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1 Introduction
The security of elliptic curve cryptosystems is based on the difficulty of the elliptic curve discrete logarithm

problem (ECDLP). For an elliptic curve E over a prime field Fp, the best known generic attack on the ECDLP
takes roughly √p operations. Suppose that a new algorithm X was found that could solve the ECDLP on

a subset W of elliptic curves over Fp faster than all previously known algorithms. Given an instance of the

ECDLP on E, if an attacker could construct an isogeny φ : E → E� with E� ∈ W, then they could transfer the

instance to E� where they could use X. The total time for this attack is bounded below by the time m that it

takes to compute φ. If m ≥ √p, then this attack is no faster than generic algorithms, no matter how fast X is.

Let T denote the set of curves E� such that an isogeny φ : E → E� can be computed in less than √p time. We

will assume that the probability that a random curve in T lies inW, is roughly the ratio ϵ of |W| to the number

of elliptic curves over Fp. For a random E, we expect that |T| ≈ √p, which in practice is ≈ 2128. However, it is
possible for |T| to bemuch smaller, so that E is resistant to this attack. For example, if ϵ ≈ 2−50 and |T| ≤ 1000,
then the probability that the ECDLP on E can be efficiently transferred to some E� ∈ W is about 2

−40
. In this

case, we call E isolated (a precise definition is given below). In this paper, we give an algorithm based on the

complex multiplication (CM) method to generate isolated elliptic curves that are suitable for cryptography.

Remark 1.1. Thehypothetical attack outlined above ismotivated by the case of elliptic curves over composite

degree extensions of prime fields (usually F
2
). In that case, Weil descent can sometimes be used to solve the

ECDLP significantly faster than generic methods on a small but non-negligible proportion of curves [26, 27].

The conductor gap (see Definition 3.1) between two elliptic curves measures the difficulty of constructing

an isogeny between them. If the conductor gap between E and E� is L, then the fastest known algorithm for

computing an isogeny between E and E� takes roughly L3 time. We say an elliptic curve E is (L, T)-isolated if
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there are at most T curves whose conductor gapwith E is at most L. For example, if E is (p1/6, 1000)-isolated,
then there are at most 1000 curves E� for which it would be feasible to construct an isogeny E → E�. Thus E
is most likely resistant to the hypothetical attack described above.

In addition to being resistant to the hypothetical attack above, isolated curves should be resistant to

knownattacks on theECDLP, suchas theMOVattack, namedafter the authors of [25]. TheMOVattack reduces

the ECDLP on an elliptic curve E/Fp to F×pk . The smallest possible k is called the embedding degree. This
reduction is only practical if k is< log2 p. Ourmain theoremshows that, under theBateman–Horn conjecture,

curves produced by our algorithm almost always have embedding degree larger than log

2 p.

Theorem 1.2. Assume the Bateman–Horn conjecture. There is an algorithm that takes as input a bound M, and
returns an elliptic curve E over a prime field Fp such that the following hold:
(i) M/2 ≤ p ≤ M,
(ii) #E(Fp) = rf , where r is prime and f | 24,
(iii) E is (√p/50 − 100, 8)-isolated.
The expected running time of the algorithm is O(log3M) multiplied by the time required to test if an integer of
size M is prime. If M is sufficiently large, then the probability that the returned curve has an embedding degree
less than log2 p, is bounded above by

C log
8M

√M
for some effectively computable constant C.

Remark 1.3. The Bateman–Horn conjecture is used to estimate how often several polynomials are simulta-

neously prime. While the conjecture gives an asymptotic formula for any collection of polynomials, we only

require a big-Ω statement for how often three particular polynomials are simultaneously prime (see Prob-

lem 6.2).

Remark 1.4. Experimentally, our algorithm works well when M ≈ 2256. After several thousand iterations,

it never produced a curve with embedding degree > log2 p and finished within the expected time (see Sec-

tion 6.4). However, we are unable prove an explicit lower bound for what “sufficiently large” is, nor can we

give a computable upper bound for the implicit constant in the big-O notation for the run time. In Section 6,

we discuss these points as well as provide a reasonable assumption to solves these issues.

Theorem 1.2 should be compared with the generic probability that a curve with prime order has embedding

degree < log2 p.

Theorem 1.5 (Balasubramanian and Koblitz [1, Theorem 2]). Let p be auniformly randomprime in the interval
[M/2,M], and E a random elliptic curve over Fp of prime order. The probability that the embedding degree of E
is less than log2 p, is bounded above by

C log
9M(log logM)2

M
,

for some effectively computable constant C.

Remark 1.6. When giving a conditional theorem in cryptography, it is important to avoid contrived conjec-

tures that are custom built to fill gaps in security proofs [21], [19, Section 1.4.2]. The Bateman–Horn con-

jecture is of independent interest. It predates elliptic curve cryptography, and is a generalization of the well-

known hypothesis H from Schinzel [31]. It is supported by substantial theoretical and numerical evidence.

For this reason we feel that the use of the conjecture is justified.

The rest of the paper is organized as follows. In Section 2we briefly review backgroundmaterial as well as set

notation for the rest of the paper. In Section 3we define isolated curves, and in Section 4we outline amethod

for generating them. In Section 5 we show that our algorithm has a high probability of producing curves that

are resistant to the MOV attack, and prove Theorem 1.2. In Section 6, we explain some limitations of our

results and give some heuristics suggesting that these limitations do not appear in practice.
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2 Background and notation
Let E be an elliptic curve over a prime field Fp. We will primarily consider primes on the order of 2

256

. Let

N = |E(Fp)| be the number of points, and t = p + 1 − N. If t ≡ 0 mod p then E is vulnerable to the MOV attack

[25], so we will only consider the case when t ̸≡ 0 mod p. In this case E is called ordinary.
An isogeny is a surjectivemorphismof elliptic curveswith finite kernel. The set of isogenies E → E defined

over the algebraic closure Fp of Fp, together with the 0 map form the endomorphism ring End E = EndFp E. If
E is ordinary then End E is isomorphic to an order in an imaginary quadratic field K.

