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Abstract: We describe a reduction of the problem of factorization of integers n ≤ x in polynomial-time
(log x)M+O(1) to computing Euler’s totient function, with exceptions of at most xO(1/M) composite integers that
cannot be factored at all, and at most x exp

(︁
− cM(log log x)

3

(log log log x)2

)︁
integers that cannot be factored completely. The

problem of factoring square-free integers n is similarly reduced to that of computing a multiple D of ϕ(n),
where D ≪ exp((log x)O(1)), with the exception of at most xO(1/M) integers that cannot be factored at all, in
particular O(x1/M) integers of the form n = pq that cannot be factored.
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1 Introduction
The computational problems of factorization of a composite integer n and computation of discrete logarithms
in Z*n play a significant role in the current public key cryptography. The security of many popular cryptosys-
tems rests on the difficulty of the integer factorization problem. E.g., to break the RSA cryptosystem, it is
enough to be able to factorize integers of the form n = pq. The reduction of the general factorization prob-
lem to computing the values of Euler’s totient function ϕ(n) or to computing the discrete logarithms in Z*n
has attracted much attention in the last decades. The existence of such a reduction (which is trivial in the
special case n = pq) would, of course, render the cryptosystems in question insecure if somebody developed
a method to quickly compute, e.g., ϕ(n) for large n. Even if the computation of ϕ(n) seems out of reach at
present, the computation of a multiple of ϕ(n) seems more plausible. Obviously n! is one such multiple, but
it is far too large for any practical purposes. If anyone came up with a fast method of computing such a multi-
ple of reasonable size, then, as we show at the end of the paper, it would seriously impact the security of the
RSA cryptosystem.

E. Bach (see [3]) showed the reduction of factoring n to solving the discrete logarithm problem in Z*n in
probabilistic polynomial time and, assuming the Extended Riemann Hypothesis (ERH), also in deterministic
polynomial time. The corresponding unconditional deterministic subexponential time reduction was proved
in [14]. Factoring integers given the values of Euler’s totient function ϕ(n) can be done in probabilistic poly-
nomial time due to the work [15]. The related deterministic polynomial time algorithm is known only under

The second author was supported by the Polish National Science Centre grant number 2017/25/B/ST1/00208

*Corresponding Author: Jacek Pomykała: Faculty of Mathematics, Informatics and Mechanics, University of Warsaw ul.
Banacha 2, PL-02-097 Warsaw, Poland; Email: pomykala@mimuw.edu.pl
Maciej Radziejewski: Faculty of Mathematics and Computer Science, Adam Mickiewicz University ul.Umultowska 87, PL-61-614
Poznań, Poland; Email: maciejr@amu.edu.pl

https://doi.org/10.1515/jmc-2019-0023


Integer factoring and compositeness witnesses | 347

the assumption of ERH and was done in [12]. The unconditional result is still unsolved (see [1]). Although an
unconditional, deterministic algorithm is known, it runs in subexponential time, cf. [18]. It was also noticed
there, that almost all positive integers can be factorized in deterministic polynomial time with the oracle Φ,
which is a hypothetical device for computing the value of ϕ(n) for any positive integer n (see the next section
for the definitions of the oracles). Quite recently the analogous deterministic reductions were investigated in
[6] and [13] with the oracles Φ and DecΦ, the latter giving the complete prime factorization of ϕ(n).

The aimof this paper is to design algorithms, thatmake use of these oracles,with improvedupper bounds
for the number of integers that we are unable to factorize. We approach the solution of the problem posed in
[1], showing that the related reduction in polynomial time t = O(logM+5 x) holds for all, but at most O(x c

M )
exceptions n ≤ x, where c = 1.34 and M ≥ 4. The value of the constant c can be decreased to c = 1 in the
case of the (stronger) oracle DecΦ. This extends and improves substantially upon the related bound for the
possible exceptions proved in [6].

We also investigate the problem of complete factorization with the aid of the oracle O = Φ. In this case
we were able to obtain the bound O(x/(log x)6.5M) for the number of the related exceptions when the oracle
is queried once, and x exp

(︁
− cM(log log x)

3

(log log log x)2

)︁
, where cM ≈ M3−ε, when the oracle is queried multiple times.

The latter bound, while weaker than x c
M , is also stronger than any bound of the form x/(log x)c. The former

bound depends on the current top results related to the Vinogradov-Linnik problem on the least character
non-residue. Any improvement upon the result quoted here as Lemma 3.4 will translate to an appropriate
improvement of this bound.

In the last section we discuss similar reductions using slightly weaker oracles, related to the multiples of
Euler’s totient function. In the special case of integers of the form n = pq we show that all except O(x 1

M ) such
integers n ≤ x can be factored in time t = O

(︀
(log x)M+O(1))︀with one query to an oracle returning a multiple D

of ϕ(n) of size exp
(︀
(log x)O(1)

)︀
.

