such orbits. Then
the number of rotation symmetric Boolean functions is 2gn . Note that if the ANF of the rotation symmetric
function contains a term xi1xi2 ⋅ ⋅ ⋅ xid , then, by the definition of rotation symmetry, it has all the terms from
the orbit

On(xi1xi2 ⋅ ⋅ ⋅ xid ) = {ρkn(xi1xi2 ⋅ ⋅ ⋅ xid ) for 0 ≤ k < n}

of xi1xi2 ⋅ ⋅ ⋅ xid .

Definition 2.3 (SANF). The representation of the rotation symmetric Boolean function f as

f = a0 + a1x1 +∑
j
a1jx1xj + ⋅ ⋅ ⋅ + a12⋅⋅⋅nx1x2 ⋅ ⋅ ⋅ xn ,

where a0, a1, . . . , a12⋅⋅⋅n ∈ F2, and the existence of a representative term x1xi2 ⋅ ⋅ ⋅ xil imply the existence of
all terms from On(x1xi2 ⋅ ⋅ ⋅ xil ) in the ANF is called the simplified ANF (SANF).

Definition 2.4 (MRS Boolean function). A rotation symmetric Boolean function f is said to be monomial
rotation symmetric (MRS) if the SANF of f contains only one term. In that case the function f of degree d has
the form

f(x) = x1xi2xi3 ⋅ ⋅ ⋅ xid + x2xi2+1xi3+1 ⋅ ⋅ ⋅ xid+1 + ⋅ ⋅ ⋅ + xnxi2−1xi3−1 ⋅ ⋅ ⋅ xid−1.

Definition 2.5 (Permutation preserving rotation symmetry). We say that a permutation σ of the n variables
preserves rotation symmetry if for any given rotation symmetric Boolean function f in n variables the function
σ(f) is also rotation symmetric.

The results in [4] and [6] give a method for explicitly determining the equivalence classes under permuta-
tions which preserve rotation symmetry for any cubic or quartic MRS function in n variables, and also give
an exact formula for the number of classes if n is a prime. In the cubic case, the equivalence classes under
permutations which preserve rotation symmetry when n is prime are the same as the equivalence classes
under all permutations. This was first proved in [5, Theorem 3], and then was generalized to the case of
functions (of any degree) where n is any prime in [8]. The corresponding result is certainly not true for
composite n, because already for quartic MRS functions with n = 8 there is an example [6, Remark 1.10]
where there are five equivalence classes under all permutations, but six if only permutations which preserve
rotation symmetry are considered. It is known [8, Theorem 2.3] that the group of permutations preserving
rotation symmetry when the number of variables is a prime p has order p − 1. In this paper we consider
equivalence classes for MRS functions in n variables under a group (defined below) of permutations of order
nϕ(n), and it turns out that for prime n the equivalence classes under this group are the same as the classes
for the group of permutations which preserve rotation symmetry, and so are the same as the classes under all
permutations.
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3 Pólya’s enumeration theorem

Some of the most difficult problems in mathematics involve counting. There are several reasons for this diffi-
culty, some of which are technical and others more conceptual. A frequently encountered technical difficulty
is that the objects to be counted may not be sequentially arranged. A common conceptual difficulty occurs
when different objects are identified for enumeration purposes. The problem then is to enumerate equiv-
alence classes. Two main theorems in combinatorics concerned with counting mathematical objects with
regards to symmetry are Burnside’s lemma and Pólya’s enumeration theorem [20]. Pólya’s enumeration the-
orem, also known as Redfield–Pólya’s theorem (because of the work in [21]), is a powerful generalization
of Burnside’s lemma which takes symmetry into account when counting mathematical objects. Burnside’s
lemma, while powerful in its own right, can require a significant amount of computation. Pólya’s enumer-
ation theorem minimizes the computations needed by the use of the cycle index and explores the idea of
weights which enables the pursuit of more complex problems.

Lemma 3.1 (Burnside’s lemma). Let G be a group of permutations acting on a set X. Then the number of distinct
orbits, which we call patterns, induced on X under the action of G is given by

1
|G| ∑

σ∈G
|Inv(σ)|, where Inv(σ) = {x ∈ X | σ(x) = x}.