Let π ∈ End E denote the Frobenius endomorphism, which on the level of points takes (x, y) Ü→ (xp , yp).
We identify π with an element of K. Then Tr π = t and Norm(π) = p [34, Chapter V]. This means that we can

identify π = t+c√−d
2

, where −d = Disc K and c > 0. Notice thatℤ[π] is the order in K of conductor c, and that

4p = t2 + dc2. (2.1)

Given an elliptic curve E, there is an associated number j(E) which determines the isomorphism type of E
over Fp. j(E) is called the j-invariant of E. Throughout the rest of the paper, unless otherwise noted, E will

represent an ordinary elliptic curve over the prime field Fp.

2.1 Isogeny classes

Definition 2.1. The isogeny class I of E is the set of isomorphism classes (over Fp) of elliptic curves that are
isogenous (over Fp) to E.

The isogeny class of E is uniquely determined byN = #E(Fp). This follows fromTate’s isogeny theorem,which

says that two elliptic curves over Fp are isogenous if and only if they have the same number of points [34,

Exercise. 5.4]. For every integer N in the Hasse interval [p + 1 − 2√p, p + 1 + 2√p], there is an elliptic curve
withN points. Thus by Tate’s thereof, there are about 4√p isogeny classes. One can showusing the j-invariant
that there are roughly 2p isomorphism classes of elliptic curves over Fp. This means that on average, each

isogeny class has about√p/2 curves.
An ℓ-isogeny is an isogeny of degree ℓ. Wewill only consider ℓ-isogenies with ℓ a prime other than p. Such

isogenies are separable and have a kernel of size ℓ. Any separable isogeny between elliptic curves factors into
a composition of isogenies of prime degree.

2.2 Endomorphism classes

The isogeny class I of E can be partitioned into endomorphism classes. Let IO denote the set of curves in

I whose endomorphism ring is isomorphic to O, an order in an imaginary quadratic field. We call IO the

endomorphism class of O in I.

Proposition 2.2. The endomorphism classes in I are precisely those associated to orders in the quadratic imag-
inary fieldℚ(π) that containℤ[π]. For any O ⊇ ℤ[π], the size of IO is equal to the class number h(O).

Proof. See Theorems 4.3 and 4.5 from [32].

Endomorphism classes have O(√p log d) curves. To see this, let c� be the conductor of an order appearing in
I. Recall that the class number of an order of conductor c� is approximately hc� (see [9, Theorem 7.24] for a

precise formula). The class number h is bounded above by 1

π
√d log d [6, Excercise 5.27 b]. We also know that

c� divides c because every order appearing in I contains the Frobenius ring ℤ[π]. It follows from (2.1) that

hc� ≤ hc ≤ c
π
√d log d < 2

π√p log d.
For a random curve E overFp for a randomprime p, we expect that c is close to 1 [16, Sec. 6]. Because the

endomorphism classes in I correspond to divisors of c, we do not expect to findmany endomorphism classes.

Thus on average, we should expect that I
End E usually has roughly√p curves.
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2.3 Bateman–Horn conjecture

We will be interested in how often several polynomials are simultaneously prime. For a single polynomial

of degree one, we have the prime number theorem and Dirichlet’s theorem on primes in arithmetic progres-

sions. Bateman and Horn made the following conjecture based on heuristics derived from the prime number

theorem.

Definition 2.3. We say that a polynomial f ∈ ℤ[x] satisfies Bunyakovsky’s property if gcda∈ℤ f(a) = 1.

Warning 1. In order for f to satisfy Bunyakovsky’s property, it is necessary that the coefficients of f are rela-
tively prime. This condition is not sufficient, for example gcda∈ℤ(a2 + a) = 2.

Conjecture 2.4 (Bateman–Horn Conjecture [2]). Let f
1
, . . . , fk ∈ ℤ[x] be distinct irreducible polynomials

such that their product∏ fi satisfies Bunyakovsky’s property. Let

Pf
1
,...,fk (N) = {a ∈ ℤ : 1 ≤ a ≤ N and fi(a) is prime for all i = 1, . . . , k}.

Then

|Pf
1
,...,fk (N)| ∼

C
D

N
log

k N
. (2.2)

Here D = ∏deg fi, C = ∏ℓ prime

1−ω(ℓ)/ℓ
(1−1/ℓ)k , and ω(ℓ) denotes the number of roots of∏ fi in Fℓ.

Remark 2.5. There is a large amount of theoretical and numerical evidence for the Bateman–Horn conjec-

ture. It reduces toDirichlet’s theoremonprimes in arithmetic progressions for a single polynomial of degree 1.

It also agreeswith the twin prime conjecture and the Sophie Germain prime conjecture [33, Section 5.5].More

recently, an analog of the conjecture has been proven for function fields [10].

2.4 The MOV attack

The MOV attack transfers a discrete log from E(Fp) to F×pk for some positive integer k. The idea is to leverage
sub-exponential time algorithms for solving discrete logs in the multiplicative group of a finite field. A neces-

sary condition for this transfer is that |E(Fp)| divides pk − 1. The smallest possible k is called the embedding
degree¹ of E. This is the same as the multiplicative order of p in (ℤ/Nℤ)×, where N = |E(Fp)|. For more on the

MOV attack see [25]² or [34, Section XI.6].

If k > log2 p, then the MOV attack will not be faster than trying to solve the discrete log on E directly [1].
Therefore we are primarily interested in curves with embedding degree > log2 p.

3 Isolated curves
Definition 3.1. The conductor gap of two orders in a fixed quadratic imaginary field is the largest prime divid-

ing the conductor of one andnot the other. The conductor gapbetween two isogenous elliptic curves is defined

to be the conductor gap of their endomorphism rings. If the curves are not isogenous, then their conductor

gap is∞. The L-conductor-gap class of a curve E is the set of all curves E� such that the conductor gap between
E and E� is less than L.

