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Abstract: In a recent paper devoted to fault analysis of elliptic curve-based signature schemes, Takahashi
et al. (TCHES 2018) described several attacks, one of which assumed an equidistribution property that can
be informally stated as follows: given an elliptic curve E over Fq in Weierstrass form and a large subgroup
H ⊂ E(Fq) generated byG(xG , yG), the points in E(Fq) whose x-coordinates are obtained from xG by randomly
flipping a fixed, sufficiently long substring of bits (and rejecting cases when the resulting value does not
correspond to a point in E(Fq)) are close to uniformly distributed among the cosetsmoduloH. The goal of this
note is to formally state, prove and quantify (a variant of) that property, and in particular establish sufficient
bounds on the size of the subgroup and on the length of the substring of bits for it to hold. The proof relies
on bounds for character sums on elliptic curves established by Kohel and Shparlinski (ANTS–IV).
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1 Introduction
In their seminal paper on group generators for elliptic curves over finite fields [4], Kohel and Shparlinski used
character sum estimates to show that, for an elliptic curve over Fq in Weierstrass form and any interval I in
Fq of length¹≫ q1/2+ϵ, the set of points on E(Fq) whose x-coordinates lie in I generates the group E(Fq).

This note uses similar techniques to establish a slight variant of that result: namely, we show that for any
subgroup H ⊂ E(Fq), and any interval I ⊂ Fq of length≫ [E(Fq) : H]1/2 · q1/2+ϵ, the points in E(Fq) whose
x-coordinates lie in I (this is what we mean by points “in the interval I”) are close to uniformly distributed
among the cosets modulo H.

This allows us to formalize, prove and quantify an equidistribution assumption made by Takahashi et
al. in a recent paper on fault attacks against certain signature schemes constructed over elliptic curves with
non-prime order [8].

2 Preliminaries
The following notations frequently appear throughout this paper:

– Fq: a finite field of characteristic p;
– E: an elliptic curve defined over Fq;
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Mehdi Tibouchi: 3–9–11, Midori-cho, Musashino-shi, Tokyo 180–8585, Japan; Email: mehdi.tibouchi.br@hco.ntt.co.jp
1 Throughout this paper and as is common in analytic number theory, we use the notation f ≪ g, or equivalently g ≫ f , to mean
that f = O(g). Usually, both f and g are functions of a size parameter q, and the asymptotic relation holds for q → +∞.
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– H: a subgroup of E(Fq);
– Ω: the group of characters of E(Fq), i.e. Ω = Hom(E(Fq),C*);
– ΩH: the subgroup of Ω consisting of characters ω that vanish on H;
– Ψ: the group of additive characters on Fq, i.e. Ψ = Hom(F+q ,C*);
– |X|: for any set X, this denotes the cardinality of X.

2.1 Character Sums

We recall the following standard lemma on character sums of abelian groups.

Lemma 2.1. Let G be a finite abelian group and let ̂︀G = Hom(G,C*) be its character group. For any ω ∈ ̂︀G, we
have

1
|G|

∑︁
g∈G

ω(g) =
{︃
1 if ω = ω0

0 otherwise,

where ω0 denotes the trivial character in ̂︀G. Symmetrically, for any g ∈ G, we have

1
|̂︀G| ∑︁

ω∈̂︀G
ω(g) =

{︃
1 if g = e
0 otherwise,

where e denotes the identity in G.

In particular, we will frequently use that lemma for the pairs {Fq , Ψ} and {E(Fq), Ω}. Additionally, for any
subgroup H of E(Fq), the subgroup ΩH of Ω consisting of characters that vanish on H is canonically isomor-
phic to the character group of the quotient E(Fq)/H. Applying the lemma above to that setting, it follows
that:

1
|ΩH |

∑︁
ω∈ΩH

ω(P) =
{︃
1 if P ∈ H
0 otherwise.

