
J. Math. Cryptol. 2017; 11 (1):1–24

Research Article

Masaya Yasuda*, Kazuhiro Yokoyama, Takeshi Shimoyama, Jun Kogure and
Takeshi Koshiba

Analysis of decreasing squared-sum of
Gram–Schmidt lengths for short lattice
vectors
DOI: 10.1515/jmc-2016-0008
Received February 1, 2016; revised December 7, 2016; accepted February 2, 2017

Abstract: In 2015, Fukase and Kashiwabara proposed an efficient method to find a very short lattice vector.

Their method has been applied to solve Darmstadt shortest vector problems of dimensions 134 to 150. Their

method is based on Schnorr’s random sampling, but their preprocessing is different from others. It aims to

decrease the sum of the squared lengths of the Gram–Schmidt vectors of a lattice basis, before executing

random sampling of short lattice vectors. The effect is substantiated from their statistical analysis, and it

implies that the smaller the sum becomes, the shorter sampled vectors can be. However, no guarantee is

known to strictly decrease the sum. In this paper, we study Fukase–Kashiwabara’s method in both theory

and practice, and give a heuristic but practical condition that the sum is strictly decreased. We believe that

our condition would enable one to monotonically decrease the sum and to find a very short lattice vector in

fewer steps.

Keywords: SVP, LLL algorithm, random sampling

MSC 2010: Primary 68R01; secondary 06B99

||
Communicated by: Kristin Lauter

1 Introduction
Given n linearly independent column vectors b

1
, . . . , bn ∈ ℝm, the set of all integral linear combinations of

the bi’s defines a lattice of dimension n. The matrix B = [b
1
, . . . , bn] ∈ ℝm×n is called a basis of the lattice.

Given a lattice basis, the shortest vector problem (SVP) is to find a non-zero shortest lattice vector, and it has

been a landmark problem in complexity theory for a long time. No efficient algorithm is currently known to

find very short vectors in high dimensional lattices. Ajtai [1] proved that SVP is NP-hard under randomized

reduction (see [13] for the NP-hardness of approximate SVP). In cryptography, the computational hardness

of SVP assures the security of lattice-based cryptography such as [9, 10], to which has recently been paid

attention as a candidate of post-quantum cryptography. There are four main approaches for solving SVP:

lattice reduction, enumeration, sieving, and finally random sampling. Given a basis of a lattice L, lattice

*Corresponding author: Masaya Yasuda: Institute of Mathematics for Industry, Kyushu University, 744 Motooka,
Nishi-ku, Fukuoka 819-0395, Japan, e-mail: yasuda@imi.kyushu-u.ac.jp
Kazuhiro Yokoyama: Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, Tokyo 171-850, Japan,
e-mail: kazuhiro@rikkyo.ac.jp
Takeshi Shimoyama, Jun Kogure: Fujitsu Laboratories Ltd., 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki,
Kanagawa 211-8588, Japan, e-mail: shimo-shimo@jp.fujitsu.com, kogure@jp.fujitsu.com
Takeshi Koshiba: Division of Mathematics, Electronics and Informatics, Graduate School of Science and Engineering,
Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan, e-mail: koshiba@mail.saitama-u.ac.jp

2 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

reduction finds a basis with short and nearly orthogonal vectors; e.g., the Lenstra–Lenstra–Lovász (LLL) [11]

and the block Korkine–Zolotarev (BKZ) [18] algorithms. Enumeration performs to enumerate all lattice points

within a sphere S around a target vector; e.g., Schnorr–Euchner’s enumeration [18] and Gama–Nguyen–

Regev’s pruned enumeration [8]. Sieving aims to do a randomized sampling of L ∩ S while enumeration

performs an exhaustive search of L ∩ S; e.g., the Ajtai–Kumar–Sivakumar algorithm [2]. Random sampling

randomly enumerates a number of short lattice vectors until a very short lattice vector is found.

We focus on random sampling. Schnorr [17] first proposed a random sampling algorithm, called random
sampling reduction (RSR). Given a basis B = [b

1
, . . . , bn], the sampling algorithm (SA) in RSR generates a

number of short lattice vectors to find v with ‖v‖2 < 0.99‖b
1
‖2. Buchmann and Ludwig [4] proposed simple

sampling reduction (SSR) to make RSR practical. In 2015, Fukase and Kashiwabara [5] proposed a method

for SVP. Their method has been applied to solve Darmstadt SVP problems of dimensions 134 to 150 by

Kashiwabara and Teruya (see http://www.latticechallenge.org/svp-challenge/). Their method is based on

RSR, but their preprocessing is different from others. Before describing their method, we define the following

notation.

Definition 1.1. Givena lattice basisB = [b
1
, . . . , bn], let [b∗

1

, . . . , b∗
n]denote itsGram–Schmidt vectors. Then

we define by

SS(B) =
n
∑
i=1

‖b∗
i ‖

2

the sum of the squared lengths of the Gram–Schmidt vectors [b∗
1

, . . . , b∗
n].

Fukase and Kashiwabara [5] decrease SS(B) before executing random sampling. The smaller the squared-
sum SS(B) becomes, the shorter lattice vectors can be sampled. To decrease SS(B), Fukase and Kashiwabara
insert a short lattice vector v into B to obtain a new basis C, and then reduce C by LLL to obtain a basis

B� = [b�
1

, . . . , b�
n]. Then we sometimes have

SS(B�) < SS(B). (1.1)

By repeating the procedures, they attempt to decrease SS(B) as much as possible. However, there is no guar-

antee to strictly decrease SS(B).
In this paper,weanalyzewhich lattice vectorsv candecrease the squared-sumSS(B), andgive a condition

of v such that the squared-sum SS(B) is strictly decreased. Specifically, we consider the following: Given an

LLL-reduced basis B = [b
1
, . . . , bn] of a lattice L and a vector v = ∑n

i=1 νib∗
i ∈ L with νn = 1 and insertion

index k, we consider

B = [b
1
, . . . , bn]

insertion of v
ÚÚÚÚÚÚÚÚÚÚ→ C = [c

1
, . . . , cn]

LLL reduction

ÚÚÚÚÚÚÚÚÚÚ→ B� = [b�
1

, . . . , b�
n], (1.2)

where C = [b
1
, . . . , bk−1, v, bk , . . . , bn−1]. Note that C is a basis of the whole lattice L due to νn = 1 (see

Proposition 4.3 below). We focus on the LLL-reduction for C as in [5]. Our main contributions are as follows:

(i) We compute theGram–Schmidt vectors [c∗
1

, . . . , c∗n] ofC, and give their explicit lengths ‖c∗i ‖ for 1 ≤ i ≤ n.
Thus we obtain the explicit gap between two squared-sums SS(B) and SS(C).

(ii) We study the behavior of the LLL algorithm for a general basis S, and show that swaps of the LLL al-

gorithms can strictly decrease SS(S). In particular, we estimate how much SS(S) is decreased by one

time swap, and study the total number of swaps in the LLL algorithm.

(iii) We estimate the gap between SS(C) and SS(B�), by applying the estimates of (ii) for the basis C. Specifi-
cally, we estimate the average of decreasing values of SS(C) by one time swap in the LLL algorithm, and

the number of swaps. We give a heuristic but practical condition of a candidate lattice vector v satisfying
condition (1.1). We call such v amutant vector.

(iv) We also verify our analysis by experiments. Our experimental results imply that the condition of mutant

vectors gives a good criterion to strictly decrease SS(B). Therebywe expect thatmutant vectors could help

to monotonically decrease SS(B), and it would make it easier to find a very short lattice vector.

The paper is organized as follows: In Section 2, we review lattices and lattice reduction. In Section 3, we

review random sampling algorithms and present some results by Fukase and Kashiwabara [5]. In Section 4,

http://www.latticechallenge.org/svp-challenge/

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 3

we compute the Gram–Schmidt vectors of the basis C, and give the explicit gap between SS(B) and SS(C). In
Section 5, we review some basic properties of the LLL algorithm for a general basis S, and study the behavior
of the LLL algorithm for S. In Section 6, we analyze the LLL-reduction for C by using results obtained in

Section 5. In Section 7, we estimate the gap between SS(B) and SS(B�), and define mutant vectors to strictly

decrease SS(B). In Section 8, we verify our analysis by experiments. In Section 9, we conclude this work and

outline some future issues.

Notation. For a vector a = (a
1
, . . . , an) ∈ ℝn, let ‖a‖ denote its Euclidean norm defined by ‖a‖2 = ∑n

i=1 a2i .
For two vectors a = (a

1
, . . . , an) and b = (b1, . . . , bn) ∈ ℝn, let ⟨a, b⟩ denote the inner product∑n

i=1 aibi.

2 Preliminaries
In this section, we briefly review lattices and lattice reduction.

2.1 Lattices

For two positive integers m and n, let b
1
, . . . , bn be n column vectors of ℤm (we only consider integral vec-

tors). Set B = [b
1
, . . . , bn] ∈ ℤm×n, and let

L = L(B) := {
n
∑
i=1
xibi | xi ∈ ℤ, 1 ≤ i ≤ n}

denote the set of all integral linear combinations of the bi’s. The set L gives a subgroup of ℝm. We say that L
is a lattice of dimension n if all the b’s are linearly independent over ℝ. When n = m, the lattice L is called
full-dimensional or full-rank (in this paper, we only consider full-rank lattices). In this case, the matrix B is

called a basis of L. Every lattice has infinitely many bases. If B
1
and B

2
are two bases, then there exists a

unimodular matrix V ∈ GLn(ℤ) such that B1 = B2 ⋅ V. The volume of L, denoted by vol(L), is defined as

vol(L) = (det(⟨bi , bj⟩)1≤i,j≤n)1/2 > 0,

where (⟨bi , bj⟩)1≤i,j≤n denotes the n × n Gram-matrix of a basis B. The volume vol(L) is independent of the
choice of the bases.

The Gram–Schmidt orthogonalization of a basis B = [b
1
, . . . , bn] is the orthogonal family [b∗

1

, . . . , b∗
n],

recursively defined by

b∗
i = bi −

i−1
∑
j=1
μi,jb∗

j , where μi,j =
⟨bi , b∗

j ⟩

‖b∗
j ‖

2

for 1 ≤ j < i ≤ n. (2.1)

LetB∗ = [b∗
1

, . . . , b∗
n] ∈ ℝ

m×n
andU = (μi,j)1≤i,j≤n ∈ ℝn×n, where μi,i = 1 for all i and μi,j = 0 for all j > i. Then

B = B∗ ⋅ UT and

vol(L) =
n
∏
i=1

‖b∗
i ‖.

2.2 Lattice reduction

Given abasis of a lattice L, lattice reduction outputs a basisB = [b
1
, . . . , bn]of Lwith short andnearly orthog-

onal vectors b
1
, . . . , bn. Lattice reduction gives a powerful tool to break lattice-based cryptosystems such as

[9, 10]. The Hermite factor γ of a lattice reduction algorithm is defined by

γ = ‖b
1
‖

vol(L)1/n

with the output basis [b
1
, . . . , bn] (we assume ‖b

1
‖ ≤ ‖b

2
‖ ≤ ⋅ ⋅ ⋅). This factor is a good index to measure the

output quality of a lattice reduction algorithm. Note that the output quality becomes better as γ is smaller.