Our approach is based on the investigation of the corresponding “hard” numbers that may not be fac-
tored with the aid of the related Fermat-Euclid compositeness witnesses or power-difference compositeness
witnesses of given order (see Section 2 for definition). We remark that in order for an algorithm to complete
in polynomial time with probability 1, i.e. for almost all integers, it would be enough to know that there are
no more than o(x) hard integers in [1, x], in other words the set of hard integers should have density zero.
However, to say that a set has “density zero” is only a very rough estimate. For example, the set of primes,
the set of integers of the form n = pq, the set of squares, and the set of cubes all have density zero, but the
first two are still much “denser”, with O( x

log x ) and O(
x log log x
log x ) elements in [1, x], respectively, than the other

two, with O(x1/2) and O(x1/3) elements in [1, x]. The existence of a large set of hard integers might suggest
that it might still be possible to keep the cryptosystem secure by appropriate choice of parameters. Having a
tight estimate for the number of hard integers in [1, x] makes such a measure unlikely. The additional arith-
metical properties of hard integers stated in some lemmas and theorems serve the purpose of showing which
integers might and which should not be considered as parameters in order to keep a cryptosystem secure in
the hypothetical event of someone developing one of the oracles considered here.

We transform the problem to the investigation of primitive Dirichlet characters χ mod n of given order
and prove that hard numbers correspond to the exceptional conductors of such characters. The estimates for
the numbers of such conductors are deduced from the bounds for the least character nonresidue proved in [4]
and [10], and the enhanced analysis of the Hensel-Berlekamp method applied in [18].

2 Notations and basic definitions
Conventionally m, n stand for positive integers while p, q are prime numbers, A a given deterministic algo-
rithm, O— the related oracle. We also employ the following notations throughout the paper.

lcm(m, n) the least common multiple of m and n
gcd(m, n) the greatest common divisor of m and n
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ϕ Euler’ totient function
P+(n), P−(n) the greatest and smallest prime divisors of n respectively

ω(n) the number of distinct prime divisors of n
νq(n) the exponent in the highest power of q dividing n
ordnb the order of b mod n, where gcd(b, n) = 1
log x the natural logarithm of x
LN(χ) for a Dirichlet character χ(mod n), the least character nonresidue, i.e. the least b such

that χ(b) ∉ {0, 1}
F (x,A,O, tA, tO) the number of positive integers n ≤ x that can be factored completely by algorithmA in

time tA with at most tO queries to oracle O; at each oracle query the input is a positive
integer not exceeding n

F* (x,A,O, tA, tO) thenumber of positive integers n ≤ x that either are prime, or canbenontrivially factored
by algorithm A in time tA with at most tO queries to oracle O; at each oracle query the
input is a positive integer not exceeding n

Φ an oracle that, given a positive integer n, always returns the value of ϕ(n)
DecΦ an oracle that, given a positive integer n, always returns the complete prime factoriza-

tion of ϕ(n)
MulM

′
Φ an oracle that, given a positive integer n, always returns a multiple D of ϕ(n) of size at

most D = O(exp((log n)M
′
)); here M′ is an arbitrary fixed positive parameter

DecMulM
′
Φ an oracle that, given a positive integer n, always returns the prime factorization of a

multiple D of ϕ(n) of size at most D = O(exp((log n)M
′
)); here M′ is an arbitrary fixed

positive parameter.

We note that our algorithms, and thus the functions F (x,A,O, tA, tO) and F* (x,A,O, tA, tO), implicitly de-
pend on the choice of some auxiliary parameters, denoted as B, y and z. We explicitly mention these pa-
rameters in Theorems 3.1, 3.5, 4.1, 5.1 and 6.1 stating lower bounds for F and F*. Optimized values for these
parameters, all of the order (log x)O(1), may be found in the proofs of the theorems.

The investigated factoring algorithms are based on two kinds of factorization witnesses. The first is the
so called Fermat-Euclid compositeness witness, i.e. an element b such that

gcd
(︁
b

ordnb
r − 1, n

)︁
≠ 1. (1)

for some prime r | ordnb (more precisely it is called Fermat-Euclid compositeness witness of order r for n). For
r = 2we call such b aMiller-Rabin compositenesswitness. Let r | ϕ(n) be a prime, l = νr(ϕ(n)), k ∈ {1, . . . , l},
u = ϕ(n)r−l+k−1, and b0 = min{b ≥ 1 : νr(ordnb) = k}. We call b a power-difference compositeness witness of
order r and degree k if νr(ordnb) = k and for some j = 1, ..., r − 1 we have

1 < gcd(bu − buj0 , n) < n.

This notion, admittedly harder to employ than that of a Fermat-Euclidwitness, is useful for small primes r ≥ 3,
for which the iteration over j is possible. The idea is that if b and b0 are not Fermat-Euclid witnesses of order
r, then for each p | n both bu and bu0 are of order r mod p, so one is the j-th power of the other (mod p) for
some j = 1, ..., r − 1. Unless j is the same for every p, the gcd will yield a nontrivial factorization of n. In case
of r = 2 this would not be useful, because the only element of order 2mod p is −1, so if b is a power-difference
witness for a square-free n (or indeed any n not divisible by 8), then b or b0 is a Miller-Rabin witness for n.

A number n is called (A, B, y)-hard if P+(n) > y and the algorithmA does not find the complete factoriza-
tion of nwith the aid of Fermat-Euclid compositeness witnesses b ≤ B. The number n is called (A, B, y)*-hard
if P−(n) > y and the algorithm A does not find any nontrivial divisor of n with the aid of Fermat-Euclid com-
positeness witnesses b ≤ B.