In order to compute the number of patterns using Burnside’s lemma wemust first compute the size of Inv(σ)
for all σ ∈ G. Pólya observed that elements of G with the same cycle structure made the same contribution to
the sets of fixed points. He defined the notion of cycle index polynomial (or, for brevity, cycle index) to keep
track of the cycle structure of the elements of G.

Definition 3.1 (Cycle index polynomial). Let G be a permutation group on n symbols. For σ ∈ G let lk(σ) de-
note the number of cycles of σ of length k. Then the cycle index polynomial of G is a polynomial in n variables
x1, x2, . . . , xn given by

ZG(x1, x2, . . . , xn) =
1
|G| ∑

σ∈G

n
∏
i=1
xli(σ)i .

Let G1, G2 be permutation groups acting on sets X1, X2 respectively. Let G = G1 × G2 be the direct product of
groups and X = X1 × X2 the cartesian product of corresponding sets. For an element x = (x1, x2) of X and an
element g = (g1, g2) of G, we define the action of g on x by

ϕ(g, x) = (ϕ1(x1, g1), ϕ2(x2, g2)).

Harary [11, p. 746] introduced a combinatorial multiplication of polynomials (we use the notation ⊛) to
find the cycle index polynomial of the product group G1 × G2 in terms of the cycle index polynomial of the
groups G1 and G2. Let

ZG1 (f1, f2, . . . , fl) = ∑
(j)
c(j)

l
∏
p=1

f jpp , ZG2 (f1, f2, . . . , fm) = ∑
(k)
d(k)

m
∏
q=1

f kqq .

Then

ZG1 ⊛ ZG2 = ∑
(j)
c(j) ∑

(k)
d(k)

l
∏
p=1

f jpp ⊛
m
∏
q=1

f kqq ,

where the ⊛ operation on the indeterminates is defined as

l
∏
p=1

f jpp ⊛
m
∏
q=1

f kqq =
l

∏
p=1

m
∏
q=1

f jpp ⊛ f
kq
q

and
f jpp ⊛ f

kq
q = f

jpkqgcd(p,q)
lcm(p,q) .
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Lemma 3.2. Let the cycle index polynomial of the action of the group G1 on the set X1 be Z(G1 ,X1) and of G2 on X2
be Z(G2 ,X2). Then the cycle index of the natural action of the permutation group G1 × G2 on X1 × X2 induced by
actions G1 on X1 and G2 on X2 can be expressed as

Z(G1×G2 ,X1×X2) = Z(G1 ,X1) ⊛ Z(G2 ,X2).

Proof. This lemma seems to have been first proved by Harary [11, pp. 745–746] in 1958.

We note that some applications of this lemma have previously been given by Harrison [13].
Now we explain the version of Pólya’s theorem that we shall use. Let X be a set. A coloring of X is an

assignment of a color to each element of X. That is, a coloring corresponds to a function f : X → C, where C
is a set of colors. When |X| = k and |C| = m, there are mk colorings of X using the colors from C. A weight
function w is any function from a set C of colors into the set X. Given a set of colors C we want to assign
a weight wc for all c ∈ C; then we define the weight of a coloring to be the product of the weights of the
colored elements. In this paper X will be the set of all monomials of a given degree d in n variables, with
weighted colorings as explained in the next paragraph, and the action of a group G of permutations will
induce an equivalence relation on X. The equivalence classes will be the patterns in Pólya’s theorem (see
Lemma 3.1 and the discussion of counting the patterns which follows the lemma) and the cycle index will be
the generating function for thenumber of equivalence classes, as explained inTheorem5.2below.A thorough
exposition of our version of Pólya’s theorem (with weights) is given in [2].

In our context of MRS Boolean functions in n variables, the color set will be C = {0, 1} and the associated
two weights will be w0 = 1 and w1 = y. Given any monomial in n variables, we color a variable xi, 1 ≤ i ≤ n,
with color 1 if xi does not appear in the monomial and with color y if xi does appear in the monomial. Thus
the weight of anymonomial of degree d is always yd and by rotation symmetry all the monomials in anyMRS
function in n variables will have the same weight.