4 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

Here we introduce two practical algorithms: LLL is a polynomial-time algorithm [11]. Gama–Nguyen’s

experimental results [7, Figure 4] show that the Hermite factor of LLL is practically 1.022

n
on average in high

dimension n ≥ 100. BKZ is a blockwise generalization of LLL with sub-exponential complexity [18]. No good

upper bound on the complexity is currently known. BKZ uses a blockwise parameter β, and larger β improves

the output quality but increases the running time. In practice, β ≈ 20 can achieve the best time/quality com-

promise. It follows from [7, Section 5.2] that the Hermite factor with β = 20 is 1.0128n on average. Currently,
BKZ 2.0 is known as the state-of-the-art implementation of the BKZ algorithm.

Geometric Series Assumption (GSA). Except when a lattice has a special structure, practical reduction algo-
rithms output a basis B = [b

1
, . . . , bn] such that

‖b∗
i ‖

‖b∗
i+1‖
≈ q for any 1 ≤ i ≤ n − 1

(i.e. ‖b∗
i ‖ ≈ q

1−i‖b
1
‖ for 1 ≤ i ≤ n), where the constant q depends on algorithms (this assumption was first

introduced in [17]). Under GSA, the values log
2
(‖b

1
‖/‖b∗

i ‖) are on a straight line (see, e.g., [17, Figure 1]).

According to [11], we have q ≈ 1.022 ≈ 1.04 (resp. q ≈ 1.025) for LLL (resp. BKZ with β = 20) for random
lattices in practice.

3 Random sampling of short lattice vectors
In this section, wemainly present some results by Fukase and Kashiwabara [5]. Before presenting their work,

let us review previous work on random sampling.

3.1 Review of previous work

For a lattice L of dimension n, fix a constant u of search space bound with 1 ≤ u < n. Let a basis B =
[b

1
, . . . , bn] of L be given. As a main subroutine of Schnorr’s RSR [17], SA samples v = ∑n

i=1 νib∗
i ∈ L

satisfying

νi ∈
{{{
{{{
{

(−1
2

,

1

2

] if 1 ≤ i < n − u,
(−1, 1] if n − u ≤ i < n,
{1} if i = n.

(3.1)

Let Su,B denote the set of v = ∑n
i=1 νib∗

i satisfying condition (3.1). Since the number of candidates for νi with
|νi| ≤ 1

2

(resp. |νi| ≤ 1) is 1 (resp. 2), there are 2

u
lattice vectors in Su,B. By calling SA up to 2

u
times, RSR

generates v satisfying ‖v‖2 < 0.99‖b
1
‖2 (see [17, Theorem 1]). In [4], Buchmann and Ludwig proposed SSR

to get rid of two RSR assumptions, namely, the randomness assumption (RA)¹ and GSA (they claim that both

RA and GSA do not hold strictly in practice). Ludwig [12] gave a more detailed view about the behavior of

SSR. Schneider and Göttert [16] presented a GPU implementation of SSR with the BKZ algorithm.

In 2015, Fukase and Kashiwabara [5] proposed a method for SVP. Their method is based on Schnorr’s

RSR, and it has two extensions: The first one is to represent a lattice vector by a sequence of natural numbers

via the Gram–Schmidt orthogonalization, and to sample lattice vectors on an appropriate distribution of the

representation. The second one is to decrease the sum of the squared lengths of Gram–Schmidt vectors to

make it easier to sample very short lattice vectors. The effectiveness of their extensions is guaranteed by their

statistical analysis on lattices, which we shall describe in the next subsection.

1 RA states that the coefficients νi of v = ∑ni=1 νib
∗
i sampled by SA are uniformly distributed in [− 1

2

,

1

2

] for 1 ≤ i < n − u and in
[−1, 1] for n − u ≤ i < n.

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 5

3.2 Statistical analysis of Fukase and Kashiwabara on lattices

In [5, Definiton 3], Fukase andKashiwabara extend Schnorr’s search space Su,B to define awider search space
VB(s, t) for s, t ∈ ℕc with some c. Given v = ∑n

i=1 νib∗
i ∈ VB(s, t), they first assume

E[‖v‖2] ≈ 1

12

n
∑
i=1

‖b∗
i ‖

2 =
1

12

SS(B)

(see [5, Assumption 2]). Under this assumption, they apply the generalized central limit theorem to obtain

the following assumption on the distribution of ‖v‖2 (see [5, Assumption 3]).

Assumption 3.1. The distribution of the length ‖v‖2 = ∑n
i=1 ν2i ‖b

∗
i ‖

2 with v ∈ VB(s, t) follows the normal distri-
butionN(μ, σ2) with

μ =
∑n
i=1 ‖b∗

i ‖
2

12

=
SS(B)
12

and σ = (
∑n
i=1 ‖b∗

i ‖
4

180

)
1/2

.

Assumption 3.1 shows that shorter lattice vectors are sampled as the squared-sum SS(B) becomes smaller.
Fukase and Kashiwabara verified Assumption 3.1 by experiments, and showed that it does not hold strictly,

but it is close enough for finding very short vectors (see [5, Figure 1]). Their experiments were performed over

a random lattice of dimension 120. Assumption 3.1 enables one to estimate the probability of finding a lattice

vector shorter than a given constant η. Specifically, the probability of finding v = ∑n
i=1 νib∗

i ∈ VB(s, t) shorter
than η is

1

√2πσ

η2

∫
−∞

exp(−
(x − μ)2

2σ2
)dx = 1

2

(1 + erf(
η2 − μ
√2σ

)),

where erf(x) = 2

√π ∫
x
0

exp(−t2)dt is the error function.

3.3 Basic strategy of Fukase and Kashiwabara for finding short lattice vectors

Assumption3.1 implies an importance of decreasing the sumof the squared lengths ofGram–Schmidt vectors

to find a short lattice vector. Once we obtain a basis B of L with smaller squared-sum SS(B), we can generate
a short vector v = ∑n

i=1 νib∗
i ∈ L with higher probability. The basic strategy in [5] for finding a short vector

consists of the following two steps:

∙ Step 1. Given a basis of a lattice L, we first decrease the sum of the squared lengths of its Gram–Schmidt

vectors as much as possible, and obtain a basis B of L with small SS(B).
∙ Step 2. With such basis B, we find a short lattice vector by randomly sampling v = ∑i=1 νib∗

i ∈ VB(s, t).

To decrease SS(B) in Step 1, Fukase and Kashiwabara insert a certain lattice vector v into a given basis

B = [b
1
, . . . , bn] at a certain position k to obtain a newbasisC, as in (1.2). The insertion index k is determined

as follows (see [5, Definition 4]).

Definition 3.2 (Insertion index). Let B = [b
1
, . . . , bn] be a basis of L. For a fixed constant 0 < α ≤ 1, the in-

sertion index k of a vector v ∈ L is defined by

min{1 ≤ j ≤ n | ‖πj(v)‖2 < α‖b∗
j ‖

2},

where for 2 ≤ j ≤ nwe let πj : ℝn → V⊥j−1 denote the orthogonal projection over the orthogonal supplement of

Vj−1 = ⟨b1, . . . , bj−1⟩ℝ = ⟨b∗
1

, . . . , b∗
j−1⟩ℝ. In particular, let π

1
denote the identity map. If ‖πj(v)‖2 ≥ α‖b∗

j ‖
2

for all 1 ≤ j ≤ n, we do not insert v into B.

4 Gram–Schmidt orthogonalization for C
In this section,we compute theGram–Schmidt vectors of thebasisCdefined in (1.2) and their explicit lengths.
Given a basis B = [b

1
, . . . , bn] of a lattice L, let [b∗

1

, . . . , b∗
n] be its Gram–Schmidt vectors. The basis B is not

6 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

necessarily LLL-reduced. Let v = ∑n
i=1 νib∗

i ∈ L. At the beginning of this section, we do not assume νn = 1.
Let k be the insertion index of v. We consider the Gram–Schmidt orthogonalization for the n + 1 vectors

[b
1
, . . . , bk−1, v, bk , . . . , bn]. Let [b∗

1

, . . . , b∗
k−1, c

∗
k , c

∗
k+1, . . . , c

∗
n+1] denote its Gram–Schmidt vectors. By

formula (2.1), it is clear that the first k − 1 vectors are the same as the first k − 1 vectors of [b∗
1

, . . . , b∗
n].

Lemma 4.1. For the vectors c∗k , c
∗
k+1, . . . , c

∗
n+1, we have the following:

(i) The vectors [c∗k , c
∗
k+1, . . . , c

∗
n+1] are the same as the Gram–Schmidt orthogonalization for

[πk(v), πk(bk), . . . , πk(bn)].

(ii) The Gram–Schmidt orthogonalization for [πk(v), πk(bk), . . . , πk(bn)] is the same as that for

[πk(v), b∗
k , . . . , b

∗
n].

Proof. Assertion (i) is clear from recursive formula (2.1). For (ii), we let

[a
0
, a

1
, . . . , an−k+1] = [πk(v), πk(bk), . . . , πk(bn)],

[a�
0

, a�
1

, . . . , a�n−k+1] = [πk(v), b
∗
k , . . . , b

∗
n].

It is sufficient to show a∗i = a
�∗
i for any 0 ≤ i ≤ n − k + 1. The case i = 0 is clear since a

0
= a�

0

. The case i = 1
is also clear since πk(bk) = b∗

k , and we have b
∗
k ∈ ⟨a

∗
0

, a∗
1

⟩ℝ. For some 1 ≤ ℓ ≤ n − k, we assume a∗i = a
�∗
i and

b∗
k+i−1 ∈ Wi for all 1 ≤ i ≤ ℓ, where Wi = ⟨a∗

0

, . . . , a∗i ⟩ℝ for each 0 ≤ i ≤ n − k + 1. Now we consider the case

i = ℓ + 1. By the assumption, we have

a∗ℓ+1 − a
�∗
ℓ+1 = (aℓ+1 − a

�
ℓ+1)

∗ = πk(bk+ℓ) − b∗
k+ℓ −

ℓ
∑
j=0

⟨πk(bk+ℓ) − b∗
k+ℓ, a

∗
j ⟩

‖a∗j ‖2
a∗j .

Since πk(bk+ℓ) − b∗
k+ℓ ∈ ⟨b

∗
k , . . . , b

∗
k+ℓ−1⟩ℝ and b

∗
k , . . . , b

∗
k+ℓ−1 ∈ Wℓ = ⟨a∗

0

, . . . , a∗ℓ ⟩ℝ, we have

a∗ℓ+1 − a
�∗
ℓ+1 ∈ Wℓ.

We also have a∗ℓ+1 − a
�∗
ℓ+1 ∈ W

⊥
ℓ , and hence a

∗
ℓ+1 = a

�∗
ℓ+1 sinceWℓ ∩W⊥ℓ = {0}. Furthermore,b∗

k+ℓ ∈ Wℓ+1, which

completes the proof by induction.