In the following sections we present several algorithms factoring square-free positive integers. This limi-
tationwould affect only a thin set of integers, becausewe always factor out small primes by brute force. By [17,
Theorem I.4.2] the number of positive integers n ≤ x with all prime factors p > y is of the order

x
∏︁
p≤y

(1 − 1/p) ≍ x/ log y,
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assuming y ≤ x1/ log log(x) (in our case y is in fact much smaller). The number of such n divisible by a square
of a prime is at most

x1/2y− log log(x)/2∫︁
y

x
t2 log y dπ(t) +

√
x∫︁

x1/2y− log log(x)/2

x
t2 dπ(t) ≪

≪
√
x

log x +
x

log y

x1/2y− log log(x)/2∫︁
y

t−3π(t) dt + x

√
x∫︁

x1/2y− log log(x)/2

t−3π(t) dt ≪ x
y log2 y

,

provided y ≤ x1/2 log log(x). However, our sets of hard numbers will be much thinner than this, so it is useful to
deal with non-square-free numbers. Given an oracle O = Φ we can easily reduce the general problem of fac-
toring an integer to the square-free case via the familiar algorithmof Landau [9], of complexityO(log3 n), that
we denote byA0. WithA0 every positive integer n can be represented as the product n = n1n22...nss of powers
of pairwise coprime, square-free numbers ni, using O(ω(n)) calls to theΦ oracle. Thus it reduces the problem
of factoring n to the problem of factoring the square-free numbers ni , i ≤ s. The complexity O(log3 n) will be
negligible when compared with the factoring of square-free factors ni | n. IfA is a factorization algorithm for
square-free numbers, we consider a composite algorithm using bothA andA0 to factorize general numbers.
In the composite algorithm we run A0 for a given n and, inside it, we immediately let A factorize every new
square-free factor m | n found by A0. This way we can factor out the prime factors of m from n and update
the value of ϕ(n) without a new query to the oracle. We can therefore reduce the number of oracle queries to
1. We denote the resulting composite algorithm by A0(A). We also append any required extra parameters to
this notation, or skip them if they have been fixed. E.g., we define an algorithm A3 that requires parameters
B and y, and then we refer to A*-hard numbers where A = (A0(A1), B, y). For such algorithms we evaluate
the related failure sets by careful use of estimates related to Dirichlet’s characters.

3 Factoring based on witnesses of small order

Algorithm 1 (A1) Miller-Rabin type complete factoring with the Φ oracle.

Input Square-free positive integer n, a positive multiple D of ϕ(n), auxiliary parameters B, y, where B ≤ y.
Output Factorization of n.

1. Factor out small prime divisors p | n, p ≤ y, using division with remainder.
2. For each b = 1, . . . , B find the smallest i such that n | bD

′2i − 1, where D′ = D/2ν2(D). Compute d =
gcd(bD

′2i−1 − 1, n).
3. If any d is a nontrivial factor of n, return to Step 2 with n′ ∈ {d, n/d}. Otherwise output n.

Theorem 3.1. We have, for arbitrary fixed M ≥ 4,A = (A0(A1), B, y), and appropriate choices of B and y:

F (x,A,Φ, tA, tO) ≥ x − OM
(︁
x(log x)−6.5M

)︁
and

F* (x,A,Φ, tA, tO) ≥ x − OM
(︀
x1.34/M

)︀
,

where tO = 1 and tA = O((log x)M+5).
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The proof of Theorem 3.1 is based on the estimates related to (exceptional) characters χ for which the least
character nonresidue LN(χ) is large. We call an integer n a B-exceptional integer if there exists a primitive
Dirichlet character χ mod n such that LN(χ) > B.

Lemma 3.2. Let n be composite, odd, square-free, let r | ϕ(n) be a prime, and let

k = max
b≤B

νr(ordnb).

Suppose that all prime divisors of n are greater than B and that there is no Fermat-Euclid factorization witness
b ≤ B of order r for n. Then at least one of the following assertions holds:

(i) there exists a primitive Dirichlet character χ (mod n), whose order is a power of r, such that LN(χ) > B,
(ii) we have r = 2, 2 - ω(n), and there exist numbers n1, n2 and primitive characters χ1 (mod n1) and

χ2 (mod n2), whose orders are powers of 2, such that lcm(n1, n2) = n, n1 < n2/ω(n), n1n2 < n1+1/ω(n),
and LN(χi) > B for i = 1, 2,

(iii) we have r ≥ 3 and there is a power-difference factorization witness b ≤ B of order r and degree k for n, or
(iv) we have r ≥ 3 and k = 0.

Proof. Let p, q | n, r | p − 1. We have νr(ordqb) = νr(ordpb) = νr(ordnb) for all b ≤ B. Suppose, as we may,
that assertions (iii) and (iv) are false. Then, if k = 0, we would have r = 2 and every quadratic character χ
(mod n) would satisfy (i). We can therefore suppose k > 0.

We have r | q − 1, because rk | q − 1. Let u = ϕ(n)r−νr(ϕ(n))+k−1. Let χ be any character of order rνr(p−1)−k+1

mod p, i.e. the u-th power of any character of order p − 1 mod p. Then for each b ≤ B we have ordχ(b) = r if
νr(ordp(b)) = k, and χ(b) = 1 otherwise. Moreover there exists a smallest b0 ≤ B such that ord(χ(b0)) = r. Let
ψ be any character of order rνr(q−1)−k+1 mod q, i.e. the u-th power of any character of order q − 1 mod q. Then

ordχ(b) = ordψ(b) ∈ {1, r}, for all b ≤ B.