Note also that, since for any finite abelian group, the pairing G × ̂︀G → C* given by (g, ω) ↦→ ω(g) is perfect,
we have |G| = |̂︀G|. In particular:

|ΩH | = |E(Fq)/H| = [E(Fq) : H]

(the index of H in E(Fq)).
Let f be a non-constant rational function on E defined over Fq. For characters ω ∈ Ω and ψ ∈ Ψ , we

consider the character sum defined by

S(ω, ψ, f ) :=
∑︁

P∈E(Fq)
f (P)≠∞

ω(P)ψ(f (P)).

The following estimate was established by Kohel and Shparlinski.

Lemma 2.2 ([4, Theorem 1]). Let ω and ψ be characters on E(Fq) and Fq respectively. Let f be a rational func-
tion on E. If at least one of ω or ψ is non-trivial, we have:⃒⃒

S(ω, ψ, f )
⃒⃒
≤ 2deg(f )q1/2.

We will also rely on a bound on exponential sums on intervals of finite fields. Recall first the definition of an
interval in Fq, for not necessarily prime q (see [4, §4]).

Definition 2.3 (Interval in a finite field) An interval in Fq is a subset I ⊂ Fq of the form B + {sβ, (s +
1)β, · · · , (s + t)β}, where B is an additive subgroup of Fq, β is any element of Fq, and s, t are non-negative
integers.
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The result we need is then the following.

Lemma 2.4 ([4, Lemma 3]). For any interval I ⊂ Fq, we have:∑︁
ψ∈Ψ

⃒⃒⃒∑︁
β∈I

ψ(β)
⃒⃒⃒
≤ q(1 + log p),

where p is the characteristic of Fq.

3 Main Theorem
In this section, we fix an elliptic curve E over Fq, a subgroup H ⊂ E(Fq) and a non-constant rational function
f on E defined over Fq. Given an interval I of Fq, our goal is to study how the points P ∈ E(Fq) such that
f (P) ∈ I are distributed among cosets of H. More precisely, we want to prove that for large enough I, that
distribution is close to uniform.

To begin with, for an interval I ⊂ Fq, we let N(I) be the number of points P ∈ E(Fq) such that f (P) ∈ I
(and in particular, f (P) ≠ ∞):

Nf (I) :=
⃒⃒
{P ∈ E(Fq) : f (P) ∈ I}

⃒⃒
.

From now on, we omit the subscript f and simply write N(I) when it is clear from the context. We have the
following estimate of N(I).

Lemma 3.1. For any interval I ⊂ Fq, we have:

N(I) = |I| ·
(︀
1 + O(q−1/2 + deg(f )q−1)

)︀
+ O(deg(f )q1/2 log p),

where the constants in the big-O termsare absolute. In particular, if |I| ≫ q1/2+ϵ for some ϵ > 0anddeg f = O(1),
we have N(I) = |I| ·

(︀
1 + o(1)

)︀
.

Proof. By definition, we have:

N(I) =
∑︁

P∈E(Fq)
f (P)≠∞

[f (P) ∈ I] =
∑︁
β∈I

∑︁
P∈E(Fq)
f (P)≠∞

[β − f (P) = 0],

where the terms in brackets follow the Iverson notation (e.g., [f (P) ∈ I] = 1 if f (P) ∈ I and 0 otherwise). Now
according to Lemma 2.1, we have:

[f (P) − β = 0] = 1
q
∑︁
ψ∈Ψ

ψ
(︀
β − f (P)).