By Lemma 4.1, we obtain the following result on c∗k , c
∗
k+1, . . . , c

∗
n+1.

Proposition 4.2. Set m = max{k ≤ i ≤ n | νi ̸= 0}. Then we have

c∗j =

{{{{{{{{{
{{{{{{{{{
{

m
∑
i=k
νib∗

i for j = k,

Dj
Dj−1

b∗
j−1 −

m
∑
i=j

νiνj−1‖b∗
j−1‖

2

Dj−1
b∗
i for k + 1 ≤ j ≤ m + 1,

b∗
j−1 for m + 2 ≤ j ≤ n + 1,

where for 1 ≤ ℓ ≤ m we set

Dℓ =
m
∑
i=ℓ
ν2i ‖b

∗
i ‖

2

. (4.1)

In particular, we have c∗m+1 = 0. Moreover, we have ‖c
∗
k ‖

2 = Dk, and for k + 1 ≤ j ≤ m,

‖c∗j ‖
2 =

Dj
Dj−1

‖b∗
j−1‖

2

.

Proof. By Lemma 4.1, we have c∗k = πk(v) = ∑
m
i=k νib

∗
i . For the case m + 2 ≤ j ≤ n + 1, since

⟨c∗k , b
∗
k , . . . , b

∗
m⟩ℝ = ⟨b∗

k , . . . , b
∗
m⟩ℝ,

the ℝ-vector space ⟨b∗
m+1, . . . , b∗

n⟩ℝ is orthogonal to ⟨b∗
k , . . . , b

∗
m⟩ℝ. Therefore the vectors b∗

m+1, . . . , b∗
n are

unchanged after the insertion of v. For the case k + 1 ≤ j ≤ m + 1, let us begin with the simple case j = k + 1.

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 7

By Lemma 4.1, we have

c∗k+1 = b
∗
k −

⟨b∗
k , c

∗
k ⟩

‖c∗k ‖
c∗k

= b∗
k −

νk‖b∗
k ‖

2

Dk

m
∑
i=k
νib∗

i

= (1 −
ν2k‖b

∗
k ‖

2

Dk
)b∗

k −
m
∑
i=k+1

νkνi‖b∗
k ‖

2

Dk
b∗
i

=
Dk+1
Dk

b∗
k −

m
∑
i=k+1

νkνi‖b∗
k ‖

2

Dk
b∗
i .

This completes the proof of the case j = k + 1. For each k + 1 ≤ j ≤ m + 1, set

aj =
Dj
Dj−1

b∗
j−1 −

m
∑
i=j

νiνj−1‖b2j−1‖
2

Dj−1
b∗
i

and we shall show c∗j = aj. For k + 1 ≤ ℓ ≤ m, we assume c∗j = aj for all k + 1 ≤ j ≤ ℓ. Now let us consider

the case j = ℓ + 1. Set Wℓ = ⟨c∗k , . . . , c
∗
ℓ ⟩ℝ as in the proof of Lemma 4.1, and we begin to show that aℓ+1 is

orthogonal toWℓ. Actually, we have

⟨aℓ+1, c∗k ⟩ = ⟨
Dℓ+1
Dℓ

b∗
ℓ −

m
∑
i=ℓ+1

νiνℓ‖b∗
ℓ ‖

2

Dℓ
b∗
i ,

m
∑
j=k
νjb∗

j ⟩

=
νℓDℓ+1‖b∗

ℓ ‖
2

Dℓ
−

m
∑
i=ℓ+1

νℓν2i ‖b
∗
ℓ ‖

2‖b∗
i ‖

2

Dℓ

=
νℓ‖b∗

ℓ ‖
2

Dℓ
× (Dℓ+1 −

m
∑
i=ℓ+1

ν2i ‖b
∗
i ‖

2) = 0.

Furthermore, for any k + 1 ≤ j ≤ ℓ, we have

⟨aℓ+1, c∗j ⟩ = ⟨
Dℓ+1
Dℓ

b∗
ℓ −

m
∑
i=ℓ+1

νiνℓ‖b∗
ℓ ‖

2

Dℓ
b∗
i ,

Dj
Dj−1

b∗
j−1 −

m
∑
i=j

νiνj−1‖b∗
j−1‖

2

Dj−1
b∗
i ⟩

= −
Dℓ+1νℓνj−1‖b∗

j−1‖
2‖b∗

ℓ ‖
2

DℓDℓ−1
+

m
∑
i=ℓ+1

ν2i νℓνj−1‖b
∗
ℓ ‖

2‖b∗
j−1‖

2‖b∗
i ‖

2

DℓDℓ−1

=
νℓνj−1‖b∗

j−1‖
2‖bℓ‖2

DℓDℓ−1
(

m
∑
i=ℓ+1

ν2i ‖b
∗
i ‖

2 − Dℓ+1) = 0.

Therefore aℓ+1 is orthogonal toWℓ. On the other hand, since

c∗ℓ+1 = b
∗
ℓ −

ℓ
∑
i=k

⟨b∗
ℓ , c

∗
i ⟩

‖c∗i ‖2
c∗i

by Lemma 4.1, we have

c∗ℓ+1 − aℓ+1 = (b
∗
ℓ −

ℓ
∑
i=k

⟨b∗
ℓ , c

∗
i ⟩

‖c∗i ‖2
c∗i) − (

Dℓ+1
Dℓ

b∗
ℓ −

m
∑
i=ℓ+1

νiνℓ‖b∗
ℓ ‖

2

Dℓ
b∗
i)

=
Dℓ − Dℓ+1

Dℓ
b∗
ℓ +

m
∑
i=ℓ+1

νiνℓ‖b∗
ℓ ‖

2

Dℓ
b∗
i −

ℓ
∑
i=k

⟨b∗
ℓ , c

∗
i ⟩

‖c∗i ‖2
c∗i

=
νℓ‖b∗

ℓ ‖
2

Dℓ

m
∑
i=ℓ
νib∗

i −
ℓ
∑
i=k

⟨b∗
ℓ , c

∗
i ⟩

‖c∗i ‖2
c∗i

=
νℓ‖b∗

ℓ ‖
2

Dℓ
(c∗k −

ℓ−1
∑
i=k
νib∗

i) −
ℓ
∑
i=k

⟨b∗
ℓ , c

∗
i ⟩

‖c∗i ‖2
c∗i .

Since b∗
i ∈ Wℓ for any k ≤ i ≤ ℓ − 1 by the proof of Lemma 4.1, we have c∗ℓ+1 − aℓ+1 ∈ Wℓ. By the above argu-

ments, we have c∗ℓ+1 − aℓ+1 ∈ W
⊥
ℓ ∩Wℓ = {0} and hence c∗ℓ+1 = aℓ+1. This shows c

∗
j = aj for k + 1 ≤ j ≤ m + 1

8 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

by induction. Finally, for k + 1 ≤ j ≤ m, we have

‖c∗j ‖
2 =

D2

j

D2

j−1
‖b∗

j−1‖
2 +

m
∑
i=j

ν2i ν
2

j−1‖bj−1‖
4

D2

j−1
‖b∗

i ‖
2

=
‖b∗

j−1‖
2

D2

j−1
(D2

j + ν
2

j−1‖b
∗
j−1‖

2Dj)

=
Dj‖b∗

j−1‖
2

D2

j−1
Dj−1

=
Dj
Dj−1

‖b∗
j−1‖

2

,

where the second equation is by Dj = ∑m
i=j ν2i ‖b

∗
i ‖

2

, and the third by Dj−1 = Dj + ν2j−1‖b
∗
j−1‖

2

. This completes

the proof of Proposition 4.2.

By inserting v = ∑n
i=1 νib∗

i into B = [b1, . . . , bn] at the k-th position, the n vectors

[b
1
, . . . , bk−1, v, bk , . . . , bm−1, bm+1, . . . , bn] (4.2)

give a basis of a sub-lattice of L (recall m = max{k ≤ i ≤ n | νi ̸= 0}). In contrast, we have the following result
on a basis of the whole lattice L.

Proposition 4.3. If νm = 1, the vectors (4.2) give a basis of the whole lattice L.

Proof. Let L� denote the sub-lattice with basis (4.2). By Proposition 4.2, we have

vol(L�)2

vol(L)2
=

m
∏
i=k

‖c∗i ‖
2

‖b∗
i ‖

2

= Dk ×
Dk+1
Dk
× ⋅ ⋅ ⋅ ×

Dm
Dm−1
×

1

‖b∗
m‖2

=
Dm

‖b∗
m‖2

.

If νm = 1, we have Dm = ‖b∗
m‖

2

by definition. In this case, we have vol(L�) = vol(L), and hence L = L�.

Henceforth, as in (1.2), we always take v = ∑n
i=1 νib∗

i with νn = 1. By Proposition 4.3, the n vectors

[b
1
, . . . , bk−1, v, bk , . . . , bn−1] give a basis of L. Then we take the basis C = [c1, . . . , cn] as in (1.2), namely,

ci = bi for 1 ≤ i ≤ k − 1, ck = v, and cj = bj−1 for k + 1 ≤ j ≤ n. By Proposition 4.2, we obtain the explicit gap
between two squared-sums SS(B) and SS(C) as follows.

Theorem 4.4. The explicit gap between SS(B) and SS(C) is given by

E(v, k) := SS(B) − SS(C) =
n−1
∑
j=k
ν2j ‖b

∗
j ‖

2(
‖b∗

j ‖
2

Dj
− 1). (4.3)

Proof. By Proposition 4.2, we have

E(v, k) =
n
∑
i=k

‖b∗
i ‖

2 − (Dk +
n
∑
j=k+1

Dj
Dj−1

‖b∗
j−1‖

2)

= −Dk +
n
∑
j=k+1

(1 −
Dj
Dj−1

)‖b∗
j−1‖

2 + ‖b∗
n‖

2

= −
n−1
∑
j=k
ν2j ‖b

∗
j ‖

2 +
n
∑
j=k+1

ν2j−1‖b
∗
j−1‖

2

Dj−1
‖b∗

j−1‖
2

=
n−1
∑
j=k
ν2j ‖b

∗
j ‖

2(
‖b∗

j ‖
2

Dj
− 1)

since Dn = ‖b∗
n‖

2

by setting νn = 1.

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 9

Remark 4.5. To strictly decrease the squared-sum SS(B), we may take v ∈ L satisfying E(v, k) > 0. However,
in most cases, the value E(v, k) is negative when the inserted vector v is generated by Schnorr’s SA. Below,
we shall consider only the case E(v, k) ≤ 0.

For the original basis B = [b
1
, . . . , bn], let

μi,j =
⟨bi , b∗

j ⟩

‖b∗
j ‖

2

be as in (2.1). For C = [c
1
, . . . , cn] with ck = v = ∑n

i=1 νib∗
i ∈ L, we set

ξi,j =
⟨ci , c∗j ⟩
‖c∗j ‖2

for i > j. (4.4)

For simplicity, we set ξi,i = 1 for all 1 ≤ i ≤ n.