Theorem 3.3 (Pólya’s enumeration theorem). If a group G acts on a set X whose elements are colored by ele-
ments of C, which are weighted by w, then the expression

ZG(
m
∑
i=1
wci ,

m
∑
i=1
w2
ci , . . . ,

m
∑
i=1
wnci)

generates the pattern inventory of distinct colorings by weight, where ZG(x1, x2, . . . , xn) is the cycle index
polynomial of G.

4 Affine equivalence of MRS Boolean functions

Definition 4.1 (Affine equivalence). Two functions f, g ∈ Bn are said to be affine equivalent if there exist a
nonsingular n × n matrix A over F2 and a vector b ∈ Fn2 such that g(x) = f(Ax ⊕ b). We say that f(Ax ⊕ b) is a
nonsingular affine transformation of f(x).

The simplest nonsingular affine transformations of an MRS function f are obtained if we simply permute the
n variables, in which case A is a permutation matrix and b = 0. At present it seems too difficult to handle
affine equivalence in general, so we will only consider equivalence under permutations, or under subgroups
of the group of all permutations, in this paper. If σ is a permutation of the n variables, we have σ(f) = f(Ax),
where A is the permutation matrix which permutes the subscripts of the variables in accordance with σ.
Notice that such a permutation of the variables does not necessarily preserve rotation symmetry. If we have
σ(f) = f(Ax) = g for some MRS function g, then we say that f and g are permutation equivalent.

Affine equivalence is a useful notion in cryptography because many cryptographically relevant proper-
ties of a Boolean function f are preserved under affine equivalence, and so are said to be affine invariants. For
example, it is easy to see that the Hamming weight (notation wt(f)) and nonlinearity (notation nl(f)) (for defi-
nitions, see for example [7, pp. 6–7]) of a Boolean function are affine invariants. For two quadratic functions
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f, g ∈ Bn we have the well-known stronger result that f and g are affine equivalent if and only if wt(f) = wt(g)
and nl(f) = nl(g), but this is not true for functions of higher degree. It is also known [4, Theorem 2.7] that if
two quadratic MRS functions in Bn are affine equivalent, then they are permutation equivalent. Thus in the
quadratic case there is no loss of generality in only considering equivalence under permutations, but again
this is not true for higher degrees.

To begin our study of the permutation equivalence of MRS Boolean functions of degree d we define
a group Gn of permutations. Let gτj be a permutation on ℤn defined by (we omit the dependence on n from
the notation, since it will be clear from the context whenever we use it)

gτj(i) = (i + j − 1)τ + 1 (mod n), (4.1)

where the notation a (mod n) means the unique integer b in {1, 2, . . . , n} such that b ≡ a (mod n). Let
Gn = {gτj : gcd(τ, n) = 1 and 1 ≤ j ≤ n}. Then Gn forms a group of order nϕ(n) under the operation of permu-
tation composition. Let X be the set of all monomials of degree d in n variables. Define the action of Gn on X
as follows:

gτj(xi1xi2 ⋅ ⋅ ⋅ xid ) = xgτj(i1)xgτj(i2) ⋅ ⋅ ⋅ xgτj(id). (4.2)

We give some examples of the groups Gn below. We use the notation e for the identity and give other
permutations as a product of cycles, with fixed points omitted.

Examples of the groups Gn

The group G10 has 4 elements gτ1 with τ ∈ {1, 3, 7, 9}, namely e and

(1, 4, 3, 10)(2, 7)(5, 6, 9, 8), (1, 8, 7, 10)(2, 5, 6, 3)(4, 9), (1, 10)(2, 9)(3, 8)(4, 7)(5, 6).