Therefore:
N(I) = 1

q
∑︁
ψ∈Ψ

∑︁
P∈E(Fq)
f (P)≠∞

ψ(f (P))
∑︁
β∈I

ψ(β) = 1
q
∑︁
ψ∈Ψ

S(ω0, ψ, f )
∑︁
β∈I

ψ(β). (1)

The contribution of the trivial character ψ0 is simply:

1
q

∑︁
P∈E(Fq)
f (P)≠∞

|I| = |E(Fq)| − |f −1(∞)|
q · |I| = q + O(q

1/2 + deg f )
q · |I|,

by the Hasse bound. As for the sum over non-trivial characters, it is bounded as:

1
q

∑︁
ψ∈Ψ
ψ≠ψ0

⃒⃒
S(ω0, ψ, f )

⃒⃒
·
⃒⃒⃒∑︁
β∈I

ψ(β)
⃒⃒⃒
≤ 2deg(f )q−1/2

∑︁
ψ∈Ψ

⃒⃒⃒∑︁
β∈I

ψ(β)
⃒⃒⃒
≤ 2deg(f )q−1/2 · q(1 + log p),
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where the first inequality follows from Lemma 2.2 and the second inequality from Lemma 2.4. This concludes
the proof.

Note that the implied constant in the first big-O term can be taken as 2+1 according to the Hasse bound,
and the constant in the second big-O term can be taken as 2 · (1 + 1/ log 2). Therefore, those constants are
independent of any of the parameters of the problem, and hence absolute.

In order to analyze the distribution of points P ∈ E(Fq) such that f (P) ∈ I among cosets modulo H, we also
introduce a notation for the number of points in each coset. For a fixed P0 ∈ E(Fq), we denote by N(P0; I) the
number of such points P in the coset P0 + H, i.e.:

N(P0; I) :=
⃒⃒
{P ∈ P0 + H : f (P) ∈ I}

⃒⃒
.

Our goal is to prove that the distribution among cosets is close to uniform, i.e., to bound the statistical distance
between the uniform distribution on E(Fq)/H and the distribution modulo H of the points P ∈ E(Fq) such
that f (P) ∈ I. That statistical distance is the following quantity:

∆1 =
1
2

∑︁
P0∈E(Fq)/H

⃒⃒⃒⃒
N(P0; I)
N(I) − 1

|ΩH |

⃒⃒⃒⃒
,

where the sum is taken over an arbitrary set of representatives of the cosets modulo H. In order to bound ∆1,
we first obtain a bound on the following related quantity.

Lemma 3.2. With the notations above, we have:∑︁
P0∈E(Fq)/H

⃒⃒⃒⃒
N(P0; I) −

N(I)
|ΩH |

⃒⃒⃒⃒2
≤ 4deg(f )2q(1 + log p)2.

Proof. We first observe that, like N(I), the number N(P; I) admits an expression as a character sum. Indeed,
using the Iverson notation again, we have:

N(P0; I) =
∑︁

P∈E(Fq)
f (P)≠∞

[P0 − P ∈ H] ·
∑︁
β∈I

[β − f (P) = 0],

and both Iverson brackets are expressed as character sums:

N(P0; I) =
∑︁

P∈E(Fq)
f (P)≠∞

1
|ΩH |

∑︁
ω∈ΩH

ω(P0 − P)
∑︁
β∈I

1
q
∑︁
ψ∈Ψ

ψ(β − f (P)).

Reordering terms, this yields:

N(P0; I) =
1

|ΩH |
∑︁
ω∈ΩH

ω(P0)
∑︁
ψ∈Ψ

S(ω, ψ, f ) · 1q
∑︁
β∈I

ψ(β).

In that sum, the contribution of the trivial character ω0 is given by:

1
|ΩH |

∑︁
ψ∈Ψ

S(ω0, ψ, f ) ·
1
q
∑︁
β∈I

ψ(β) = N(I)
|ΩH |

in view of Equation (1). As a result, for all P0, we have:

N(P0; I) −
N(I)
|ΩH |

= 1
|ΩH |

∑︁
ω∈ΩH
ω≠ω0

ω(P0)
∑︁
ψ∈Ψ

S(ω, ψ, f ) · 1q
∑︁
β∈I

ψ(β).