For every b ≤ B let m(b) ∈ {0, 1, . . . , r − 1} be such that χ(b) = χ(b0)m(b), and let l ∈ {1, . . . , r − 1} be such
that ψ(b0) = (χ(b0))l.

Suppose ψ(b) ≠ ψ(b0)m(b) for some b ≤ B. Then bum(b)0 and bu would be congruent mod p and not mod
q, so b would be a power-difference witness of order r and degree k, contrary to our assumption. Hence we
have ψ(b) = ψ(b0)m(b) = (χ(b0))lm(b) = χ(b)l for all b ≤ B. Therefore the character ψχ−l mod pq is equal to 1
on all b ≤ B. It is primitive, as a product of primitive characters to relatively prime moduli.

If p, q1 and q2 are any three primes dividing n, and we define χ, ψ1, ψ2 in an analogous way as χ and ψ
before, then the characters ψ1χ−l1 mod pq1 and ψ2χ−l2 mod pq2 will be equal to 1 on all b ≤ B. Then at least
one of the characters ψ1ψ2χ−l1−l2 mod pq1q2 or ψ1ψ−12 χ−l1+l2 mod pq1q2 will be primitive (and equal to 1 on
all b ≤ B), unless l1 + l2 = r and l1 − l2 = 0, implying r = 2.

In the case r ≥ 3 we can therefore split the set of prime divisors of n to groups of 2 or 3 factors, obtain the
necessary primitive character mod the product of the factors in each group, and multiply them to obtain the
primitive character mod n required in (i). When r = 2 and 2 | ω(n), we can just use groups of two factors and
show (i) again.

Finally, when r = 2 and n = p1p2 . . . p2m+1, p1 < . . . < p2m+1, we find the necessary primitive characters
mod p1p2, mod p1p3, and mod pipi+1 for i = 4, 6, . . . 2m. Taking n1 = p1p2 and n2 = p1p3 . . . p2m+1 and
multiplying the characters mod p1p3 andmod pipi+1 for i = 4, 6, . . . 2m we obtain the characters required in
(ii). The assertion n1 < n2/ω(n) follows from (log p1 + log p2)/2 < (log p1 + . . . + log p2m+1)/(2m + 1).

Lemma 3.3 (Baier [4, cf. Theorem 1.1]). For every a ≥ 5/2, ε > 0 we have LN(χ) ≤ (log x)a for all but
O(x1/(a−3/4)+ε) primitive Dirichlet characters with conductor q ≤ x.

Proof. The original theorem by S. Baier implies in particular that the number of exceptions is bounded by
O(xmax(f1(a,2),f2(a,2))+ε), where

f1(a, 2) =
1

a − 3/4 , f2(a, 2) =
4
3 · (1 − 2(a − 2)f1(a, 2)).
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In the case a ≥ 5/2 we have f1(a, 2) ≥ f2(a, 2).

Lemma 3.4 (Lau, Wu [10, cf. Theorem 1]). For every non-principal Dirichlet character χ (mod q), where q is
cube-free, we have LN(χ) ≪ q2/13.

Proof of Theorem 3.1. Let B = (log x)a, a ≥ 5, and let ε > 0 be small with respect to a. Let A = (A0(A1), B, y).
Suppose A is run for some n ≤ x. The number k of final factors is ≪ log x. They are obtained in ≤ k − 1
factorization stepswhere in each step one intermediate factor is replacedby two (intermediate or final) factors.
So the total number of executions of Step 2 of A1 is ≪ log x. Each execution of Step 2 takes ≪ (logD)B
multiplications and ≪ (logD)B gcd computations. As a result, Step 2 contributes ≪ (log x)a+3+ε in total to
the overall complexity. The complexity of generating primes ≤ y and factoring them out is≪ y(log x)1+ε. We
put y = (log x)a+2. Having in mind the complexity of algorithmA0 the complexity of algorithmA is

≪ (log x)a+3+ε + log3 n ≪ (log x)a+3+ε .

Let S denote the set ofA*-hard integers, E the set of B-exceptional integers, S(x) and E(x) the corresponding
counting functions. Every n ∈ S is square-free. By Lemma 3.2 every n ∈ S, n ≤ x, is either exceptional itself
or it is determined by a pair of two exceptional integers, n1 ≤ x2/3 and n2 < min(x, x4/3/n1) (since 2 - ω(n)
implies ω(n) ≥ 3). Therefore

S(x) ≤ E(x) +
∑︁

n1 ,n2∈E
n1≤x1/3
n2<x

1 +
∑︁

n1 ,n2∈E
x1/3<n1<x2/3
n2<x4/3/n1

1 ≤ E(x) + E(x1/3)E(x) +
x2/3∫︁
x1/3

E(x4/3/t) dE(t)

It follows from Lemma 3.3 that

S(x) ≪a x(4/3)(1/(a−3/4)+3ε/5) +
x2/3∫︁
x1/3

E(x4/3/t) dE(t)

≪ x(4/3)(1/(a−3/4)+3ε/5) + x(4/3)(1/(a−3/4)+3ε/5)
x2/3∫︁
x1/3

t−1/(a−3/4)−3ε/5 dE(t)

≪ x(4/3)(1/(a−3/4)+3ε/5)

⎛⎜⎝1 + x2/3∫︁
x1/3

t−1−1/(a−3/4)−3ε/5E(t) dt

⎞⎟⎠
≪ x(4/3)(1/(a−3/4)+3ε/5)(log x) ≪a x4/(3a−9/4)+ε .