1 The embedding degreemay also refer to themultiplicative order of p in (ℤ/rℤ)×, where r is the largest prime factor of N. This is
because cryptosystems are usually constructed using the largest prime order subgroup of the elliptic curve group, rather than the

entire group. Wewill only be interested in curves with nearly prime order, so the difference between using N or r is not important.

Also implicitly we are avoiding anomalous curves where N = p, i.e. t = 1. Anomalous curves are extremely rare but should be

avoided as there are known attacks against them [35].

2 Technically, the attack of [25] requires that N be relatively prime to p − 1. But, if this is not the case, then there is an attack

described by Frey and Rück [12] which also transfers the ECDLP to F×pk . We will not differentiate between the two since both

attacks require a small embedding degree.
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Proposition 3.2. Let φ : E → E� be an ℓ-isogeny for some prime ℓ. IfO andO� are the endomorphism rings of E
and E�, respectively, then one of the following holds:

[O : O�] = ℓ, [O�
: O] = ℓ, O = O�

.

Proof. See [22, Proposition 21].

In the first two cases of Proposition 3.2, we say that φ is vertical; otherwise φ is horizontal. Horizontal iso-
genies stay inside the same endomorphism class while vertical ones move to a new class. The main implica-

tion of Proposition 3.2 is that if two endomorphism classes have conductor gap a prime ℓ, then any isogeny
between them factors through an ℓ-isogeny. Unless otherwise noted, throughout the rest of the paper ℓ will
denote a prime not equal to p.

Definition 3.3. Let E be an elliptic curve over Fp. We will say E is isolated with gap L and set-size T, or
(L, T)-isolated, if the L-conductor-gap class of E has at most T curves.

Remark 3.4. Theobservation that isolated curves are resistant to isogenybasedattackshas beennotedbefore
in the literature. This idea is discussed in [20, Section 11.2], [17, Section 7.1], and [26, Remark 6]. This idea

has also been applied to Jacobians of curves of genus 2, cf. [37].

3.1 Computational complexity of isogenies

The computational complexity of an isogeny depends on its degree, but the complexity is different for hor-

izontal and vertical isogenies. The fastest known method [22] for constructing a vertical isogeny from E
involves constructing the modular polynomial Φℓ. Finding Φℓ mod p is the most expensive step and the best

knownmethods take Õ(ℓ3) time and Õ(ℓ2) space [4] (recall that Õ(f)means O(f logk f) for some integer k); Φℓ

is a polynomial of degree ℓ + 1 in two variables, so any method which involves computing Φℓ must take Ω(ℓ)
time and space. Moreover, because we represent ℓ-isogenies using either polynomials of degree ℓ, or a list of
points in the kernel; any algorithm which computes an ℓ-isogeny will need at least Ω(ℓ) space.

For horizontal isogenies where the endomorphism ring has a small discriminant, there are much faster

algorithms which are polynomial in log ℓ, cf. [3, 18]. Thesemethods do not extend to vertical isogenies cross-

ing a large conductor gap. Therefore we can only effectively transport the ECDLP to another endomorphism

class when the conductor gap is less than p1/6.
The best algorithm known for solving the ECDLP on a general elliptic curve takes Õ(√p) time [28]. If

ℓ ≥ p1/6, then computing a vertical ℓ-isogeny takes similar time to solving the ECDLP. If two endomorphism

classes have a conductor gap of at least p1/6, then there is no significant benefit in transferring the ECDLP

across the gap.

3.2 Examples

Example 3.5. Let E be the elliptic curve y2 = x3 + 6x over Fp, where p = 12475737285765000161 ≈ 263.4.
Note that End E ≅ ℤ[i] has class number 1, so E is the only curve in its endomorphism class. The Frobenius

endomorphism π generates an order ℤ[π] with prime conductor c = 2559154831 ≈ 231.2. This means that

the isogeny class of E has two endomorphism classes: onewhich contains only E, and anotherwhich contains
h(ℤ[π]) = 1279577416 ≈ 230.2 curves. Because the conductor gap between the classes is c ≈ √p, this shows
that E is isolated with gap 231 and set-size 1.

Example 3.6. Let E be the elliptic curve y2 = x3 + 350x over Fp, where p = 122501. As in the previous

example, the endomorphism class of E has only one curve. However, in this case ℤ[π] has conductor 1, so
the isogeny class of E contains only E, and E is (∞, 1)-isolated. This example is highly atypical because the

trace t = 700 = ⌊2√p⌋ is at the extreme end of the Hasse bound.
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4 Generating isolated curves
In this section we give an algorithm to generate isolated elliptic curves. We will apply some slight modifica-

tions to the algorithm presented here in order to prove Theorem 1.2. For use in cryptography, we would like

to generate prime ordered curves. However there are some basic obstructions to a curve having prime order.

For example, consider equation (2.1). In order for p to be an odd prime, if d is even then t must be even. It

follows that N = p + 1 − t is also even. In this case, the choice of d forced a factor of 2 to divide N. Fortunately,
the only obstructions to N being prime are a few factors of 2 and 3.

For any integer a ≡ 0, 3, 4 mod 8, define³ the cofactor to be

cofa = 2ν2 ⋅ 3ν3 , (4.1)

where

ν
2
=

{{{{{{
{{{{{{
{

0 if a ≡ 3, 11, 19, 27 mod 32,

1 if a ≡ 4, 8, 20, 24 mod 32,

2 if a ≡ 0, 12, 16 mod 32,

3 if a ≡ 28 mod 32,

ν
3
=
{
{
{

0 if a ̸≡ 2 mod 3,

1 if a ≡ 2 mod 3.

The algorithm proceeds as follows.

Algorithm 1. Isolated curve.
Input: a positive integer M and fundamental discriminant −d < 0.
Output: an elliptic curve defined over Fp, where dM

16

< p < dM
4

.