The other 36 elements gτj with j > 1 are derived from these by (4.1).
The group G15 has 8 elements gτ1 with τ ∈ {1, 2, 4, 7, 8, 11, 13, 14}, namely e and

(1, 3, 7, 15)(2, 5, 11, 8)(4, 9)(6, 13, 12, 10), (1, 5, 6, 10, 11, 15)(2, 9, 7, 14, 12, 4)(3, 13, 8),
(1, 8, 12, 10, 11, 3, 7, 5, 6, 13, 2, 15)(4, 14, 9), (1, 9, 13, 15)(3, 10, 6, 4)(5, 11, 14, 8)(7, 12),
(1, 12, 13, 9, 10, 6, 7, 3, 4, 15)(2, 8, 14, 5, 11), (1, 14, 3, 10, 11, 9, 13, 5, 6, 4, 8, 15)(2, 12, 7),
(1, 15)(2, 14)(3, 13)(4, 12)(5, 11)(6, 10)(7, 9).

The other 112 elements gτj with j > 1 are derived from these by (4.1).
We define

Md,n = {all MRS functions of degree d in n variables}.

It seems that we must also consider the set

Fd,n = {Md,n plus functions generated by the action of Gn on Md,n},

but in fact we show in our next lemma that this set is the same as Md,n.

Lemma 4.1. For any given n all of the permutations in the group Gn preserve rotation symmetry, so we have
Fd,n = Md,n for all degrees d.

Proof. It suffices to consider only the ϕ(n) elements gτ1 in Gn, since for any fixed τ with gcd(τ, n) = 1 each
permutation gτj with fixed j satisfies gτj(i) = gτ1(i + j − 1), 1 ≤ i ≤ n. Thus if the set of monomials in an MRS
function is preserved by the action of gτ1, then it is also preserved by the action of any gτj, 1 ≤ i ≤ n.

Now consider the action of gτ1 on the monomials in the MRS function f generated by the monomial
xi1xi2 ⋅ ⋅ ⋅ xid . The images of these monomials are the monomials

xi1τ+1+τkxi2τ+1+τk ⋅ ⋅ ⋅ xidτ+1+τk , 1 ≤ k ≤ n. (4.3)

By elementary number theory, {τk | 1 ≤ k ≤ n} = {1, 2, . . . , n}when gcd(τ, n) = 1, so the monomials in (4.3)
are themonomials in someMRS function which is equivalent to f . Thus gτ1 preserves rotation symmetry.
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Our proofs below require the use of another group Hn, defined as follows: Let n be a positive integer and let
σt,s be a permutation onℤn defined by

σt,s(i) = it + s (mod n).

Let
Hn = {σt,s : gcd(t, n) = 1 and 0 ≤ t, s ≤ n − 1}.

Then Hn forms a group of order nϕ(n) under the operation of permutation composition. As before, let X be
the set of all monomials of degree d in n variables. Define the action of Hn on X as follows:

σt,s(xi1xi2 ⋅ ⋅ ⋅ xik ) = xσt,s(i1)xσt,s(i2) ⋅ ⋅ ⋅ xσt,s(ik).

Wei andXu [24, pp. 180–181] have found the cycle index polynomial for this groupHn by using the following
lemma (we corrected several typographical errors in [24]).

Lemma 4.2. Let p be an odd prime and α ≥ 1. Then the cycle index of ZHpα is

ZHpα (x1, x2, . . . , xpα ) =
1

p2α−1(p − 1)
{

α
∑
w=1

p2(w−1)(p − 1)xp
α−w

pw

+
α−1
∑
w=0

∑
t|p−1

pw+δ(t)(α−w)ϕ(tpw)x1x
pα−w−1−1

t
t × (

w
∏
u=0

xtpu)
pα−w−1(p−1)

t },

where

δ(t) =
{
{
{

1 if t > 1,
0 if t = 1.

The cycle index of H2α is

ZH2α (x1, x2, . . . , x2α ) =

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

1
2 (x

2
1 + x2) if α = 1,

1
8 (x

4
1 + 2x

2
1x2 + 3x

2
2 + 2x4) if α = 2,

1
22α−1

{22α−3x2α +
α−1
∑
w=1

(22(w−1) + ϕ(2w−1)2α−1)x2α−w2w

+
α−2
∑
w=0

ϕ(2w)(2wx2α−w1 + 2
α−1x21x

2α−w−1−1
2 ) × (

w
∏
u=1

x2u)
2α−w−1

} if α ≥ 3.