The smallest element n0 of E satisfies n0 ≫ B13/2 = (log x)13a/2 by Lemma 3.4. Lemma 3.2 shows that every
A-hard integer is a multiple of a B-exceptional one. The number ofA-hard integers n ≤ x is thus at most

x∫︁
n−0

x
t dE(t) ≤ E(x) + x

x∫︁
n−0

E(t)
t2 dt ≪a x4/(3a−9/4)+ε + x

x∫︁
n0

t−2+4/(3a−9/4)+ε dt ≪ xn−1+4/(3a−9/4)+ε0

≪ x(log x)−13a/2+26a/(3a−9/4)+13ε/2 ≤ x(log x)−13a/2+11.

This completes the proof of Theorem 3.1 with M = a − 7/4.
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Algorithm 2 (A2) Factorization based on witnesses of small orders and the Φ oracle

Input Square-free positive integer n, a positive multiple D of ϕ(n), auxiliary parameters B, y, z where B ≤ y.
Output Factorization of n.

1. Factor out small prime divisors p | n, p ≤ y, using division with remainder.
2. For each prime r | D, r ≤ z, perform steps 3–4.
3. For each b = 1, . . . , B find the smallest i = i(b) such that n | bD

′ri − 1, where D′ = D/rνr(D). Compute
d = gcd(bD

′ri−1 − 1, n).
4. Let k = maxb≤B i(b) and b0 = mini(b)=k b. If r ≥ 3 and k ≥ 1, then for each b = b0 + 1, . . . , B and
j = 1, . . . r − 1 compute d = gcd(bD

′rk−1 − bD
′rk−1 j

0 , n).
5. If any d is a nontrivial factor of n, return to Step 2 with n′ ∈ {d, n/d}. Otherwise output n.

Algorithm A2 exploits the notion of power-difference witnesses. It is a generalization of A1, as it reduces to
A1 when z = 2. Accordingly, Theorem 3.5 generalizes Theorem 3.1. The sets of hard and *-hard numbers for
A2 are contained in the corresponding sets for A1. Conjecturally (assuming ERH) all of these sets are empty
in the range of parameters given, as LN(χ) ≪ (log q)2 by the result of N. C. Ankeny [2], so we do not aim
to prove proper inclusion, however, better unconditional bounds would be desirable. In the present paper
we are only able to state additional arithmetical consequences of A2-hardness, without improving upon the
bounds. Nevertheless we include this algorithm, because power-difference witnesses potentially offer a new
line of attack on the factorization problem.

Theorem 3.5. We have, for arbitrary fixed M ≥ 4, A = (A0(A2), B, y, z), appropriate choices of B and y, and
arbitrary z ≥ 2:

F (x,A,Φ, tA, tO) ≥ x
(︁
1 − OM((log x)−6.5M)

)︁
and

F* (x,A,Φ, tA, tO) ≥ x − OM
(︀
x1.34/M

)︀
,

where tO = 1 and tA = O((log x)M+5z). If n ≤ x is A*-hard, then for every odd prime r ≤ z such that r | ϕ(n)
there exists a primitive Dirichlet character χ mod

∏︀
p|n,r|p−1 p, whose order is a power of r, such that LN(χ) > B.

Proof. LetA = (A0(A2), B, y, z), B, ε as in the proof of Theorem 3.1, z ≥ 2. The number of times to enter Step
2 of A2 is again≪ log x, and each time the search for small primes takes≪ z(log x)1+ε. The total time spent
in Step 2 itself is therefore≪ z(log x)2+ε. Each time Step 2 is executed, there are≪ min(z, log x) values of r
selected, for which Steps 3–4 are performed. Each execution of Step 3 takes≪ (logD)B multiplications and
≪ (logD)B gcd computations. Step 3 thus contributes≪ (log x)a+3+εz to the overall complexity. Step 4 takes
≪ (z + logD)Bmultiplications and≪ zB gcd computations in each execution. The total contribution of Step
4 is

≪ (log x)a+2+εmin(z, log x)max(z, log x) = (log x)a+3+εz.

The estimates in the assertion follow from Theorem 3.1. The additional property ofA*-hard numbers follows
from Lemma 3.2 (in the case of k = 0 the exceptional character is any character of order r).

4 Fermat-Euclid compositeness witnesses and nontrivial
factorization

Theorem 4.1. We have, for arbitrary fixed M ≥ 2,A = (A0(A3), B, y), and appropriate choices of B and y:

F (x,A, DecΦ, tA, tO) ≥ x − OM
(︂
x exp

(︂
− M3(log log x)3
9(log(M + 2) + log log log x)2

)︂)︂



Integer factoring and compositeness witnesses | 353

Algorithm 3 (A3) Factorization based on the DecΦ oracle

Input Square-free positive integer n, the prime factorization of ϕ(n), auxiliary parameters B, y, where B ≤ y.
Output Factorization of n.