Proposition 4.6. We have the following on ξi,j:
(i) For 1 ≤ i ≤ k − 1, we have ξi,j = μi,j for i ≥ j.
(ii) For i = k, we have ξk,j = νj for 1 ≤ j ≤ k − 1.
(iii) For i ≥ k + 1, we have

ξi,j =

{{{{{{{{
{{{{{{{{
{

μi−1,j for j ≤ k − 1,

∑i−1
ℓ=k μi−1,ℓνℓ‖b

∗
ℓ ‖

2

Dk
for j = k,

μi−1,j−1 −
∑i−1

ℓ=j μi−1,ℓνℓνj−1‖b
∗
ℓ ‖

2

Dj
for k < j < i.

Proof. Cases (i) and (ii) are trivial. Case (iii) is trivial for j ≤ k. For k < j < i, by Proposition 4.2, we have

ξi,j =
Dj−1

Dj‖b∗
j−1‖

2

⟨bi−1,
Dj
Dj−1

b∗
j−1 −

n
∑
ℓ=j

νℓνj−1‖b∗
j−1‖

2

Dj−1
b∗
ℓ⟩

= μi−1,j−1 −
νj−1
Dj

⟨bi−1,
n
∑
ℓ=j
νℓb∗

ℓ⟩

= μi−1,j−1 −
νj−1
Dj

i−1
∑
ℓ=j
μi−1,ℓνℓ‖b∗

ℓ ‖
2

.

This completes the proof of Proposition 4.6.

5 LLL-reduction for general bases
Before analyzing the LLL-reduction for the basis C, we study the behavior of the LLL-reduction for general

bases and give some basic properties in this section. Let S = [s
1
, . . . , sn] be a basis of a lattice L. The LLL

algorithm for S consists of the following two steps (see, e.g., [15, Chapter 2, Algorithm 6]):

From i = 2 to n, do:
∙ Step 1. Size-reduce S = [s

1
, . . . , sn] (see, e.g., [15, Chapter 2, Algorithm3]). Note that this procedure does

not change the lengths of the Gram–Schmidt vectors [s∗
1

, . . . , s∗n] by [6, Lemma 17.4.1].

∙ Step 2. Swap si with si−1 if the Lovász condition

‖s∗i ‖
2 ≥ (δ − η2i,i−1)‖s

∗
i−1‖

2

(5.1)

is not satisfied, where δ is the reduction parameter of LLL satisfying

1

4

< δ < 1 (we used δ = 0.99 in our
experiments) and

ηi,j =
⟨si , s∗j ⟩
‖s∗j ‖2

for i > j.

In this case, set i ← max{2, i − 1}. Otherwise set i ← i + 1. Then go back to Step 1.

10 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

In the following, we give a key lemma [6, Lemma 17.4.3] on our analysis of the behavior of the LLL

algorithm.

Lemma 5.1. Given a basis S = [s
1
, . . . , sn] and an integer 1 ≤ ℓ ≤ n − 1, assume that the pair (sℓ, sℓ+1) does

not satisfy the Lovász condition. LetT = [t
1
, . . . , tn] be the newbasis obtained by swapping sℓ and sℓ+1, namely,

tℓ = sℓ+1 and tℓ+1 = sℓ. Then the Gram–Schmidt vectors [t∗
1

, . . . , t∗n] of T are as follows:
(i) For 1 ≤ i < ℓ and ℓ + 1 < i ≤ n, the vector s∗i is unchanged (i.e. t

∗
i = s

∗
i).

(ii) The Gram–Schmidt vector t∗ℓ and its squared-length are given, respectively, by

t∗ℓ = s
∗
ℓ+1 + ηℓ+1,ℓs

∗
ℓ and Tℓ = Sℓ+1 + η2ℓ+1,ℓSℓ,

where we set Si = ‖s∗i ‖
2 and Ti = ‖t∗i ‖

2 for 1 ≤ i ≤ n.
(iii) The Gram–Schmidt vector t∗ℓ+1 and its squared-length are given, respectively, by

t∗ℓ+1 =
Sℓ+1
Tℓ

s∗ℓ −
ηℓ+1,ℓSℓ
Tℓ

s∗ℓ+1 and Tℓ+1 =
SℓSℓ+1
Tℓ

.

Moreover, if we set
δℓ :=

Tℓ
Sℓ
=
Sℓ+1
Sℓ
+ η2ℓ+1,ℓ, (5.2)

then δℓ < δ since we assume that the pair (sℓ, sℓ+1) does not satisfy (5.1).

Nowwe consider the LLL-reduction for S. Recall that the size-reduce procedure does not change the lengths of
the Gram–Schmidt vectors. By Lemma 5.1, we see that each swap in the LLL algorithm can strictly decrease

the sum SS(S). Specifically, the decreasing value of SS(S) = ∑n
i=1 Si by one time swap at the ℓ-th index is

estimated as follows:

Lemma 5.2. Let S and T be as in Lemma 5.1. Then we have

SS(S) − SS(T) =
η2ℓ+1,ℓ(1 − δℓ)

δℓ
Sℓ >

η2ℓ+1,ℓ(1 − δ)
δ

Sℓ > 0,

by δℓ < δ < 1. Namely, the squared-sum SS(S) strictly decreases by each swap in the LLL algorithm.

Proof. By Lemma 5.1, we have

SS(S) − SS(T) = (1 − η2ℓ+1,ℓ)Sℓ −
SℓSℓ+1
Tℓ

=
Sℓ
Tℓ

{(1 − η2ℓ+1,ℓ)Tℓ − Sℓ+1}

=
Sℓ
Tℓ

{(1 − η2ℓ+1,ℓ)(Sℓ+1 + η
2

ℓ+1,ℓSℓ) − Sℓ+1}

=
η2ℓ+1,ℓSℓ
Tℓ

{(1 − η2ℓ+1,ℓ)Sℓ − Sℓ+1}

=
η2ℓ+1,ℓSℓ
δℓ

{1 − (η2ℓ+1,ℓ +
Sℓ+1
Sℓ

)}

=
η2ℓ+1,ℓ(1 − δℓ)

δℓ
Sℓ >

η2ℓ+1,ℓ(1 − δ)
δ

Sℓ > 0.

This completes the proof of Lemma 5.2.

In the following, let us give the definition of the loop invariant of a lattice basis [3, Definition 4.15].

Definition 5.3 (Loop invariant). The loop invariant of a basis S = [s
1
, . . . , sn] is defined as the quantity

LI(S) =
n−1
∏
i=1

(
i

∏
ℓ=1

‖s∗ℓ ‖
2) =

n−1
∏
i=1

‖s∗i ‖
2n−2i

.

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 11

The loop invariant plays an important role in estimating the number of swaps in the LLL algorithm. As in

Lemma 5.1, for 1 ≤ ℓ ≤ n − 1, we consider a case of swapping (sℓ, sℓ+1) to obtain a new basis T = [t
1
, . . . , tn]

with tℓ = sℓ+1 and tℓ+1 = sℓ. In this case, we clearly have

‖t∗ℓ ‖
2 ⋅ ‖t∗ℓ+1‖

2 = ‖s∗ℓ ‖
2 ⋅ ‖s∗ℓ+1‖

2

.

Then we have

LI(T) = LI(S) ×
‖t∗ℓ ‖2

‖s∗ℓ ‖2
= LI(S) × δℓ. (5.3)

Thus the loop invariant LI(S) is reduced by the factor of δℓ by each swap in the LLL algorithm.

5.1 Whole LLL procedure

In this subsection, we consider the whole LLL procedure for a basis A. Now we assume the following on the

whole LLL procedure for A, where we denote the output by A� ← LLL(A):
∙ In total, N swaps occur in the LLL procedure.

∙ For 0 ≤ s ≤ N, by A(s) = [a(s)
1

, . . . , a(s)n] we denote the basis obtained by the s-th swap and size-reduced,
and setA(0) = A. Let A(s)

i = ‖a
(s)∗
i ‖2 for 1 ≤ i ≤ n, where a(s)∗

1

, . . . , a(s)∗n denote the Gram–Schmidt vectors

of A(s)
. Then A = A(0)

and A� = A(N) ← LLL(A).
∙ By ℓ(s)we denote the index where the s-th swap occurs, that is, the ℓ(s)-th vector a(s−1)ℓ(s) and (ℓ(s) + 1)-st

vector a(s−1)ℓ(s)+1 is swapped. We call ℓ(s) the s-th swap index.
∙ For 1 ≤ s ≤ N, we let

ξ (s)ℓ(s)+1,ℓ(s) =
⟨a(s−1)ℓ(s)+1, a

(s−1)∗
ℓ(s) ⟩

‖a(s−1)∗ℓ(s) ‖2
and δ(s)ℓ(s) =

A(s)
ℓ(s)

A(s−1)
ℓ(s)

.

We call ξ (s)ℓ(s)+1,ℓ(s) the normalized inner product of the swap vectors and δ
(s)
ℓ(s) the swap ratio at the s-th swap

(see equation (5.2) for the swap ratio), and write ξ(s) and δ(s) for simplicity.

Lemma 5.4. For each 1 ≤ s ≤ N and 1 ≤ i ≤ n, there exist indices m(s, i) and M(s, i) in the set {1, . . . , n} such
that

AM(s,i) ≥ A(s)
i ≥ Am(s,i).

We have M(s, ℓ(s)) = M(s, ℓ(s) + 1) = M(s − 1, ℓ(s)) and m(s, ℓ(s)) = m(s, ℓ(s) + 1) = m(s − 1, ℓ(s) + 1).

Proof. We use an induction argument on s. By settingm(0, i) = M(0, i) = i, the case s = 0 is clear. We assume

that Lemma 5.4 holds for the case s and now consider the case s + 1. For i ̸= ℓ(s + 1), ℓ(s + 1) + 1, we have
A(s+1)
i = A

(s)
i and hence m(s + 1, i) = m(s, i) and M(s + 1, i) = M(s, i). By Lemma 5.1, we clearly have

A(s+1)
ℓ(s+1) = δ(s + 1)A

(s)
ℓ(s+1) < A

(s)
ℓ(s+1),

A(s+1)
ℓ(s+1)+1 =

A(s)
ℓ(s+1)A

(s)
ℓ(s+1)+1

A(s+1)
ℓ(s+1)

=
1

δ(s + 1)
A(s)
ℓ(s+1)+1 > A

(s)
ℓ(s+1)+1,

A(s+1)
ℓ(s+1) = A

(s)
ℓ(s+1)+1 + ξ(s + 1)

2A(s)
ℓ(s+1) ≥ A

(s)
ℓ(s+1)+1,

A(s+1)
ℓ(s+1)+1 =

A(s)
ℓ(s+1)A

(s)
ℓ(s+1)+1

A(s+1)
ℓ(s+1)

≤
A(s)
ℓ(s+1)A

(s)
ℓ(s+1)+1

A(s)
ℓ(s+1)+1

= A(s)
ℓ(s+1).

Thus, we may set

m(s + 1, ℓ(s + 1)) = m(s + 1, ℓ(s + 1) + 1) = m(s, ℓ(s + 1) + 1),
M(s + 1, ℓ(s + 1)) = M(s + 1, ℓ(s + 1) + 1) = M(s, ℓ(s + 1)).