Given Lemma 4.2, we can find the cycle index polynomial ZHn for any n by using the multiplication ⊛ from
Section 3 and Lemma 3.2. This was done in [24], whose authors were apparently unaware of themuch earlier
work, mentioned in Section 3, involving the ⊛ operation.

We need the group Hn because it turns out that the cycle index polynomials ZGn and ZHn are the same.
We were unable to compute ZGn directly. It is easy to see that the groups Gn and Hn are isomorphic, but this
does not suffice to show that they have the same cycle index polynomials. We prove this in our next lemma.

Lemma 4.3. For all integers n > 1 the groups Gn and Hn have the same cycle index polynomial.

Proof. From the definition of the permutations gτ,j and σt,s, for any τwith gcd(τ, n) = 1we have the equality
of functions

gτ,j = στ,τ(j−1)+1.

For any i, 1 ≤ i ≤ n, we have

σt,s(i) = (i + st−1 + 1 − t−1 − 1)t + 1 = gt,st−1+1−t−1 (i),

hence this isomorphism preserves the cycle structure also. Therefore the cycle index polynomial of Gn is the
same as the cycle index polynomial of Hn.
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5 Permutation equivalence of MRS functions

This section contains the core results in this paper. Our next theorem applies the machinery developed in
Section 4 to the MRS functions.

Theorem 5.1. The group Gn acts on the set Md,n by (4.2) and the orbits are the equivalence classes for Md,n
under the group Gn. If n is a prime p, then the equivalence classes from the action (4.2) of Gp are the same as
the equivalence classes for Md,p under all permutations of the variables.

Proof. Thefirst sentence of the theorem follows from thedefinitions. For the second sentence,we observe that
the group Gp contains the group of order p − 1 defined in [8], whose group action orbits are the equivalence
classes for Md,p. But by [8, Theorem 2.1] these equivalence classes are the same as the classes under all
permutations when n is prime, and of course Gp is contained in the group of all permutations. Hence the
equivalence classes under Gp are the same as the equivalence classes under all permutations.

We note that Theorem 5.1 for prime values of n was previously proved by Cusick and Stănică [8].
We shall applyPólya’s Theorem3.3 to the actionofGn onMd,n, and thenwill prove the following theorem.

Theorem 5.2. Define the action of Gn on Md,n by applying the action of Gn defined by (4.2) on

X = {all monomials of degree d in n variables}

to each of the monomials in any function in Md,n. Let the elements of X be colored from the set of colors
{0, 1}, with weights w0 = 1 and w1 = y. We assign color 0 and weight w0 to any variable xi which does not
appear in a given monomial, and we assign color 1 and weight w1 to any variable which does appear. Let
ZGn (x1, x2, . . . , xn) be the cycle index polynomial. Then the coefficient of yd in the pattern inventory

ZGn (1 + y, 1 + y2, . . . , 1 + yn)

is the number of affine equivalence classes for Md,n under the group Gn. We can compute all of these coefficients
explicitly, provided we can compute the factors of n and of p − 1 for every prime p which divides n.

Proof. We use Pólya’s Theorem 3.3 with G = Gn, the given action of Gn on Md,n, and the given colors and
weights. Then by Theorem 5.1 the orbits are the orbits for Md,n. Of course the weight of a monomial is the
product of the weights of its variables. Thus the weight of a monomial is yd, where d is the degree of the
corresponding MRS function, so by Theorem 3.3 the number of equivalence classes Ed,n is the coefficient
of yd in the pattern inventory ZGn (1 + y, 1 + y2, . . . , 1 + yn). By Lemma 4.3 we can use ZHn instead of ZGn ,
and by the formulas in Lemmas 4.2 and 3.2 we can explicitly compute the number of equivalence classes,
provided we can compute the factors of n and of p − 1 for every prime p which divides n. This proves the
theorem.

Let Ed,n denote the number of affine equivalence classes for Md,n under the group Gn. Then Theorem 5.2
states that

Ed,n = coefficient of yd in ZGn (1 + y, 1 + y2, . . . , 1 + yn). (5.1)

We give an explicit evaluation for the formula (5.1) when n is an odd prime in our next theorem.