1: repeat Steps 2–5
2: t ← random integer in [−√M,√M] \ {0, 1, 2}
3: c ← random integer in [√M

2

,
√M]

4: p ← t2+dc2
4

5: N ← p + 1 − t
6: until p, N/cofdc2 are integers and p, c, N/cofdc2 are prime

7: j ← root of the Hilbert class polynomial forℚ(√−d)mod p
8: E ← elliptic curve over Fp with j(E) = j and |E(Fp)| = N
9: return E

Remark 4.1. Algorithm 1 is not optimized for efficiency. For example, if d ≡ 0 mod 4, then t must be even.

Thus by choosing only even values of t in Step 2, we expect the runtime to be reduced by a factor of 2. We

present the unoptimized version for simplicity.

Remark 4.2. The reason for removing 0, 1, 2 from possible values of t is to avoid the attacks described in

[35], [25], and [12].

Remark 4.3. One drawback⁴ of using the CM method is that we do not have full control over the prime p.
That is, we can not choose p arbitrarily and then construct an isolated curve over Fp. This makes it more

3 The value of cofa was calculated by considering the equation 4N = (t − 2)2 + a modulo powers of 2 and 3. Here a represents
dc2 from equation (2.1).

4 We would like to thank the referee for pointing out this drawback.
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difficult to find p with special properties, such as a small Hamming weight (which can lead to more efficient

implementations). However,we can lower theHammingweight of pwith the followingmodifications. Instead

of choosing c randomly, fix c to be a large prime of small Hamming weight. Also, restrict the search for t to
integers with small Hammingweight. Because p is given by a simple expression in t and c, the resulting value
of p will likely have small Hamming weight.

First we will explain the last steps of the algorithm. The following facts are the basis of the well-known CM

method [7, Section 18.1]:

(i) The Hilbert class polynomial of K = ℚ(√−d) has a root in Fp by construction.
(ii) There exists an elliptic curve E/Fp with N points and j(E) = j.
An efficient algorithm for finding E, given j and N can be found in [30]. Since j(E) is a root of the Hilbert class
polynomialmod p, it follows that End E ≅ OK, cf. [36, Section 2.8]. If the choice of d is bounded by a constant,
then Steps 7 and 8 in the algorithm have a running time of O(1). The main factor in the running time comes

from the loop in Steps 2 through 5.

Proposition 4.4. If the main loop of Algorithm 1 terminates, then the curve E returned by the algorithm is iso-
lated with gap √M

2

and set-size 1

π
√d log d.

Proof. We are assuming p, c, N/cofdc2 are prime and we want to show that E is isolated. Let K = ℚ(√−d).
By the explanation above, End E ≅ OK . Let π ∈ End E denote the Frobenius endomorphism of E. In OK, π
corresponds (up to conjugation) to

t+c√−d
2

. We also know that c = [OK : ℤ[π]]. Because c was chosen to be

prime, there are two endomorphism classes in the isogeny class of E corresponding to OK and ℤ[π]. The
endomorphism class of OK contains h(OK) ≤ 1

π
√d log d curves. Therefore, E is isolated with gap c ≥ √M

2

and

set-size

1

π
√d log d.

Remark 4.5. It is easy to alter Algorithm 1 to produce curves that are (∞, 1)-isolated, meaning that the entire

isogeny class contains a single curve, similar to Example 3.6. To do this, we choose d such thatℚ(√−d) has
class number 1, and fix c = 1. However, we do not know how to prove that curves generated this way usually

have an embedding degree > log2 p. This is because there are too few values of t such that p and N/cofd
are simultaneously prime. Even though the Bateman–Horn conjecture gives an asymptotic formula, it is not

enough to prove a bound on the embedding degree using the methods in Section 5.

5 Improbability of the MOV attack on isolated curves

5.1 Notation

In [1], Balasubramanian and Koblitz proved that a random prime order elliptic curve over a random prime

field almost always has a large embedding degree. Their work has been extended in several ways [8, 24]. We

want to emulate the main theorem of [1] for isolated curves. The main difference is that in [1], the authors

were able to vary the prime and the number of points subject only to the Hasse bound. There is less flexibility

in our case due to restrictions on the conductor c and the discriminant d.
We will use the following notation:

∙ −d is a fixed small (< 100) fundamental discriminant of a quadratic imaginary field,

∙ p = p(t, c) = t2+dc2
4

,

∙ N = N(t, c) = p + 1 − t,
∙ cof = cof(c) = cofcd2 as defined in Section 4,
∙ r = r(t, c) = N

cof

.

Remark 5.1. Note that r is not a polynomial in t, c because cof(c) depends only on the valuation of dc2 at 2
and 3. We will apply a linear change of variables in c in order to fix the cofactor.
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Define the following sets:

SM = {(t, c) ∈ [1,√M] × [√M/2,√M] : p, r, c are prime},

SM,K = {(t, c) ∈ SM : the order of p in (ℤ/rℤ)× is at most K},
SM(t) = {c : (t, c) ∈ SM},

SM,K(t) = {c ∈ SM(t) : (t, c) ∈ SM,K}.

The set SM represents possible pairs t, c thatAlgorithm1coulduse to generate an isolated curve. Inparticular,

the expected number of pairs t, c sampled by Algorithm 1 is

|SM |
M . The set SM,K represents those pairs which

result in a curve with embedding degree at most K. The sets SM(t) and SM,K(t) represent pairs with a fixed t
value.

5.2 Main results

Our goal for this subsection is to find an upper bound for

SM,K(t0)
SM(t0) for a fixed integer t

0
. This is roughly the

probability that Algorithm 1 returns a curve with embedding degree at most K given that t = t
0
.

First we give an upper bound for SM,K(t0).

Proposition 5.2. Let K,M be any positive integers. Then there is a universal constant A
1
such that for any

integer t
0
with |t

0
| > 1,

|SM,K(t0)| < A1
K2 log |t

0
|.