1. Factor out small prime divisors p | n, p ≤ y, using division with remainder.
2. For each 1 ≤ b ≤ B use the original prime factorization of ϕ(n) (algorithm input) to compute ordnb and

the exponent m = lcm
b≤B

ordnb. (Exponent computing)

3. For each 1 ≤ b ≤ B, and all primes r | ordnb, compute d = gcd(bordnb/r − 1, n). If any d is a nontrivial
factor of n, return to Step 2 with n′ ∈ {d, n/d}. (FE testing)

4. For all l ≤ w, w = (log n)2B, compute d = gcd(lm + 1, n). If any d is a nontrivial factor of n, return to
Step 2 with n′ ∈ {d, n/d}. (w-distance prime detection)

5. Represent n in basem, i.e. n = 1+a1m+· · ·+akmk, 0 ≤ ai < m. Attempt to factorize g(X) = 1+a1X+ . . .+
akXk =

∏︀
i≤k(1 + biX) in Z[X] using the Hensel-Berlekamp method, as in the proof of [18, Lemma 8.5],

cf. Lemma 4.3. If successful, output the factorization n = p1 . . . pk, where pi = 1 + bim, i = 1, . . . , k.
Otherwise output n. (Hensel-Berlekamp method)

and
F* (x,A, DecΦ, tA, tO) ≥ x − OM

(︀
x1/M

)︀
,

where tO = 1 and tA = O((log x)M+5).

For x, y > 0 let ψ(x, y) denote the number of integers 1 ≤ n ≤ x with P+(n) ≤ y, so-called y-smooth integers.

Lemma 4.2 (Konyagin, Pomerance [8, Theorem 1]). If x ≥ 4, 2 ≤ y ≤ x, then ψ(x, y) > x1−log log x/ log y.

Lemma 4.3 (cf. Źrałek [18, Lemma 8.5]). Let n = p1p2 . . . ps be composed of distinct odd primes pi. Assume
that m divides pi −1, pi −1 = mbi , and bi > s for i = 1, 2, . . . , s, and ms+1 ≥ n. Then the complete factorization
of n can be obtained with the Hensel-Berlekamp algorithm in O

(︀
log5 n(log log n)2

)︀
deterministic time.

Proof. The original lemma of Źrałek contains a slightly stronger assumption ms+1 > n
(︀ s
⌊s/2⌋

)︀
, and it does not

include the (harmless) assumption bi > s. The idea is to make sure that the coefficients of the polynomial
product

g(X) = 1 + a1X + . . . + asXs =
∏︁
i≤s
(1 + biX)

satisfy ai < m for i = 1, . . . , s, so they can be determined by expressing n = g(m) in base m. Suppose, as we
may, that b1 < b2 < . . . < bs. We observe that for each i = 1, . . . , s we have

ai ≤
(︃
s
i

)︃
bs−i+1bs−i+2 . . . bs <

(︃
s

i + 1

)︃
bs−ibs−i+1 . . . bs < . . . < b1b2 . . . bs ,

where the first strict inequality follows from bs−i > s. Hence ai < n/ms ≤ m.

Lemma 4.4. Suppose a positive, odd, square-free integer n is (A3, B, y)*-hard, with B = (log n)η, η > 3, w ≥
(log n)η+2, and y ≥ B. Let n = p1 · . . . · ps be the prime factorization of n, with p1 < . . . < ps. Then we have

η − 1 < s < log n
η logw , (2)

ps < nη/((η−1)(s+1)) < n1/(η−1), (3)

and
n > exp

(︂
1
9(log B)

3(log log B)−2
)︂
. (4)
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Proof. For every prime pi | n and every b ≤ B we have ordpib = ordnb, otherwise a factorization witness
would be found. Therefore the exponent m of the subgroup generated by positive integers b ≤ B is the same
in Z*n and in each Z*pi . Each B-smooth integer less than ps belongs to the subgroup in Z*ps , and for cyclic
groups the exponent is equal to the group order, hence

m ≥ ψ(ps , B) > p1−1/ηs , (5)

where the second inequality follows from Lemma 4.2. Since ψ(ps , B) > ψ( s√n, B), we also have

m > ψ( s√n, B) > n1/s−log log n/(s log B) (6)

by Lemma 4.2 again. The exponent of a subgroup divides the group order, so

m | gcd(p1 − 1, . . . , ps − 1).

Moreover
mw < p1, (7)

hence s < log n/ log y < w < p1−1
m , so we can apply Lemma 4.3 and obtain

ms+1 < n. (8)

Further we have
(1 − 1

η ) log ps <
1

s + 1 log n

by (5) and (8). This implies the first inequality in (3) and also, by (log n)/s < log ps, shows

η < s + 1,

i.e. the first inequality in (2) and the second one in (3). By (6) and (7) we obtain

wn1/s−log log n/(s log B) < n1/s ,

which reduces to
s logw < log n log log nlog B = log n

η ,

implying the second inequality in (2). Furthermore (2) implies

log n > (η − 1)η logw ≥ (η − 1)η(η + 2) log log n > η3 log log n = (log B)3(log log n)−2. (9)

Now suppose (4) is false, i.e.
log n ≤ 19(log B)

3(log log B)−2. (10)

Then we have
log log n ≤ 3 log log B − 2 log log log B < 3 log log B, (11)

where the last inequality comes from

log log log B = log log(η log log n) > log log(3 log log 15) > 0.