Theorem 5.3. When n is an odd prime p, the number of equivalence classes of MRS Boolean functions of
degree d in p variables under the group of all permutations is

Ed,p =
1

p(p − 1)[(
p
d)
+ p ∑

t|gcd(p−1,d)
t>1

ϕ(t)(
p−1
t
d
t
) + p ∑

t|gcd(p−1,d−1)
t>1

ϕ(t)(
p−1
t

d−1
t
)]. (5.2)

Proof. By Theorem 5.1 it is enough to count the equivalence classes for Md,p under the group Gp. We will
use Pólya’s Theorem 3.3 to count the equivalence classes, using the method explained in Theorem 5.2,
with n = p. Theorem 5.2 says that Ed,p is the coefficient of yd in

ZGp (1 + y, 1 + y2, . . . , 1 + yp),
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and by Theorem 4.3 we can replace Gp with the group Hp. Now the special case α = 1 of Theorem 4.2 gives

ZHp (x1, x2, . . . , xp) =
1

p(p − 1)[x
p
1 + (p − 1)xp + p ∑

t|(p−1)
t>1

ϕ(t)x1x
(p−1)
t

t ].

Finally, evaluating
ZHp (1 + y, 1 + y2, . . . , 1 + yp)

and extracting the coefficient of yd gives (5.2).

As an illustration of the usefulness of Theorem 5.3, the reader can easily recover the formula E3,p = [p/6] + 1
for cubic MRS functions [4, Theorem 4.2] by evaluating E3,p using (5.2). The evaluation of Ed,n rapidly
increases in complexity as the number of prime factors of n increases, but it is easy to write a computer pro-
gram for these calculations. The authors have such a program using the SAGE software to quickly evaluate
Ed,n for d < 10 and n with up to a total of about six prime factors, counted with multiplicity.

Let cd,n denote the number of MRS Boolean functions of degree d in n variables; then from [16] we have

cd,n =
1
n ∑
t|gcd(d,n)

ϕ(t)(
n
t
d
t
). (5.3)

Combining this with Theorem 5.3, we get the next theorem.

Theorem 5.4. For any odd prime p and any degree d, we can define Ed,p recursively by

Ed,p = cd,p−1 + cd−1,p−1 − cd,p .

Proof. Substituting (5.3) into (5.2), we get the recursion in the theorem.

It would be interesting to find a proof of Theorem 5.4 which does not use Theorem 5.3.
If n = ∏r

i=1 p
αi
i , then by Lemma 3.2 the cycle index of Gn is given by

ZGn (x1, x2, . . . , xn) = ⊛si=1ZGpαii
. (5.4)

If EGn denotes the polynomial
ZGn (1 + y, 1 + y2, . . . , 1 + yn),

then by (5.1) the coefficient of yd is Ed,n. So we can use (5.4) to compute cycle index polynomials and also
the polynomials EGn . We give some examples computed with a SAGE program.

Examples of cycle index polynomials

We have
ZG10 = (1/40)(x101 + 5x

2
1x

4
2 + 10x

2
1x

2
4 + 6x

5
2 + 10x2x

2
4 + 4x

2
5 + 4x10)

and

ZG15 = (1/120)(x151 + 15x1x
7
2 + 5x

3
1x

6
2 + 3x

5
1x

5
2 + 10x

3
1x

3
4 + 30x1x2x

3
4

+ 20x3x12 + 10x3x26 + 2x
5
3 + 12x5x10 + 4x

3
5 + 8x15).

Note that a correct formula
ZGn = (1/(nϕ(n))p(x1, . . . , xn)

must have the sum of the integer coefficients, say ci, of the polynomial p equal to nϕ(n), and eachmonomial
cixa(1)i(1) ⋅ ⋅ ⋅ x

a(k)
i(k) must satisfy

a(1)i(1) + ⋅ ⋅ ⋅ + a(k)i(k) = n.