Proof. Let Lk = {primes ℓ : ℓ | (t
0
− 1)k − 1}. By construction

r | pk − 1 ⇐⇒ r | (p − N)k − 1 = (t
0
− 1)k − 1.

Hence there is a map φ : SM,K(t0) → ⋃K
k=1 Lk given by c Ü→ r(t

0
, c).

Next we will show that |φ−1(ℓ)| ≤ 16. Note that N(t
0
, c) is a quadratic polynomial in c, so there are at

most two values of c such that N(t
0
, c) is the same. There are eight possible values of cofc, hence there are at

most sixteen values of c which could give the same value of r(t
0
, c). Therefore

|SM,K(t0)| =
!!!!!!!!!
φ−1(

K
⋃
k=1

Lk)
!!!!!!!!!
≤ 16

!!!!!!!!!

K
⋃
k=1

Lk
!!!!!!!!!
.

It remains to bound the Lk. The number of prime divisors of (t
0
− 1)k − 1 is bounded by log

2
|t
0
− 1|k ≤

k log
2
(|t

0
| + 1). Hence

!!!!!!!!!

K
⋃
k=1

Lk
!!!!!!!!!
≤

K
∑
k=1

|Lk| ≤
K
∑
k=1

k log
2
(|t

0
| + 1) =

K(K + 1)
2

log
2
(|t

0
| + 1) ≤ 2.4K2 log(|t

0
|).

The last inequality holds for all |t
0
| ≥ 2, so we may takeA

1
= 2.4.

Next we will to bound SM(t0) from below. Because t
0
is fixed, we will be able to apply the Bateman–Horn

conjecture. However, in order to apply the conjecture, we first need a change of coordinates which makes p
and r into polynomials satisfying Bunyakovsky’s property.

Lemma 5.3. Let−d bea fundamental discriminant for a quadratic imaginary field such that d < 100. Then there
are computable constants m

1
, b

1
,m

2
, b

2
∈ ℤ≥0 such that the linear change of variables t� = t�(t) = m1

t + b
1

and c� = c�(c) = m
2
c + b

2
satisfy:

(i) fd(c�)2 is constant as a function of c.
(ii) p� = p(t�, c�) and r� = r(t�, c�) are integer polynomials in t and c.
(iii) For any t ∈ ℤ, the product p� ⋅ r� ⋅ c�/gcd(m

2
, b

2
) satisfies Bunyakovsky’s property as a polynomial in c.

Remark 5.4. In condition (iii) of Lemma 5.3, we include c�/gcd(m
2
, b

2
) rather than just c� because of the

case d ≡ 7 mod 8. In this case, p = t2+dc2
4

is an odd integer only if t and c are even. In particular, we cannot
have both c� and p� simultaneously prime when d ≡ 7 mod 8.
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d t� c� d t� c�

3 2160t + 1 2c + 1 51 624240t + 1 2c + 1
4 3840t 2c + 1 52 648960t + 4 2c + 1
7 94080t + 10 4c 55 5808000t + 18 4c
8 46080t + 6 6c + 1 56 2257920t + 6 6c + 1

11 87120t + 15 6c + 1 59 2506320t + 15 6c + 1
15 432000t + 34 4c 67 1077360t + 1 2c + 1
19 86640t + 1 2c + 1 68 3329280t + 12 6c + 1
20 288000t + 24 6c + 1 71 783976320t + 10 12c
23 82270080t + 10 12c 79 11982720t + 10 4c
24 138240t + 10 2c + 1 83 4960080t + 3 6c + 1
31 1845120t + 10 4c 84 1693440t + 40 2c + 1
35 882000t + 3 6c + 1 87 14532480t + 10 4c
39 2920320t + 10 4c 88 1858560t + 6 2c + 1
40 384000t + 6 2c + 1 91 1987440t + 1 2c + 1
43 443760t + 1 2c + 1 95 1403568000t + 34 12c
47 343543680t + 10 12c

Table 1. Choices of t�,c� in Lemma 5.3 found using Sage [38].

Proof of Lemma 5.3. Wewill prove the claim in detail for d = 4 by showing t� = 3840t and c� = 2c + 1 satisfy
properties (i)–(iii). The other cases are similar, and the corresponding change of coordinates are given in

Table 1.

(i) For any c, we have that d(c�)2 ≡ 4 mod 32 and d(c�)2 ̸≡ 2 mod 3. Hence cofd(c�)2 = 2 for all c.
(ii) To show p� and r� are integer polynomials, we just have to expand out the definitions:

p� = p(t�, c�) = 3686400t2 + 4c2 + 4c + 1,

r� = r(t�, c�) = N(t
�
, c�)
2

= 1843200t2 + 2c2 − 1920t + 2c + 1.

(iii) Let g(t, c) = p� ⋅ r� ⋅ c� ∈ ℤ[t, c] and t
0
∈ ℤ. To show that g(t

0
, c) ∈ ℤ[c] satisfies Bunyakovsky’s prop-

erty, it is sufficient to check that gcd{g(t
0
, 0), . . . , g(t

0
, 5)} = 1 as g(t

0
, c) is a degree 5 polynomial in c.⁵

A direct computation⁶ shows that

3g(t, 0) + 4g(t, 1) + 17g(t, 2) − 36g(t, 3) + 23g(t, 4) − 5g(t, 5) = 960.

Therefore

gcd{g(t
0
, 0), . . . , g(t

0
, 5)} = gcd{g(t

0
, 0), . . . , g(t

0
, 5), 960}

= gcd{g(0, 0), g(0, 1), . . . , g(0, 5)} = 1.

The second to last equality follows from the fact that t� ≡ 0 mod 960by construction. The last equality follows

from the fact that g(0, 0) = 1.

Remark 5.5. We expect Lemma 5.3 to hold for all d with many different possibilities for mi , bi.