This completes the proof of Lemma 5.4 by induction.

12 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

Recall that the basis A(s+1)
is obtained by swapping the ℓ(s + 1)-th and (ℓ(s + 1) + 1)-st vectors of A(s)

. We

obtain the following result on the gap of squared-sums of Gram–Schmidt lengths of A(s)
and A(s+1)

.

Lemma 5.5. The gap SS(A(s)) − SS(A(s+1)) is greater than

ξ(s + 1)2(1 − δ(s + 1))
δ(s + 1)

Am(s,ℓ(s+1)) or ξ(s + 1)2(1 − δ)
δ

Am(s,ℓ(s+1)),

where Am = ‖a∗m‖2 with index m = m(s, ℓ(s + 1)).

Proof. By Lemmas 5.2 and 5.4, the gap SS(A(s)) − SS(A(s+1)) is given by

SS(A(s)) − SS(A(s+1)) = (A(s)
ℓ(s+1) + A

(s)
ℓ(s+1)+1) − (A

(s+1)
ℓ(s+1) + A

(s+1)
ℓ(s+1)+1)

=
ξ(s + 1)2(1 − δ(s + 1))

δ(s + 1)
A(s)
ℓ(s+1)

>
ξ(s + 1)2(1 − δ(s + 1))

δ(s + 1)
Am(s,ℓ(s+1))

>
ξ(s + 1)2(1 − δ)

δ
Am(s,ℓ(s+1))

since δ(s + 1) < δ by Lemma 5.1.

Recall that each ξ(s) is reduced to the range [−1
2

,

1

2

] in every time of the size-reducing procedure in the LLL

algorithm. We let the symbol E[x] denote the expected value of x in the distribution. Let E[ξ(s)2] denote the
expected value of ξ(s)2 for 1 ≤ s ≤ N.

Assumption 5.6. We assume that the value ξ(s) for 1 ≤ s ≤ N is uniformly distributed over the range [−1
2

,

1

2

].

Under Assumption 5.6, we have

E[ξ(s)2] = 1

12

(5.4)

by [17, Lemma1]. Although thismaynot hold strictly as pointed out in [4],we assume it for simple discussion.

Under Assumption 5.6, we may estimate the average gap between SS(A(s)) and SS(A(s+1)) as follows: Let A
0

be the minimum value among {A
1
, . . . , An}. By Lemma 5.5, we have

SS(A(s)) − SS(A(s+1)) >
ξ(s + 1)2(1 − δ)

δ
Am(s,ℓ(s+1)) ≥

ξ(s + 1)2(1 − δ)
δ

A
0
,

and hence, for its average, we have

E[SS(A(s)) − SS(A(s+1))] >
(1 − δ)
12δ

A
0
.

Note that A
0
is very small compared to Am(s,ℓ(s+1)). To get more precise estimation, we will introduce other

assumptions on distributions on ℓ(s) andm(s, ℓ(s + 1))when we analyze the LLL-reduction for the basis C in
Section 6 below.

5.2 Estimation of bounds for N

Recall that by equation (5.3), the loop invariant LI(A) is reduced by each swap ratio δ(s) by the s-th swap in
the LLL algorithm for A. Since δ(s) < δ < 1 by Lemma 5.1, an upper bound of the total number N of swaps is

given by − logδ(LI(A)) (see, e.g., [3, Theorem 4.19] for details). In contrast, we study a lower bound of N in

this subsection.

Since by Lemma 5.1 each swap ratio δ(s) is defined as

δ(s) = ξ(s)2 +
A(s−1)
ℓ(s)+1

A(s−1)
ℓ(s)

, (5.5)

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 13

we have to deal with the second term of (5.5) to estimate N in more detail. Since A(s−1)
ℓ(s)+1 < AM(s−1,ℓ(s)+1) and

A(s−1)
ℓ(s) > Am(s−1,ℓ(s)) by Lemma 5.4, we have

A(s−1)
ℓ(s)+1

A(s−1)
ℓ(s)

<
AM(s−1,ℓ(s)+1)
Am(s−1,ℓ(s))

(5.6)

and it can be bounded by theminimal ratio

T = min

1≤i ̸=j≤n
{
Ai
Aj

}

among the squared lengths Ai = ‖a∗i ‖
2

of Gram–Schmidt vectors of A. Then we have δ(s) ≥ ξ(s)2 + T, and we
may consider ξ(s)2 + T instead of δ(s) for an approximate lower bound for N. On the other hand, by equation
(5.3), we have LI(A(s)) = LI(A(s−1)) × δ(s), and thus

LI(A�) = LI(A(N)) = LI(A) ×
N
∏
s=1

δ(s).

Therefore

N
∑
s=1

log(δ(s)) = log(LI(A�)) − log(LI(A)). (5.7)

Lemma 5.7. The total number N of swaps is not smaller than

log(LI(A�)) − log(LI(A))
log(T)

.

Proof. By δ(s) ≥ T, we have N log(T) ≤ ∑N
s=1 log(δ(s)). Then Lemma 5.7 follows by equation (5.7).

By Lemma 5.7, if we calculated the difference log(LI(A�)) − log(LI(A)) and the value log(T), we could obtain
an lower bound of N. Now we give a more precise estimate on the total number N of swaps. Under Assump-

tion 5.6, the left-hand side of equation (5.7) can be expressed as N × E[log(δ(s))]. Thus, we estimate the

expected value E[log(δ(s))] = E[log(ξ(s)2 + T)] as

E[log(η2 + T) : |η| ≤ 1
2

] ≈

1

2

∫

− 1
2

log(x2 + T)dx = log(1
4

+ T) − 2 + 4√T arctan(1

2
√T

).

Now we set

β = exp(log(1
4

+ T) − 2 + 4√T arctan(1

2
√T

)). (5.8)

Then

log(β) ≈ E[log(ξ(s)2 + T)] < 0 and

N
∑
s=1

log(δ(s)) ≈ N ⋅ log(β).

Under Assumption 5.6, the total number N of swaps in the LLL algorithm for A is roughly estimated as

N ⪰ log(LI(A
�)) − log(LI(A))
log(β)

,

where A ⪰ B means A ≈ B or A > B.

Remark 5.8. The values of β can be calculated from T as in Table 1. In this remark, we assume that A is

LLL-reduced. As to an estimation of T, it follows from GSA that T could be very small for larger n, since T is

expected as

1

q2(n−1)
≈ 0.962(n−1) when q = 1.04.

14 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
β 0.034 0.170 0.274 0.376 0.478 0.579 0.680 0.780

Table 1. Values of T and β.

For a more precise estimation of (5.6), the difference between m(s − 1, ℓ(s)) and M(s − 1, ℓ(s) + 1) could not
be so large. Thus, we may introduce a heuristic bound on the difference such as

|m(s − 1, ℓ(s)) −M(s − 1, ℓ(s) + 1)| ≤ a,

for a small number a. In this case, the minimal ration Ta with parameter a could be

Ta = min

1≤i ̸=j≤n
|i−j|≤a

{
Ai
Aj

}

and it is expected as

1

q2a ≈ 0.96
2a
.

6 Analysis of LLL-reduction for C
In the previous section, we analyzed the behavior of the LLL-reduction for a general basis. In contrast, in this

section, we analyze the LLL-reduction for the basis C = [c
1
, . . . , cn] defined in (1.2), by using the results in

the previous section.We assume thatB is LLL-reduced. As in (1.2), letB� = [b�
1

, . . . , b�
n] ← LLL(C) denote the

output basis of the LLL algorithm for C.

6.1 Initial swap of the LLL algorithm for C

In this subsection, we consider the initial swap in the LLL algorithm for C. We assume that the inserted vector

v = ∑n
i=1 νib∗

i ∈ L satisfies |νi| ≤
1

2

for i = 1, . . . , n − u as in (3.1), and for the insertion index k of v, it satisfies

{
‖πi(v)‖2 ≥ ‖b∗

i ‖
2

for i = 1, . . . , k − 1,
‖πk(v)‖2 < ‖b∗

k ‖
2

,

(6.1)

where we set α = 1 in Definition 3.2 for simple and practical discussion (see Remark 6.2 below). We assume

k < n − u. Then we obtain the following:

Lemma 6.1. The first k − 1 vectors of C = [c
1
, . . . , cn] are unchanged at the beginning of the LLL algorithm.

Proof. By the assumption k < n − u, the first k vectors ofC = [c
1
, . . . , cn] are unchanged by the size-reducing

procedure since |ξi,i−1| = |μi,i−1| ≤ 1

2

for i = 2, . . . , k − 1 and |ξk,k−1| = |νk| < 1

2

by Proposition 4.6 (recall that

ξi,j is defined by (4.4)). Since the original basis B is assumed to be LLL-reduced, the first k − 2 vectors of C are
also unchanged at the beginning of the LLL algorithm. For the pair (ck−1, ck) = (bk−1, v), we have

‖c∗k ‖ = Dk−1 − ν
2

k−1‖b
∗
k−1‖

2 ≥ (1 − ξ2k,k−1)‖b
∗
k−1‖

2

since Dk−1 = ‖πk−1(v)‖2 ≥ ‖b∗
k−1‖

2

by condition (6.1) and ξk,k−1 = νk−1 by Proposition 4.6 (recall that Dℓ is

defined by (4.1)). Hence the pair (ck−1, ck) satisfies the Lovász condition (5.1), and hence it cannot be

swapped at the beginning of the LLL algorithm.

Remark 6.2. While we set α = 1 for our analysis, Fukase and Kashiwabara [5] set α = 0.99 for their experi-

ments. Note that it is harder to find a candidate vector for insertion as α is smaller than 1. Hence α ≈ 1 seems

to be useful in practice. In [5, Section 8], they also consider up to α = 1.4 for the second candidate vectors

for insertion (they call such vectors stock vectors, see [5, Algorithm 3] for details).

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 15

Proposition 6.3. The first k vectors of C cannot be swapped at the beginning of the LLL algorithm.

Proof. By Lemma 6.1, it is sufficient to consider the pair (ck , ck+1). If the pair (ck , ck+1) = (v, bk) is swapped,
then we obtain a new basis C� = [c�

1

, . . . , c�n] with (c�k , c
�
k+1) = (bk , v). Set Ci = ‖c

∗
i ‖

2

and C�i = ‖c
�∗
i ‖2 for

1 ≤ i ≤ n. Then C�k = ‖b
∗
k ‖

2

and C�k+1 = Dk+1. The gap SS(C) − SS(C
�) is given by

(Ck + Ck+1) − (C�k + C
�
k+1) = (Dk +

Dk+1
Dk

‖b∗
k ‖

2) − (‖b∗
k ‖

2 + Dk+1)

= (Dk − Dk+1) + (
Dk+1 − Dk

Dk
)‖b∗

k ‖
2

= (
Dk − Dk+1

Dk
)(Dk − ‖b∗

k ‖
2) < 0

since Dk < ‖b∗
k ‖

2

by condition (6.1) and Dk − Dk+1 = ν2k‖b
∗
k ‖

2 > 0. This is a contradiction to Lemma 5.2.