For simplicity, we will call that difference δP0 , and also write α(ψ) = 1
q
∑︀

β∈I ψ(β). We are trying to obtain a
bound on the sum

∑︀
P0∈E(Fq)/H

⃒⃒
δP0

⃒⃒2. Now we have:∑︁
P0∈E(Fq)/H

⃒⃒
δP0

⃒⃒2 = ∑︁
P0∈E(Fq)/H

1
|ΩH |2

∑︁
ω,ω′∈ΩHω,ω′≠ω0

ω(P0)ω′(P0) ·
∑︁

ψ,ψ′∈Ψ

S(ω, ψ, f )α(ψ) · S(ω′, ψ′, f )α(ψ′)
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= 1
|ΩH |2

∑︁
ω,ω′∈ΩHω,ω′≠ω0

∑︁
P0∈E(Fq)/H

(ω/ω′)(P0) ·
∑︁

ψ,ψ′∈Ψ

S(ω, ψ, f )α(ψ) · S(ω′, ψ′, f )α(ψ′).

Now, by Lemma 2.1 the sum
∑︀

P0∈E(Fq)/H(ω/ω
′)(P0) vanishes for ω ≠ ω′, and is equal to |E(Fq)/H| = |ΩH |

otherwise. Hence:∑︁
P0∈E(Fq)/H

⃒⃒
δP0

⃒⃒2 = 1
|ΩH |

∑︁
ω∈ΩHω≠ω0

∑︁
ψ,ψ′∈Ψ

S(ω, ψ, f )α(ψ) · S(ω, ψ′, f )α(ψ′) = 1
|ΩH |

∑︁
ω∈ΩH
ω≠ω0

⃒⃒⃒ ∑︁
ψ∈Ψ

S(ω, ψ, f )α(ψ)
⃒⃒⃒2

≤ 1
|ΩH |

∑︁
ω∈ΩH
ω≠ω0

(︁ ∑︁
ψ∈Ψ

2deg(f )q1/2 · |α(ψ)|
)︁2
≤
(︀
2deg(f )q1/2 · (1 + log p)

)︀2
= 4deg(f )2q(1 + log p)2,

which concludes the proof.

We can then use the previous lemma to obtain the desired bound on the statistical distance, which is our
main result.

Theorem 3.3. For any interval I ⊂ Fq, the statistical distance ∆1 between the uniform distribution on the set
of points P ∈ E(Fq)/H such that f (P) ∈ I and the uniform distribution on E(Fq)/H is bounded as:

∆1 ≤
1
N(I) · |ΩH |

1/2 · 2 deg(f )q1/2(1 + log p).

In particular, if |I| ≫ q1/2+ϵ for some ϵ > 0 and deg f = O(1), we have:

∆1 = O
(︁ |ΩH |1/2q1/2 log p

|I|

)︁
.

Proof. Indeed, we have:
∆1 =

1
N(I)

∑︁
P0∈E(Fq)/H

⃒⃒
δP0

⃒⃒
and hence, by the Cauchy–Schwarz inequality, it follows that:

∆1 ≤
1
N(I)

√︀
|ΩH | ·

√︃ ∑︁
P0∈E(Fq)/H

⃒⃒
δP0

⃒⃒2,
which yields the first estimate. The second estimate follows directly from the first combined with Lemma 3.1.

In cryptographic parlance, this result says in particular that if deg(f ) is constant and |I| ≫
√︀

|ΩH | ·q1/2+ϵ, the
statistical distance is negligible, and hence the distribution among cosets is indistinguishable from uniform.

Note that this result is non-trivial even for subgroups H of order as small as qδ, δ > 0 (or even log1+δ p),
whereas amore direct application of the techniques of [4] would presumably only provide a non-trivial result
for subgroups of order at least q1/2.