Proposition 5.6. Assume the Bateman–Horn conjecture and that d < 100 and d ̸≡ 7 mod 8. Let m
1
, b

1
be the

constants from Lemma 5.3. For any integer t
0
, there are constantsA

2
,B

2
such that for all M > B

2
,

|SM(m1
t
0
+ b

1
)| > A

2

√M
log

3M
.

The constantsA
2
,B

2
depend on t

0
. Moreover, the constantA

2
is effectively computable.

5 This condition is also sufficient, see [5, Exercise 1.3].

6 This computation was done by constructing the matrix with rows given by the coefficients of the g(t, i), and then computing

the Hermite normal form using Sage.
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Proof. Let t�(t) = m
1
t + b

1
and c�(c) = m

2
c + b

2
be the change of coordinates given by Lemma 5.3. Then

p� = p(t�(t
0
), c�), r� = r(t�(t

0
), c�), and c� are integer polynomials inℤ[t, c], and satisfy Bunyakovsky’s prop-

erty. Moreover, p� and r� are irreducible because their roots are linear combinations of the roots of p(t
0
, c) and

N(t
0
, c), respectively. The latter are complex as long as t�(t

0
) ̸= 0, 2. Thus p�, r�, and c� satisfy the hypothesis

of the Bateman–Horn conjecture as polynomials inℤ[c].
Let S�M(t0) denote the set of c0 such that c

�(c
0
) ∈ SM(t�(t0)), and

Pp� ,r� ,c� (√M) = {c
0
∈ [1,√M] : p�(c

0
), r�(c

0
), and c�(c

0
) are prime}.

By above, we can apply the Bateman–Horn conjecture to the polynomials p�, r�, and c�. Thismeans that there

is a constant C, depending on the polynomials p�, r�, and c� (which depend only on d and t
0
), such that

|Pp� ,r� ,c� (√M)| ∼ C
√M

log

3√M
.

Notice that S�M(t0) = Pp� ,r� ,c� (√M) ∩ J(√M), where J(M) = [ 1

m
1

(1
2

√M − b
1
), 1

m
1

(√M − b
1
)]. We will assume

M ≫ max{m2

1

, 16b2
1

} so that

|S�M(t0)| =
!!!!!!!
P( 1

m
1

(
1

2

√M − b
1
))

!!!!!!!
−
!!!!!!!
P( 1

m 1

(√M − b
1
))
!!!!!!!

∼ C
1

m
1

(1
2

√M − b
1
))

log

3 1

m
1

(1
2

√M − b
1
))
− C

1

m (√M − b1))
log

3 1

m
1

(√M − b
1
))

≥
C

2m
1

√M − 2b
1

log

3M

>
C

4m
1

√M
log

3M
.

Thus there is some constantB
2
such that

|S�M(t0)| >
C

4m
1

√M
log

3M
for all M > B

2
.

Note that the constant B
2
depends on t

0
. The map c

0
Ü→ c�(c

0
) gives us an inclusion S�M(t0) í→ SM(t�(t0)).

Therefore the inequality in the claim holds withA
2
= C

4m
1

.

It remains to show that the constant C given in the Bateman–Horn conjecture is computable.⁷ Let

g
1
= t2

0

+ dc2, g
2
= (t

0
− 2)2 + dc2, g

3
= c, and G = g

1
⋅ g

2
⋅ g

3
.

Define ωi(p) to be the number of roots of gi mod p and ω(p) to be the number of roots of G mod p. Then G
differs from p� ⋅ r� ⋅ c� by a linear change of coordinates and scaling. It follows that the constant C differs from
the product

C
2
= ∏
p≥5

1 − ω(p)p
(1 − 1

p )3

in at most a finite number of factors. So it is sufficient to show C
2
is computable. Notice that for any

prime p ≥ 5:

g
1
(c) ≡ g

2
(c) ≡ 0 mod p â⇒ p | t

0
+ 2,

g
1
(c) ≡ g

3
(c) ≡ 0 mod p â⇒ p | t

0
,

g
2
(c) ≡ g

3
(c) ≡ 0 mod p â⇒ p | t

0
− 2.

7 The proof of convergence for the constant in the Bateman–Horn conjecture only relies on the Chebotarev density theorem.

Hence by using an effective version [23], one can show that the constant is always effectively computable. However, we present

this more direct proof which offers a more concrete picture of the constant.
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Let S denote the set of primes dividing 6dt
0
(t
0
− 2)(t

0
+ 2). Then for any prime p ̸∈ S,

ω(p) = ω
1
(p) + ω

2
(p) + ω

3
(p).

Let χ(p) = 1 if −d is a square mod p and −1 otherwise. Then one can show that for any p ̸∈ S we have that

ω
1
(p) = ω

2
(p) = χ(p) + 1,

therefore

ω(p) = 2(χ(p) + 1) + 1.

Note that the product

∏
p

1 − 2(χ(p)+1)+1
p

(1 − 1

p )3
= C

3
∏
p
(1 −

χ(p)
p )

2

,

where C
3
is an effectively computable constant. By Dirichlet’s analytic formula,

∏
p
(1 −

χ(p)
p )

2

= (
k√d
2πh )

2

,

where k, h are the number of roots of unity and class number ofℚ(√−d), respectively.

Theorem 5.7. Assume the Bateman–Horn conjecture and that d < 100, and suppose d ̸≡ 7 mod 8. Let m
1
, b

1

be the constants from Lemma 5.3, which depend only on d. For any fixed integer t
0
, there are constantsA

3
,B

3

such that the probability that c ∈ SM,K(m1
t
0
+ b

1
) given that c ∈ SM(m1

t
0
+ b

1
) is bounded above by

A
3

K2 log4M
√M

for all M > B
3
. The constantA

3
is computable.

Proof. We have to bound SM,K(m1
t
0
+ b

1
)/SM(m1

t
0
+ b

1
) above. This follows immediately from the previous

propositions. Proposition 5.2 gives an upper bound for SM,K(m1
t
0
+ b

1
), and Proposition 5.6 gives a lower

bound for SM(m1
t
0
+ b

1
).