6.2 Swaps in the LLL algorithm for C

In this subsection, we consider all swaps in the LLL algorithm for the basis C. As in Section 5.1, we fix the

following notations on the LLL-reduction for C:
∙ Let N be the total number of swaps.

∙ For 0 ≤ s ≤ N, denote by C(s) = [c(s)
1

, . . . , c(s)n] the basis obtained by s times swaps and size-reduced,

and set C(0) = C. Let C(s)i = ‖c
(s)∗
i ‖2 for 1 ≤ i ≤ n, where c(s)∗

1

, . . . , c(s)∗n denote the Gram–Schmidt vectors

of C(s)
. Then B� = B(N) ← LLL(C).

∙ By ℓ(s)we denote the index where the s-th swap occurs, that is, the ℓ(s)-th vector c(s−1)ℓ(s) and (ℓ(s) + 1)-st
vector c(s−1)ℓ(s)+1 are swapped.

∙ For 1 ≤ s ≤ N, we let

ξ (s)ℓ(s)+1,ℓ(s) =
⟨c(s−1)ℓ(s)+1, c

(s−1)∗
ℓ(s) ⟩

‖c(s−1)∗ℓ(s) ‖2
and δ(s)ℓ(s) =

C(s)ℓ(s)

C(s−1)ℓ(s)

.

As in Section 5.1, we write ξ(s) and δ(s) for simplicity.

By Proposition 6.3, the first swap index ℓ(1) should be larger than k + 1. We assume the following for

simple analysis (see Figures 1 and 2 for examples).

Assumption 6.4. For any 1 ≤ s ≤ N, the s-th swap index ℓ(s) is not less than the insertion index k in the LLL
algorithm for C (see also Assumption 6.6 below).

By Lemma 5.5, we obtain the following result on the decreasing value of the squared-sum SS(C) by one

time swap in the LLL algorithm for C.

Proposition 6.5. If a swap occurs at the ℓ-th index, then SS(C) = ∑n
i=1 Ci is reduced by at least

ξ2ℓ+1,ℓ(1 − δℓ)
δℓ

Cm or
ξ2ℓ+1,ℓ(1 − δ)

δ
Cm ,

for m = m(s, ℓ(s + 1)), where ξℓ+1,ℓ = ξ(s), ℓ = ℓ(s), and δℓ = δ(s) for some 1 ≤ s ≤ N. Furthermore, by the proof
of Lemma 5.4, we expect m = ℓ in most cases (sometimes m = ℓ + 1, ℓ + 2 or so on).

6.2.1 Average of decreasing values by swaps

Here we estimate the average of decreasing values of the squared-sum SS(C) by one time swap in the LLL

algorithm for C. It follows by Proposition 6.5 that decreasing values of SS(C) depend mainly on swap indices

ℓ(s). In Figures 1 and 2, we show two examples of the number of swaps and the swap indices ℓ(s) in the LLL
algorithm for C = [c

1
, . . . , cn] with insertion index k = 5 and 10 (the inserted vector ck = v is generated by

16 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

7

11 10

26 27 26

30 29 28
30 31 30

32 33 34 33

51

58 57 56 55

63 64 63
65 64

66 65 66

72 73 74

80

84 83 82

87 86 87 88 87
89 90

92 91 90 89 88

93 92 91 90 91

95 94 93 92 93

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

S
w

a
p

p
in

g
 i

n
d

e
x

Number of swaps

Insertion index k= 5

Figure 1. Example of swap indices in the LLL algorithm for C with insertion index k = 5 in a lattice of dimension 100.

12

171615
1716

18

2425
272827

2928

333433323130

3534333231
33

3637
3837363534

37

4342
4443

454645444342
444344

45
4748

49484746
4847

50

616059
616061

65
676667

6869
707170

75
777677

78
80797877

808180797879

858485

9493

97969594

97
99

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97

S
w

a
p

p
in

g
 i

n
d

e
x

Number of swaps

Insertion index k= 10

Figure 2. Same as Figure 1, but k = 10.

Schnorr’s SA). The lattice used for Figures 1 and 2 is a lattice of dimension 100, chosen from Darmstadt SVP

challenge problems. It is hard to grasp all the swap indices ℓ(s) accurately. However, we see from Figures 1

and 2 that swap indices ℓ(s) are roughly distributed over the range from k to n − 1 evenly. Then we assume

the following for simple analysis.

Assumption 6.6. We assume that swap indices ℓ(s) are distributed over the range from k to n − 1 evenly (uni-
formly) and independently to the distribution of ξ(s).

Under Assumption 6.6, we obtain the following estimate on the average of decreasing values of SS(C) by the
LLL algorithm for C.

Proposition 6.7. Under Assumptions 5.6 and 6.6, the average of decreasing values of SS(C) by one time swap
in the LLL algorithm for C is estimated to be greater than

1 − δ
12δ

⋅ vol(πk(L))2/(n−k).

Proof. Due to the independence of ξ(s) in Assumption 6.6, it follows from (5.4) and Proposition 6.5 that

SS(C) = ∑n
i=1 Ci is reduced at least by

E[
ξ2ℓ+1,ℓ(1 − δ)

δ
Cm] ≈

(1 − δ)
δ

⋅ E[ξ2ℓ+1,ℓ] ⋅ E[Cm] ≈
1 − δ
12δ

E[Cm]

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 17

by a swap at the ℓ-th index for some m with k ≤ ℓ ≤ m ≤ n − 1. Moreover, under Assumption 6.6, the value

E[Cm] is estimated as

1

(n − k)

n−1
∑
m=k

Cm ≥ (
n−1
∏
m=k

Cm)
1/(n−k)

= (Dk ⋅ (
Dk+1
Dk

‖b∗
k ‖

2) ⋅ ⋅ ⋅ (
Dn
Dn−1

‖b∗
n−1‖

2))
1/(n−k)

= vol(πk(L))2/(n−k) (6.2)

by the inequality of arithmetic and geometric means and Proposition 4.2. Note that Dn = ‖b∗
n‖

2

by setting

νn = 1 and

vol(πk(L))2 =
n
∏
i=k

‖b∗
i ‖

2

,

where πk(L) is the lattice of dimension n − k + 1 with basis [πk(bk), . . . , πk(bn)].

6.2.2 Expected number of swaps

The total number N of swaps in the LLL algorithm for C is the most important to analyze the gap between two

squared-sums SS(C) and SS(B�). Here we give an estimate of the number N. For the two basesB and C defined
in (1.2), let Bi = ‖b∗

i ‖
2

as Ci = ‖c∗i ‖
2

for 1 ≤ i ≤ n. A relation between two loop invariants LI(B) and LI(C) is
given as follows (recall that Dℓ is defined by (4.1)).

Lemma 6.8. We have
LI(C) = LI(B) × Dk ⋅ ⋅ ⋅Dn−1

Bk ⋅ ⋅ ⋅ Bn−1
.

Proof. By Proposition 4.2, we have Ck = Dk and Cj =
Dj
Dj−1 Bj−1 for k + 1 ≤ j ≤ n. By definition, the loop invari-

ant is given by

LI(C) =
k−1
∏
i=1
Bn−ii × D

n−k
k ×

n−1
∏
i=k+1

(
Di
Di−1

Bi−1)
n−i

.

Then we obtain

LI(C)
LI(B)
=
Dn−kk ×∏

n−1
i=k+1(

Di
Di−1 Bi−1)

n−i

∏n−1
i=k B

n−i
i

=
Dn−kk × (

Dk+1
Dk)n−k−1 × (Dk+2Dk+1)

n−k−2 × ⋅ ⋅ ⋅ × (Dn−1Dn−2)

Bk ⋅ ⋅ ⋅ Bn−1

=
Dk ⋅ ⋅ ⋅Dn−1
Bk ⋅ ⋅ ⋅ Bn−1

.

This completes the proof of Lemma 6.8.

Recall that the loop invariant LI(C) is reduced by the factor of the swap ratio δ(s) at the s-th swap for

1 ≤ s ≤ N. For B� ← LLL(C), we have

LI(B�) =
N
∏
s=1

δ(s) × LI(C).

By combining this with Lemma 6.8, we obtain

LI(B�) =
N
∏
s=1

δ(s) ×
n−1
∏
j=k

Dj
Bj
× LI(B). (6.3)

For simple analysis, we assume the following.

Assumption 6.9. Set R := LI(B�)
LI(B) . We assume 1 ⪰ R, that is, LI(B) ⪰ LI(B�).

18 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

This assumption is based on GSA for B and B�
. Since both B and B�

are LLL-reduced, we roughly expect

Bi
Bi+1
≈

B�
i

B�
i+1
≈ q2 for all 1 ≤ i ≤ n − 1,

where we set B�
i = ‖b

�∗
i ‖2 for the Gram–Schmidt vectors [b�∗

1

, . . . , b�∗
n] of B�

(see Section 2.2 for the q-value).
Hence we can roughly expect that R would be approximately equal to 1 under GSA for B and B�

. As Example

6.11 below implies, we expect that Rwould bemuch smaller than 1 in practice whenwe take a shorter lattice

vector v as the inserted vector into B.
By equation (6.3), we have

N
∑
s=1

log(δ(s)) =
n−1
∑
j=k

log(
Bj
Dj

) + log(R). (6.4)

By Lemma 5.1, we have δ(s) < δ for any 1 ≤ s ≤ N. However, the parameter δ gives just an upper bound of

each factor δ(s). Since each δ(s) is defined as

δ(s) = ξ(s)2 +
C(s−1)ℓ(s)+1

C(s−1)ℓ(s)

,

we estimate that E[δ(s)] ⪰ E[ξ(s)2] = 1

12

for 1 ≤ s ≤ N by (5.4). We take a constant 0 < ϵ < 1 satisfying

E[log(δ(s))] ⪰ log(ϵ). Then by equation (6.4), we obtain the following estimate on the number N.

Proposition 6.10. Under Assumption 6.9, the total number N of swaps in the LLL algorithm for the basis C is
roughly estimated as

N ⪰
n−1
∑
j=k

logϵ(
Bj
Dj

) + logϵ(R) ⪰
n−1
∑
j=k

logϵ(
Bj
Dj

). (6.5)

As discussed in Section 5.2, we may take ϵ as β defined in (5.8), and it satisfies β ≥ 0.034 from Table 1.

However, for simple analysis, we may take

ϵ = E[ξ(s)2] = 1

12

to obtain a lower bound of N under Assumption 5.6 (this ϵ is experimentally chosen, see Example 6.11 below

for details).