However (11) and (9) together contradict (10).

Proof of Theorem 4.1. Let x be large, B = (log x)a, a > 3, y = B and w = (log x)a+2, and let ε be small, given a.
LetA = (A0(A3), B, y). Let S denote the set ofA*-hard integers, E the set of B-exceptional integers, S(x) and
E(x) the corresponding counting functions. It follows from Lemma 3.2, similarly to the proof of Theorem 3.1,
that every n ∈ S, n ≤ x, is either B-exceptional itself or it is determined by a pair of two B-exceptional integers,
n1 ≤ x2/ω(n) and n2 < min(x, x1+1/ω(n)/n1). It follows from Lemma 4.4 that

ω(n) > log B
log log n − 1 ≥ a − 1.
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We obtain, using Lemma 3.3 as before,

S(x) ≤ E(x1/(a−1))E(x) +
x2/(a−1)∫︁
x1/(a−1)

E(x1+1/(a−1)/t) dE(t)

≪ x(1+1/(a−1))(1/(a−3/4)+ε/2)(log x) ≪a xa/((a−1)(a−3/4))+ε ≪ x1/(a−7/4).

EveryA-hard integer is a multiple of an element of S. By Lemma 4.4 the smallest element n0 of S satisfies the
inequality

n0 > exp
(︂
1
9(log B)

3(log log B)−2
)︂
.

Hence the number ofA-hard integers n ≤ x is bounded by

x∫︁
n−0

x
t dS(t) ≤ S(x) + x

x∫︁
n−0

S(t)
t2 dt ≪a x1/(a−7/4) + x

x∫︁
n0

t−2+1/(a−7/4) dt ≪ xn−1+1/(a−7/4)0

≪ x exp
(︂
− a − 11/49(a − 7/4) (log B)

3(log log B)−2
)︂
.

The number of passes through steps 2–5 is, again, ≪ log n. The oracle DecΦ only needs to be queried
once, for the original value of n, to supply the algorithm input. For divisors n′ | n it suffices to have a fac-
torization of a multiple of ϕ(n′) to perform steps 2–3, and we do have ϕ(n′) | ϕ(n). Step 2 and 3 each take
≪ B log n log log nmultiplications mod n, which can be seen as follows. Let r1 · . . . · rq be the original prime
decomposition of ϕ(n). Then ordnb computed in Step 2 is the smallest divisor d of r1 · . . . · rq such that bd

is 1 mod n, while Step 3 requires the computation of bd/ri for each ri | d. We first show an upper bound
T(r1, . . . , rq), for the number of multiplications mod n necessary to complete Step 2. For q = 1 we have
T(r1) ≪ log r1. For q = 2q′ we can first consider all d of the form

d = r1 . . . rq′d2, d2 | rq′+1 . . . r2q′ ,

involving log(r1 . . . rq′ ) + T(rq′+1, . . . , r2q′ ) multiplications, then, having found the minimal d2, consider

d = d1d2, d1 | r1 . . . rq′ ,

involving log(rq′+1, . . . , r2q′ ) + T(r1, . . . , rq′ ) multiplications, and then take d = d1d2. Thus

T(r1, . . . , r2q′ ) ≤ log(r1 . . . r2q′ ) + T(r1, . . . , rq′ ) + T(rq′+1, . . . , r2q′ ).

Hence T(r1, . . . , rq) ≪ log(r1 . . . rq) log q. Similarly, to compute all the powers bd/ri it suffices to compute
b1 = bd1 , b2 = bd2 , and then

bd2/ri1 for all ri | d2

and
bd1/ri2 for all ri | d1.

We then obtain an upper bound for the complexity of Step 3 in the same way as for Step 2. Step 4 takes w
multiplications mod n. The complexity of Step 5 is≪ (log n)5+ε. Hence the total complexity ofA for n ≤ x is

≪ (log x)a(log n)2+ε + (log x)a+2(log n)1+ε + (log n)6+ε

≪ (log x)a+3+ε .

It suffices to set a = M + 7/4 and the proof of Theorem 4.1 is complete.
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5 Factorization by iterated use of theΦ oracle
AlgorithmA3 has a much better estimate for hard numbers thanA1 andA2, but it requires the Dec Φ oracle.
Źrałek [18] was able to use iterated queries to the Φ oracle in place of the Dec Φ oracle. In our case, however,
exceptional hard integersmay appear, and it would be difficult to tell for howmany n the valueφ(. . . φ(n) . . . )
would belong to the exceptional set. (Problems related to pre-images of the totient function tend to be hard,
cf., e.g., [7]). However, we propose a hybrid approach (algorithm A4) that employs both A1 and A3, and
requires ≪ log n queries to the oracle Φ. For this algorithm we obtain an estimate of the number of *-hard
numbers as good as for A1, and for the number of hard numbers—as good as for A3. Let φ0(n) = n and let
φk(n) = φ(. . . φ(n) . . . ) denote the k-th iteration of φ. In contrast to the previous algorithms, for this one we
do not useA0 as an “outer shell”, but insideA4.

Algorithm 4 (A4) Factorization based on the multiple use of the Φ oracle

Input Positive integer n, auxiliary parameters B, y, where B ≤ y.
Output Factorization of n.