Warning 2. We do not have a computable upper bound for the constantB
3
.

5.3 Proof of Theorem 1.2

We can now prove Theorem 1.2 using a modified version of Algorithm 1. In order to apply Theorem 5.7, we

need to modify Algorithm 1 so that t lies in an interval independent of the input bound M.

Algorithm 2. Isolated curve.
Input: positive integer M.

Output: isolated (with gap√p/50 − 100 and set-size 8) elliptic curve defined over Fp with M/2 ≤ p ≤ M.

1: −d ← fundamental discriminant such that 1 ≤ d ≤ 100 and d ̸≡ 7 mod 8

2: m
1
, b

1
,m

2
, b

2
← constants from Lemma 5.3

3: t ← integer such that 3 ≤ t ≤ 100 and t ≡ b
1
mod m

1

4: repeat Steps 5–7
5: c ← random integer in [√(2M − t2)/d,√(4M − t2)/d] with c ≡ b

2
mod m

2

6: p ← t2+dc2
4

7: N ← p + 1 − t
8: until p, c, and N/cof(dc2) are prime

9: j ← root of the Hilbert class polynomial forℚ(√−d)mod p
10: E ← elliptic curve over Fp with j(E) = j and |E(Fp)| = N
11: return E
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Proof of Theorem 1.2. We will show that Algorithm 2 satisfies the claims in Theorem 1.2.

By the Bateman–Horn conjecture and Lemma 5.3, for any fixed d, t as chosen in the algorithm, the num-

ber of possible values of c ≤ √M such that p, c, N/cof(dc2) are simultaneously prime, is Ω(√M/log3M).
Because there is a finite number of possibilities for t, d, which are independent of M, this implies that the

expected number of iterations of the main loop of Algorithm 2 is O(log3M).
The probability that the embedding degree of the returned curve is less than log

2 p follows from Theo-

rem 5.7 using K = log2M. Note that here we are using that t, d are bounded independently of M, in order to

average the result of Theorem 5.7 for all values of t in the interval [3, 100].
The resulting curve E has N points, where N = r ⋅ cof(dc2) and r is prime. Recall that cof(dc2) | 24 by

definition (see equation (4.1)). Also, E is isolated with gap c and set-size 8 because c is prime, and the bound

d ≤ 100 implies that the class number of ℚ(√−d) is at most 8. The lower bound c ≥ √p/50 − 100 follows

from a straightforward computation.

Remark 5.8. The bound on t in Algorithm 2 is mostly arbitrary. It is important that the upper bound on |t| is
independent of M. The lower bound t ≥ 3 is for the same reason as the restriction on t in Algorithm 1.

6 Extending the results
The goal of this section is to discuss the following issues with Theorem 1.2:

∙ The algorithmused in theproof (Algorithm2) places a restriction on t, limiting the amount of randomness

in the selection of an isolated curve.

∙ It does not give a computable bound lower bound for what “sufficiently large” is.

Recall that themain idea of both Algorithm 1 and Algorithm 2 is to search for integers t, c such that three
functions (p(t, c), r(t, c) and c) are simultaneously prime. Algorithm 2 imposes a restriction on t that allowed
us to reduce to the one variable case and apply the Bateman–Horn conjecture. We expect that the restriction

on t is unnecessary, and that the following properties hold:
(i) The expected number integers t, c sampled in Algorithm 1 is O(log3M).
(ii) The probability that a curve returned by Algorithm 1 has an embedding degree < log2M is O( log

8 M
√M

).
(iii) The implied constants in these estimates are computable.

In the notation of Section 5, all three properties reduce to giving computable bounds for SM and SM,K . Recall
that the expected number of iterations of the main loop of Algorithm 1 is roughly

|SM |
M and the probability of

an embedding degree less than K is about

|SM,K |
|SM | . For Theorem 1.2, we fixed t and gave bounds for SM,K(t)

and SM(t) in Proposition 5.2 and Proposition 5.6, respectively. We would like to extend those bounds to SM,K
and SM.

Proposition 6.1. There is a computable constantA
4
such that for any positive integers M and K,

|SM,K | ≤ A4
K2√M logM.

Proof. By definition, |SM,K | ≤ ∑
√M
t=1 |SM,K(t)|. Then by Proposition 5.2,

|SM,K | ≤
√M
∑
t=1

A
1
K2 log t ≤ A

1
K2√M log

√M,

whereA
1
is the constant from Proposition 5.2. Hence we may takeA

4
= A

1

2

.

Problem 6.2. Find a computable numberA
5
, depending only on the fundamental discriminant d, such that

for any positive integer M,

|SM | > A5

M
log

3M
.

Remark 6.3. A solution to Problem 6.2 would be useless in practice if A
5
is too small (e.g. 2

−100
). Hence we

implicitly require thatA
5
lies within a reasonable range, such asA

5
> 2−20.
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6.1 An alternative conjecture

Even under the Bateman–Horn conjecture we are unable to solve Problem 6.2. This is because the Bateman–

Horn conjecture only gives an asymptotic formula; it does not provide information about the error term.⁸

However, there is another natural conjecture one may consider related to the Bateman–Horn conjecture.

Conjecture 6.4. Let f
1
, . . . , fk ∈ ℤ[x, y] be such that every fi is irreducible and gcda,b∈ℤ∏ fi(a, b) = 1. Let

Pf
1
,...,fk (N) denote the number of pairs a, b such that 0 ≤ a, b ≤ N and f

1
(a, b), . . . , fk(a, b) are simultane-

ously prime. Then for any N
0
> 0, there exists a computable constant C (depending on N

0
and the fi) such

that

Pf
1
,...,fk (N) > C

N2

log

k N
for all N > N

0
.

Remark 6.5. As stated, the constant C in Conjecture 6.4 depends on N
0
. We could have equivalently stated

the conjecture with C independent of N
0
. However, in practice we usually avoid small values of N.