Example 6.11. As an example, we take a lattice L of dimension n = 100, chosen from Darmstadt SVP chal-

lenge problems (using seed 0). LetB be an LLL-reduced basis of Lwith reduction parameter δ = 0.99.We also

take a lattice vector v ∈ L with insertion index k = 4, which is generated by Schnorr’s SA. Let C, B�
be two lat-

tice bases constructed by (1.2) (noteB� ← LLL(C)). In Figure 3, we give the GSA behavior of three latticesB, C
and B�

. More specifically, for three lattice bases B = [b
1
, . . . , bn], C = [c1, . . . , cn] and B� = [b�

1

, . . . , b�
n], the

values log
2
(‖b

1
‖2/‖b∗

i ‖
2), log

2
(‖c

1
‖2/‖c∗i ‖

2) and log
2
(‖b�

1

‖2/‖b�∗
i ‖2) for 1 ≤ i ≤ n = 100 are plotted. We have

SS(B�) < SS(B) < SS(C).

We give some numerical data related with our assumptions. In this example, we haveLI(B) ≈ 4.99 × 1032973

and LI(B�) ≈ 2.43 × 1032899 (cf. vol(L)2 ≈ 5.0 × 10601), and

R = LI(B
�)

LI(B)
≈ 4.86 × 10−75 ≪ 1.

Note that we have R ≤ 1 in most examples, which implies that Assumption 6.9 holds in practice. For our

estimation (6.5), we have

n−1
∑
j=k

logϵ(
Bj
Dj

) ≈ 54.96 and logϵ(R) ≈ 68.86.

Then our estimation (6.5) gives N ≈ 54.96 + 68.86 = 123.82. In contrast, the actual total number of swaps

in the LLL algorithm for C is equal to 132, close to our estimation. On the other hand, if we take δ = 0.99 as

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 19

-0.2

1.8

3.8

5.8

7.8

9.8

11.8

13.8

0 10 20 30 40 50 60 70 80 90 100

Index of the Gram-Schmidt vector

original LLL-reduced basis B

Basis C

LLL-reduced basis B'

Figure 3. The GSA behavior of three lattice bases B, C, B� with insertion index k = 4 (the original basis B is given by LLL-reducing
a lattice basis of dimension 100, chosen from Darmstadt SVP challenge problems).

the base of logarithm, then

n−1
∑
j=k

logδ(
Bj
Dj

) ≈ 13588 and logδ(R) ≈ 17026,

which are much larger than the actual total number of swaps. If we take the minimum value β = 0.034 as the
base of logarithm, then

n−1
∑
j=k

logβ(
Bj
Dj

) ≈ 40.39 and logβ(R) ≈ 50.60,

which are about 1.36 times smaller than our estimation with ϵ = 1

12

.

6.3 Estimate of gap between SS(C) and SS(B�)

In this subsection, we give an estimate of the gap between two squared-sums SS(C) and SS(B�). By Proposi-
tion 6.5, the gap is estimated as

SS(C) − SS(B�) >
N
∑
s=1

ξ(s)2(1 − δ(s))
δ(s)

Cm (6.6)

>
N
∑
s=1

ξ(s)2(1 − δ)
δ

Cm , (6.7)

for m = m(s, ℓ(s + 1)). Gap (6.7) is approximately determined by both the average of decreasing values of

SS(C) and the total number N of swaps in the LLL algorithm for the basis C. By Propositions 6.7 and 6.10, we
obtain the following estimate on gap (6.7).

Theorem 6.12. Under Assumptions 5.6, 6.6 and 6.9, the gap SS(C) − SS(B�) is estimated to be greater than

(
1 − δ
12δ

⋅ vol(πk(L))2/(n−k))⏟⏟⏟
Average of decreasing values

⋅
n−1
∑
j=k

logϵ(
Bj
Dj

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Estimation of N

. (6.8)

20 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

6.4 Alternative estimate for gap between SS(C) and SS(B�)

In this subsection, we give an alternative heuristic estimation for the gap between two squared-sums SS(C)
and SS(B�). In Theorem 6.12, although the total number N of swaps plays an important role, it is rather

difficult to give its precise estimation. Moreover, the term

1−δ
δ in gap (6.7) seems much smaller than

1−δ(s)
δ(s) in

gap (6.6), that might cause our estimation of the gap very small. In order to overcome such defects, we use

an approximation of ∑N
s=1 log(δ(s)) directly. Specifically, we give a certain estimation of gap (6.6) under the

following settings, where we assume that three distributions of ξ(s), Cm and δ(s) are independent:
∙ For estimation of each ξ(s)2, we use its average 1

12

given in equation (5.4).

∙ For estimation of each Cm, we use its average vol(πk(L))2/(n−k) given in equation (6.2).
∙ For estimation of each

1−δ(s)
δ(s) , we use its average 1

N ⋅ ∑N
s=1

1−δ(s)
δ(s) .

Proposition 6.13 (Alternative estimate). Under Assumptions 5.6, 6.6 and 6.9, the gap SS(C) − SS(B�) is esti-
mated to be greater than (cf. equation (6.8))

−(
1

12

⋅ vol(πk(L))2/(n−k)) ⋅
n−1
∑
j=k

log(
Bj
Dj

).

Proof. Under the above settings, gap (6.6) can be estimated as

N
∑
s=1

ξ(s)2(1 − δ(s))
δ(s)

Cm ≈
1

12

⋅ vol(πk(L))2/(n−k) ⋅
N
∑
s=1

1 − δ(s)
δ(s)

.

Since

(1−x)
x ≥ − log(x) for 0 < x < 1,we have

1−δ(s)
δ(s) ≥ − log(δ(s))with 0 < δ(s) < δ < 1. Under Assumption 6.9,

we have

N
∑
s=1

1 − δ(s)
δ(s)
≥

N
∑
s=1
− log(δ(s))

= −
n−1
∑
j=k

log(
Bj
Dj

) − log(R)

⪰ −
n−1
∑
j=k

log(
Bj
Dj

)

by equation (6.4). This completes the proof of Proposition 6.13.

7 Estimated gap between SS(B) and SS(B�) and mutant vectors
Let B, C and B� ← LLL(C) as in (1.2). In this section, we estimate the gap between two squared-sums SS(B)
and SS(B�), and define mutant vectors in order to definitely decrease the squared-sum SS(B) of the original
basis B. By combining Theorems 4.4 and 6.12, we obtain the following estimate.

Theorem 7.1. Under Assumptions 5.6, 6.6 and 6.9, the gap SS(B) − SS(B�) is estimated to be greater than

E(v, k) + 1 − δ
12δ log(ϵ)

⋅ vol(πk(L))2/(n−k) ⋅
n−1
∑
j=k

log(
Bj
Dj

). (7.1)

If the total value of (7.1) is positive, then the squared-sum SS(B) can be strictly decreased (i.e. condition (1.1)
is satisfied). However, we cannot find v ∈ L such that the total value of (7.1) is positive, due to that the con-
stant term

1−δ
12δ log(ϵ) < 0 seems too small (see Section 8 below for our experimental results). Then we give the

following definition of candidate lattice vectors v ∈ L which enable us to strictly decrease SS(B) in practice.

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 21

Definition 7.2 (Mutant vectors). Given anLLL-reducedbasisB = [b
1
, . . . , bn]of a lattice L, letv = ∑n

i=1 νib∗
i ∈

L be a lattice vector sampled by Schnorr’s SA. Given a constant c > 0, we call v amutant vector with factor c if
(i) the insertion index k of v is smaller than n − u (where u is the constant of search space bound for SA),

and

(ii) the following condition is satisfied:

E(v, k) > c ⋅ vol(πk(L))2/(n−k) ⋅
n−1
∑
j=k

log(
Bj
Dj

). (7.2)

Remark 7.3. The alternative estimation in Proposition 6.13 may require us to set c = 1

12

≈ 0.083 in Defini-

tion 7.2. However, compared to the experimental constants in (8.1) below, the value c = 1

12

is still 3 to 4 times

smaller for practical use. This seems due to the ignorance of the value log(R). In fact, as Example 6.11 im-

plies, the value logϵ(R) gives a valuable information about the number N of swaps. However, the value can

be obtained after computing B� ← LLL(C). In this paper, we set logϵ(R) = 0. We leave the analysis of logϵ(R)
as our future work.

Asmentioned inRemark4.5,we consider only the case E(v, k) ≤ 0. In this case,we expect fromequation (4.3)

that Bj ≤ Dj for most j = k, . . . , n − 1, and hence

n−1
∑
j=k

log(
Dj
Bj

) > 0

with high probability. Then, in Definition 7.2, we estimate the gap between two squared-sums SS(C) and
SS(B�) as

O(vol(πk(L))2/(n−k) ⋅
n−1
∑
j=k

log(
Dj
Bj

)).

If we set a suitable constant c > 0, a mutant vector v with factor c can definitely decrease SS(B) (with high

probability). In Section 8 below, we give a suitable constant c in practice. In this paper, we focus on Schnorr’s
SA to generate anumber of short lattice vectorsv. Note thatDefinition7.2 canbe applied tomore general short

lattice vectors. Given a lattice vector v sampled by Schnorr’s SA, we expect Bj ≈ Dj for j = k, . . . , n − 1 (it is
verified by our experiments). Then we approximately have

log(
Bj
Dj

) = log((
Bj
Dj
− 1) + 1) ≈ (

Bj
Dj
− 1)

since log(1 + x) ≈ x if x ∈ ℝ is sufficiently close to 0. Therefore the right-hand side of (7.2) can be replaced

with (cf. equation (4.3) for E(v, k))

c ⋅ vol(πk(L))2/(n−k) ⋅
n−1
∑
j=k

(
Bj
Dj
− 1).

Remark 7.4. Given a basis B = [b
1
, . . . , bn] of a lattice L, we have

∑n
i=1 ‖b∗

i ‖
2

n
≥ (

n
∏
i=1

‖b∗
i ‖

2)
1/n
= vol(L)2/n .

Hence a theoretical lower bound of SS(B) = ∑n
i=1 ‖b∗

i ‖
2

is given by n ⋅ vol(L)2/n. However, this lower bound
seems considerably small in practice. On the other hand, if B is reduced by LLL or BKZ, we approximately

have

SS(B) = ‖b
1
‖2 ⋅

n
∑
i=1

(q2)1−i = ‖b
1
‖2 ⋅

1 − q−2n

1 − q−2

under GSA, where the q-value depends on the lattice reduction algorithm. In case of the LLL algorithm, we

can estimate from Section 2.2 that q ≈ 1.04 and ‖b
1
‖2 ≈ 1.0222n ⋅ vol(L)2/n in average for high dimension

n ≥ 100.

22 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

8 Experimental verification
In this section, we verify our analysis by experiments. Specifically, we verify that a mutant vector v with cer-
tain factor c > 0 (see Definition 7.2) can decrease the squared-sum SS(B) for an LLL-reduced basis B. In our
experiments, we used Schnorr’s SAwith search space bound u = 30 to generate a number of short lattice vec-

tors (i.e. the search space size #Su,B = 230). We also used the PARI library (http://pari.math.u-bordeaux.fr/)

for the LLL algorithm with reduction parameter δ = 0.99. We took three lattices of dimensions n = 100, 110
and 120 from Darmstadt SVP challenge problems. In particular, we set

c =
{
{
{

0.25 for n = 100,
0.35 for n = 110, 120.