1. Use the algorithmA0(A1(B, y)) with the Φ-oracle to obtain a complete or partial factorization of n.
2. If the obtained factorization contains a non-prime factor

n′ > exp
(︂
1
9(log B)

3(log log B)−2
)︂
,

declare n hard and halt.
3. For all remaining non-prime factors n′ compute φ(n′), φ2(n′), . . . , φk(n′), where φk(n′) ≤ 2. For j =
k − 1, k − 2, . . . , 0 use the algorithm A0(A3(B, y)) and the known factorization of φj+1(n′) to factorize
φj(n′).

Theorem 5.1. We have, for arbitrary fixed M ≥ 4,A = (A4, B, y), and appropriate choices of B and y:

F (x,A,Φ, tA, tO) ≥ x − OM
(︂
x exp

(︂
− M3(log log x)3
9(log(M + 2) + log log log x)2

)︂)︂
and

F* (x,A,Φ, tA, tO) ≥ x − OM
(︀
x1.34/M

)︀
,

where tO ≪ log x and tA = O((log x)M+5).

Proof of Theorem 5.1. The theorem essentially follows from Theorems 3.1 and 4.1, however we need to refer
to their proofs when checking one assertion: the estimate for the number of A-hard integers. Let x be large,
B = (log x)a, a = M − 7/4, y = B, and let ε be small, given a. Let S denote the set of A*-hard integers. Again,
the smallest element n0 of S satisfies the bound

n0 > exp
(︂
1
9(log B)

3(log log B)−2
)︂
.

Hence the number ofA-hard integers n ≤ x is bounded by
x∫︁

n−0

x
t dS(t) ≤ S(x) + x

x∫︁
n−0

S(t)
t2 dt ≪a x4/(3a−9/4)+ε + x

x∫︁
n0

t−2+4/(3a−9/4) dt ≪ xn−1+4/(3a−9/4)0

≪ x exp
(︂
− 3a − 25/4
9(3a − 9/4) (log B)

3(log log B)−2
)︂

≪ x exp
(︂
−(M − 1/3)(M + 7/4)3

9(M + 1) (log log x)3(log log B)−2
)︂
.
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6 Oracles related to multiples of ϕ(n)
Three of the algorithms presented above can also be usedwith slightly weaker oracles. AlgorithmsA1 andA2
can be run for n given any multiple D of ϕ(n), in which case the computational complexity grows by a factor
of logD/ log x. Likewise algorithm A3 works given a prime factorization of a multiple D of ϕ(n), whence the
computational complexity grows by a factor of (logD/ log x)1+ε. Therefore D can be larger than an arbitrarily
large fixed power of x. In fact it can be as large as exp((log x)O(1)) for the algorithms to finish in polynomial
time. However, algorithms A0 and A4 do depend on having the exact value of ϕ(n). We can therefore state
variants of Theorems 3.1, 3.5 and 4.1 referring to “raw” algorithms A1, A2 and A3 (without A0) and using
weaker oracles, at the cost of restricting them to square-free integers.

Consider oracles MulΦ = MulM
′
Φ and DecMulΦ = DecMulM

′
Φ for some fixed positive M′. Let S(x)

denote the number of square-free positive integers n ≤ x.

Theorem 6.1. For arbitrary fixed M ≥ 4, and appropriate choices of B, y and z, we have:

F (x,A1, MulΦ, tA, tO) ≥ S(x) − OM
(︁
x(log x)−6.5M

)︁
,

F* (x,A1, MulΦ, tA, tO) ≥ S(x) − OM
(︀
x1.34/M

)︀
,

and likewise
F (x,A2, MulΦ, tA, tO) ≥ S(x)

(︁
1 − OM((log x)−6.5M)

)︁
,

F* (x,A2, MulΦ, tA, tO) ≥ S(x) − OM
(︀
x1.34/M

)︀
,

and
F (x,A3, DecMulΦ, tA, tO) ≥ S(x) − OM

(︂
x exp

(︂
− M3(log log x)3
9(log(M + 2) + log log log x)2

)︂)︂
,

F* (x,A3, DecMulΦ, tA, tO) ≥ S(x) − OM
(︀
x1/M

)︀
,

where tO = 1, and tA = O
(︀
(log x)M+M′+5)︀.

This essentially follows from the proofs of Theorems 3.1, 3.5 and 4.1 and the well known fact that S(x) is of the
same order as x.

In the special case when n is a product of two primes, n = pq, the problem of factoring n with the oracle
DecMulΦ is always solvable using algorithm A3, by (2). Using the oracle Φ this problem is trivial and the
solution is well known. However, it is not trivial with the weaker oracle MulΦ. We have

Theorem 6.2. All except OM
(︀
x1/M

)︀
integers of the form n = pq ≤ x can be factored using algorithmA1 in time

tA = O
(︀
(log x)M+M′+5)︀ with one query to the oracleMulΦ.

Again, this essentially follows from the proof of Theorem 3.1, except we do not need to consider case (ii) of
Lemma 3.2, and thus obtain a better exponent in the estimate of the number of hard integers.

Acknowledgement: The authors gratefully acknowledge the helpful remarks of the referees. In particular,
the section on using weaker oracles was added to the paper as a result of one of the referees’ suggestions.
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