Recall that before the prime number theorem was proven, Chebyshev showed that π(N) ≥ log 2

2

N
logN for all

N ≥ 2, cf. [33, Theorem 5.3]. In a way, Conjecture 6.4 is to the Bateman–Horn conjecture as Chebyshev’s

inequality is to the prime number theorem. Conjecture 6.4 is weaker than the Bateman–Horn conjecture in

the sense that it only asks for a lower bound, not an asymptotic formula. In fact, Conjecture 6.4 would follow

from the Bateman–Horn conjecture if it had included a clause about the error term.

6.2 Heuristic evidence

The same heuristics used to justify the Bateman–Horn conjecture suggest that Pf
1
,...,fk in Conjecture 6.4 has

the right order of magnitude. Let f(x, y) ∈ ℤ[x, y] such that gcdx,y∈ℤ f(x, y) = 1. If we pretend that f(x, y) acts
like a random number, then the probability that f(x, y) is prime should be roughly

1

log |f(x,y)| . If x, y are cho-
sen independently from a uniform distribution on [0, N], then the probability that f(x, y) is prime should be

roughly

1

d logN , where d is the degree of f (i.e. the highest total degree of any monomial in f ). Given multiple

polynomials f
1
, . . . , fk satisfying the hypothesis in Conjecture 6.4, we expect that the probability that they

are simultaneously prime is the product of the probabilities for each fi, up to some constant correction factor.

This suggests that Pf
1
,...,fk = Θ(

N2

log

k N
), but gives no insight into the constants.

6.3 Theoretical evidence

Conjecture 6.4 also differs from the Bateman–Horn conjecture in that it applies to polynomials in two vari-

ables. There aremany caseswhere the conjecture canbeproven. For example,we can apply the primenumber

theorem for quadratic fields to estimate how often certain quadratic forms are prime [15, Theorem 21.1]. The

Friedlander–Iwaniec theorem [14] gives an asymptotic density of primes of the form x2 + y4. More recently
considered were pairs x, y such that x2 − xy + y2 and 2x − y are both prime [29]. One of the examples closest

to Problem 6.2 is the following result of Fouvry and Iwaniec.

Theorem 6.6 (Fouvry and Iwaniec [15, Theorem 20.3], [11]). Let Λ be the von Mangoldt function defined by

Λ(n) =
{
{
{

log p if n = pk for some prime p,
0 otherwise.

Then
∑

x2+y2≤N
Λ(x)Λ(x2 + y2) = πH

4

N + O( N
log

1/4 N
),

8 We do know that any error bound would necessarily depend on the polynomials by [13, Theorem 1].
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where the sum is over positive integer, H = ∏p(1 −
χ(p)
p−1 ), and

χ(p) =
{{{
{{{
{

1, p ≡ 1 mod 4,

−1, p ≡ 3 mod 3,

0, p = 2.

Corollary 6.7. Let Px,x2+y2 (N) denote the number of pairs x, y ∈ [0, N] such that x and x2 + y2 are simultane-
ously prime. Then

Px,x2+y2 (N) = Ω(
N2

log

2 N
).

Proof. First notice that

Px,x2+y2 (N) = ∑
x,x2+y2prime

0<x,y<N

1

≥ ∑
x,x2+y2prime

0<x2+y2<N2

1

≥
1

2 log

2 N
∑

x,x2+y2prime

0<x2+y2<N2

Λ(x)Λ(x2 + y2).

The only difference between the last sumand the sum inTheorem6.6, is that the latter includes primepowers.

The number of prime powers less than N2

is bounded above by log(N)π(N) < 2N. For each prime power pk

less than N, there are at most 4(k + 1) pairs x, y such that x2 + y2 = pk. This is because there are at most k + 1
ideals inℤ[i] with norm pk, and each has at most four distinct generators. Therefore

Px,x2+y2 (N) ≥
1

2 log

2 N
∑

x2+y2≤N2

Λ(x)Λ(x2 + y2) − 4N
logN

.

The claim now follows from Theorem 6.6.

If we restrict to even values of t, then for d = 4 we have that p(t, c) = ( t
2

)2 + c2. Hence the corollary above
implies that for d = 4 we have

#{t, c : p = t
2 + dc2

4

and c are prime and p ≤ M} = Ω(
M

log

2M
).

This agrees with our heuristics because we have two polynomials and the probability both are prime is

roughly 1/log2M when choosing t, c randomly in [0,√M]. We expect the same principal term for other

values of d. Furthermore, adding the requirement that r(t, c) is prime should change the principle term by

a factor of 1/logM. It is unclear if the methods used in the proof of Theorem 6.6 could extend to cover pairs

t, c such that all three functions p, r, and c are all simultaneously prime.

6.4 Numerical evidence

We implemented Algorithm 1 with d = 4 using a few modifications for efficiency, such as only choosing odd

values of c and even values of t. For a few values ofM, we counted the number of iterations themain loop ran

until the algorithm returned. Equivalently, this is the number of pairs t, c chosen at random until p, r, and c
were simultaneously prime. The number of iterations was always below log

3M as shown in Figure 1.

We also computed the embedding degree of a curve returned by Algorithm 1 with M = 298. In 10,000

runs we observed 0 curves with embedding degree < log2(M). This should be compared with the bound

log

8(M)
√M
≈ 0.80527.
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Figure 1. Comparing the observed number of samples of t, c used in Algorithm 1 with log3 M for various values of M.

7 Conclusion
We acknowledge that a solution to Problem 6.2 may not be as mathematically interesting as proving an

asymptotic formula with an optimal error bound for a generalized, two variable Bateman–Horn conjecture.

However, a solution to Problem 6.2 would be enough to:

(i) Prove the efficiency of an algorithm to generate an isolated curve with large embedding degree.

(ii) Prove that the space of isolated curves is large enough to provide sufficient randomness in parameter

selection.

These facts are enough to show that isolated curves provide cryptosystems resistant to the isogeny based

attacks described in the introduction.
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