154 | T.W. Cusick, K. V. Lakshmy and M. Sethumadhavan, MRS affine equivalence

Examples of polynomials EGn and equivalence class counts Ed,n

Recall that the coefficient of xd in EGn (x) is Ed,n. We have the following results:

EG10 = 1 + x + 3x2 + 4x3 + 9x4 + 9x5 + 9x6 + 4x7 + 3x8 + x9 + x10,
EG15 = 1 + x + 3x2 + 7x3 + 18x4 + 34x5 + 54x6 + 66x7 + 66x8 + 54x9

+ 34x10 + 18x11 + 7x12 + 3x13 + x14 + x15,
EG24 = 1 + y + 7y2 + 23y3 + 97y4 + 294y5 + 870y6 + 2051y7 + 4272y8 + 7352y9

+ 10, 980y10 + 13, 790y11 + 15, 008y12 + 13, 790y13 + 10, 980y14 + 7352y15

+ 4272y16 + 2051y17 + 870y18 + 294y19 + 97y20 + 23y21 + 7y22 + y23 + y24.

6 Future work

Theorems 5.2 and 5.3 give a complete description of permutation equivalence for MRS functions of any
degree when the number n of variables is a prime, but for other values of n only the classes under the group
Gn are obtained. It would be desirable to get more detailed information about the classes when n is compos-
ite, especially since the example for n = 8 in the final paragraph of Section 2 shows that the answer cannot
be as simple as in the prime case. It turns out that this same issue arises in some graph theory problems
[25, Section 9].

It would be interesting to know, for general n, how much larger the groups Gn or Hn could be made
without decreasing the number of equivalence classes given in Theorem 5.3. To do this, a deeper knowledge
of the structure of those groups might be useful. We give some information about these groups in the rest of
this section.

The groups Gp and Hp for prime p have been studied for a long time (see [18] for example). We can
give very explicit descriptions of the structure of the groups in this case. Let GA(p) denote the well-known
general affine group Zp ⋊ Z∗p (semidirect product) for odd primes p. It is clear from their definitions that both
Gp and Hp are isomorphic to GA(p). Since

σ1,1(i) = i + 1 (mod p) (6.1)

gives a p-cycle and σk,p−1(i) gives a (p − 1)-cycle for suitably chosen k, we can prove the following lemmas
about the group Hp.

Lemma 6.1. We can represent Hp as the normalizer of the subgroup K of the symmetric group Sp generated by
the p-cycle (12 ⋅ ⋅ ⋅ p).

Proof. Since |Hp| = p(p − 1) and Hp contains a subgroup K of order p generated by the p-cycle

μ = (12 ⋅ ⋅ ⋅ p),

the other generator of Hp must be a (p − 1)-cycle ν which normalizes K. This means

νKν−1 = K,

which is equivalent to
νμ ν−1 = μ(p−1)/2, (6.2)

since then
{νμk ν−1 = (νμν−1)k : 1 ≤ k ≤ p} = {μk(p−1)/2 : 1 ≤ k ≤ p} = K.

Lemma 6.2. In the representation Hp = ⟨μ, ν⟩ in terms of the generators μ, ν we can choose

ν = σ(p−1)/2,(p+3)/2. (6.3)

Thus ν is a (p − 1)-cycle with ν(1) = 1 and ν(p − 1) = 2.
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Proof. From (6.1) and (6.3) we have

ν(μ2(i)) = ν(i + 2) = p − 12 i + p + 12 (6.4)

and (since μ−1(i) = i − 1 (mod p))

μ−1(ν(i)) = μ−1 p − 12 i + p + 32 =
p − 1
2 i + p + 12 . (6.5)

From (6.4) and (6.5) we obtain νμ2 = μ−1ν which is equivalent to

(νμν−1)2 = νμ2ν−1 = μ−1 = μp−1

and this implies (6.2).

7 Conclusion

Wedefined a group of permutationswhose action on the set ofmonomials gives the affine equivalence classes
of MRS Boolean functions in n variables, under certain large groups of permutations. If n is prime, we obtain
the classes under all permutations. Using Pólya’s theoremwe gave an explicit count of these classes. We also
gave a recurrence relation which, for prime n, expresses the number of equivalence classes of degree d MRS
Boolean functions in terms of three values of the counting function which gives the number of MRS Boolean
functions of given degree, in a given number of variables.

Acknowledgment: The authors thank the reviewers for their very useful suggestions, which resulted in
greatly increased clarity of the exposition in the manuscript.
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