(8.1)

Note that these constants are determined by our experiments. Given an LLL-reduced basis B = [b
1
, . . . , bn]

of a lattice L of dimensions n = 100, 110 and 120, we repeatedly performed the following procedures and

computed∑n
i=1 ‖b∗

i ‖
2

:

∙ Step 1. Randomly generate a vector v = ∑n
i=1 νib∗

i ∈ L by Schnorr’s SA with u = 30 (see Section 3.1), and
compute the insertion index k of v by checking ‖πi(v)‖2 < ‖b∗

i ‖
2

for i = 1, . . . , n (see Definition 3.2). If

‖πi(v)‖2 ≥ ‖b∗
i ‖

2

for all 1 ≤ i ≤ n, generate another lattice vector v.
∙ Step 2. Compute E(v, k) from B and v = ∑n

i=1 νib∗
i (see equation (4.3) for E(v, k)). If condition (7.2) is

satisfied, insert v into B at the k-th position to obtain a basis C as in (1.2). Otherwise, go back to Step 1.

∙ Step 3. Set B = [b
1
, . . . , bn] ← LLL(C), and compute the squared-sum SS(B).

8.1 Experimental results

In Figures 4–6, we give our experimental results on the transition of SS(B) and the value log
2
(‖b

1
‖2/‖b∗

i ‖
2)

for 1 ≤ i ≤ n, which represents the GSA behavior of B. Note that the value k in the left side figure denotes the
insertion index of each mutant vector. From Figures 4–6, we see the following:

∙ Mutant vectors with factor c given by equation (8.1) can decrease SS(B) in most cases. Since it requires

small factor c, condition (7.2) gives a good criterion of choosing candidate lattice vectors v to decrease
SS(B). In particular, mutant vectors with smaller factor c can decrease SS(B)more greatly (but it is harder

to generate mutant vectors with smaller factor c).
∙ By repeatedly inserting a mutant vector, we can obtain better GSA behavior of B. Namely, the values

log
2
(‖b

1
‖2/‖b∗

i ‖
2) for 1 ≤ i ≤ n become to lie on a straight line gradually.

∙ Moreover, there is a trade-off between the size of SS(B) and the required number of sampling short lattice

vectors v to find amutant vector. More specifically, as the squared-sumSS(B) becomes smaller, it requires

to sample more short lattice vectors by Schnorr’s SA to find a mutant vector. Note that we can easily find

mutant vectors v with small insertion index k after the latter half of vectors of B are shortened (see [14]

for such phenomenon).

8.2 Comparison to the RR algorithm by Fukase and Kashiwabara

Fukase and Kashiwabara [5] propose the RR algorithm in order to steadily decrease the squared-sum SS(B).
The strategy of the RR algorithm is similar to the strategy of the BKZ algorithm, and it restricts insertion

positions.More specifically, given a restriction index 1 ≤ r ≤ n, the RR algorithmdoes not insert a short lattice

vector vwith insertion index k ≤ r. Different from the RR algorithm, our criterion (7.2) formutant vectors does

not enforce us to restrict insertion positions. Therefore we expect that our criterion (7.2) would enable us to

search mutant vectors more flexibly and hence to decrease SS(B)more efficiently.

http://pari.math.u-bordeaux.fr/

M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths | 23

start

k=5

k=97

k=4

k=8

k=89

k=95
k=96

k=6

k=6

k=97

600000000

650000000

700000000

750000000

800000000

850000000

900000000

950000000

1E+09

0 1 2 3 4 5 6 7 8 9 10

Number of Insertions

(a) Transition of the squared-sum SS(B).

-0.2

1.8

3.8

5.8

7.8

9.8

11.8

0 20 40 60 80 100

Index of the Gram-Schmidt vector

Start

5 times insertion

10 times insertion

(b) The value log
2
(‖b

1
‖2/‖b∗

i ‖
2) for GSA.

Figure 4. Transition of the squared-sum SS(B) and the GSA behavior by insertion of mutant vectors in a lattice of dimension
n = 100.

start k=3

k=3

k=4

k=9

k=6

k=4

k=105

k=8 k=97

k=99

900000000

1E+09

1.1E+09

1.2E+09

1.3E+09

1.4E+09

1.5E+09

1.6E+09

0 1 2 3 4 5 6 7 8 9 10

Number of Insertions

(a)

-0.2

1.8

3.8

5.8

7.8

9.8

11.8

13.8

0 10 20 30 40 50 60 70 80 90 100 110

Index of the Gram-Schmidt vector

Start

5 times insertion

10 times insertion

(b)

Figure 5. Same as Figure 4, but for lattice dimension n = 110.

start

k=2
k=5 k=118 k=6 k=113

k=6

k=7

k=108

k=109

k=103

1.2E+09

1.4E+09

1.6E+09

1.8E+09

2E+09

2.2E+09

2.4E+09

0 1 2 3 4 5 6 7 8 9 10

Number of Insertions

(a)

-0.2

1.8

3.8

5.8

7.8

9.8

11.8

13.8

0 20 40 60 80 100 120

Index of the Gram-Schmidt vector

Start

5 times insertion

10 times insertion

(b)

Figure 6. Same as Figure 4, but for lattice dimension n = 120.

24 | M. Yasuda et al., Analysis of decreasing squared-sum of Gram–Schmidt lengths

9 Conclusion and future work
Given an LLL-reduced basis B = [b

1
, . . . , bn] of a lattice L, we gave an attempt to estimate a lower bound of

the total number of swaps in the LLL algorithm. In Definition 7.2, we also gave a condition of mutant vectors

v = ∑n
i=1 νib∗

i ∈ L. Our experiments showed that although the constant c should be determined experimen-

tally, our condition of mutant vectors gives a good criterion to decrease the sum SS(B) = ∑n
i=1 ‖b∗

i ‖
2

of the

squared lengths of the Gram–Schmidt vectors [b∗
1

, . . . , b∗
n] of B. Compared to the RR algorithm of [5], our

condition enables us to search mutant vectors more flexibly, and hence we expect that we could decrease

SS(B)more efficiently.

Our future work is to study how to search and samplemutant vectors efficiently. Specifically, while in this

paper we focused on Schnorr’s SA for sampling short lattice vectors, we would like to improve the method

in [5] to efficiently sample a number of mutant vectors. With our condition, we also would like to try to solve

SVP in lattices of high dimensions.

Acknowledgment: The authors would like to thank Phong Nguyen and the anonymous reviewers for their

helpful comments.

Funding: This work was supported by CREST, JST. A part of this work was also supported by JSPS KAKENHI

grant number 16H02830.

References
[1] M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reductions, in: Proceedings of the 30th Annual ACM

Symposium on Theory of Computing – STOC 1998, ACM, New York (1998), 10–19.
[2] M. Ajtai, R. Kumar and D. Sivakumar, A sieve algorithm for the shortest lattice vector problem, in: Proceedings of the 33rd

Annual ACM Symposium on Theory of Computing – STOC 2001, ACM, New York (2001), 601–610.
[3] M. R. Bremner, Lattice Basis Reduction: An Introduction to the LLL Algorithm and its Applications, CRC Press, Boca Raton,

2011.
[4] J. Buchmann and C. Ludwig, Practical lattice basis sampling reduction, in: Algorithmic Number Theory – ANTS 2006,

Lecture Notes in Comput. Sci. 4076, Springer, Berlin (2006), 222–237.
[5] M. Fukase and K. Kashiwabara, An accelerated algorithm for solving SVP based on statistical analysis, J. Inform. Process.

23 (2015), no. 1, 1–15.
[6] S. D. Galbraith,Mathematics of Public Key Cryptography, Cambridge University Press, Cambridge, 2012.
[7] N. Gama and P. Q. Nguyen, Predicting lattice reduction, in: Advances in Cryptology – EUROCRYPT 2008, Lecture Notes in

Computer Sci. 4965, Springer, Berlin (2008), 31–51.
[8] N. Gama, P. Q. Nguyen and O. Regev, Lattice enumeration using extreme pruning, in: Advances in Cryptology – EUROCRYPT

2010, Lecture Notes in Computer Sci. 6110, Springer, Berlin (2010), 257–278.
[9] O. Goldreich, S. Goldwasser and S. Halevi, Public-key cryptosystems from lattice reduction problems, in: Advances in

Cryptology – CRYPTO 1997, Lecture Notes in Computer Sci. 1294, Springer, Berlin (1997), 112–131.
[10] J. Hoffstein, J. Pipher and J. H. Silverman, NTRU: A ring-based public key cryptosystem, in: Algorithmic Number Theory –

ANTS III, Lecture Notes in Computer Sci. 1423, Springer, Berlin (1998), 267–288.
[11] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients,Math. Ann. 261 (1982), no. 4,

515–534.
[12] C. Ludwig, Practical lattice basis sampling reduction, Ph.D thesis, Technische Universität Darmstadt, 2005.
[13] D. Micciancio, The shortest vector in a lattice is hard to approximate to within some constant, SIAM J. Comput. 30 (2001),

no. 6, 2008–2035.
[14] D. Micciancio and W. Michael, Fast lattice point enumeration with minimal overhead, in: Proceedings of the Twenty-Sixth

Annual ACM-SIAM Symposium on Discrete Algorithms – SODA 2015, SIAM, Philadelphia (2015), 276–294.
[15] P. Q. Nguyen and B. Vallée, The LLL algorithm, Inf. Secur. Cryptography, Springer, Berlin, 2010.
[16] M. Schneider and N. Göttert, Random sampling for short lattice vectors on graphics cards, in: Cryptographic Hardware

and Embedded Systems – CHES 2011, Lecture Notes in Computer Sci. 6917, Springer, Berlin (2011), 160–175.
[17] C. P. Schnorr, Lattice reduction by random sampling and birthday methods, in: 20th Annual Symposium of Theoretical

Aspects on Computer Science – STACS 2003, Lecture Notes in Computer Sci. 2606, Springer, Berlin (2003), 145–156.
[18] C. P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and solving subset sum problems,

Math. Program. 66 (1994), 181–199.

	Analysis of decreasing squared-sum of Gram–Schmidt lengths for short lattice vectors
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Lattice reduction

	3 Random sampling of short lattice vectors
	3.1 Review of previous work
	3.2 Statistical analysis of Fukase and Kashiwabara on lattices
	3.3 Basic strategy of Fukase and Kashiwabara for finding short lattice vectors

	4 Gram–Schmidt orthogonalization for C
	5 LLL-reduction for general bases
	5.1 Whole LLL procedure
	5.2 Estimation of bounds for N

	6 Analysis of LLL-reduction for C
	6.1 Initial swap of the LLL algorithm for C
	6.2 Swaps in the LLL algorithm for C
	6.2.1 Average of decreasing values by swaps
	6.2.2 Expected number of swaps

	6.3 Estimate of gap between $SS(C)$ and $SS(B')$
	6.4 Alternative estimate for gap between $SS(C)$ and $SS(B')$

	7 Estimated gap between $SS(B)$ and $SS(B')$ and mutant vectors
	8 Experimental verification
	8.1 Experimental results
	8.2 Comparison to the RR algorithm by Fukase and Kashiwabara

	9 Conclusion and future work