4 Application to Fault Attacks
In this section, we discuss a cryptographic application of our result in the case when the corresponding ratio-
nal function is simply f = x, the x-coordinate in general Weierstrass form (which is a non-constant rational
function of degree deg(f ) = 2).
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Description of fault attack with uniform faulty point in Fp.
Recently, Takahashi, Tibouchi and Abe [8] presented fault attacks against the qDSA signature [6] instantiated
over the Curve25519 Montgomery curve [1]. The qDSA signature scheme is a variant of Schnorr signatures
instantiated over Montgomery curves, and it relies on x-only arithmetic based on theMontgomery ladder. We
refer to [3] for more details on Montgomery curves and the Montgomery ladder.

Let EA,B : y2 = x(x2 +Ax +B) be the Montgomery curve [5] over Fp under our consideration. The parame-
ters are chosen such that EA,B(Fp) ∼= Z8×Zn for some prime n. Arithmetic is carried out not on the curve itself,
but on the Kummer line EA,B/⟨±1⟩ ∼= P1, and a point Q on the curve is mapped to ±Q on the Kummer line,
which is simply identifiedwith the x-coordinate of Q. Given that x-coordinate and a scalar k, theMontgomery
ladder efficiently computes ±[k]Q, i.e. the x-coordinate of the scalar multiplication of Q by k.

In qDSA, operations normally occur in the subgroup of EA,B(Fp) of prime order n, generated by some
point P. In particular, the first step of signature generation is to compute ±R = ±[k]P for some secret, uniformly
random nonce k, and ±R is in fact part of the resulting signature itself (so it is known to the adversary).

The idea in [8] is to inject faults into the device computing the qDSA signatures so as to replace the point P
by a different faulty point ̃︀P still on EA,B, but with different order. Then, evenwithout knowing the exact value
of ̃︀P, one can deduce information on the least significant bits of the nonce k from the signature element ±̃︀R =
±[k]̃︀P. This leakage on k (for sufficiently many signatures) can be used to apply Bleichenbacher’s attack [2]
and recover the secret signing key.

In particular, we are interested in the case when ̃︀P is of exact order 8n. One can obtain such ̃︀P with prob-
ability approximately 1/4 if one assumes that the fault injection yields a faulty point ̃︀P whose x-coordinatẽ︀x ∈ Fp is uniformly random in Fp. Once such a ̃︀P is obtained, one can deduce the 3 least significant bits of
k whenever k is divisible by 4: one computes R′ := [n](±̃︀R) = ±[nk]̃︀P which has order dividing 8. If it is the
point at infinity then we deduce k ≡ 0 (mod 8). On the other hand, if R′ is of exact order 2, we obtain k ≡ 4
(mod 8). Although one cannot hope to learn 3 least significant bits of k when k is not divisible by 4, one can
simply throw away those signatures (those for which R′ is of order at least 4) and collect sufficiently many
signatures with k divisible by 4.

Deducing the secret signing key from sufficiently many of those signature with 3-bit nonce leakage can
then be done by a straightforward application of Bleichebacher’s attack; we refer to [8] for further details.

Attack with faulty point uniform in an interval I ⊂ Fp.
The authors of [8] also gave a heuristic argument to justify the applicability of their attack when ̃︀x is non-
uniform. Their observation is that, for the attack to succeed, it suffices that the faulty base point ̃︀P be of order
8n with significant probability.

We provide amore rigorous argument by applying our result in Section 3. In short, our result implies that
if ̃︀x is uniformly random in an interval in Fp of size p1/2+ϵ, instead of Fp itself, then ̃︀P is indistinguishable
from a uniformly random element in E(Fp)/⟨P⟩ ∼= Z8 with negligible deviation. Since ̃︀P is of order exactly 8n
if and only if it corresponds to elements in Z*8, we deduce that the probability of a faulty base point yielding
an element of order 8n is within negligible distance of 1/2 · 1/2 = 1/4 (where the former 1/2 is from ̃︀P to be
in the original curve and the latter comes from |Z*8|/|Z8| = 1/2).

Concretely speaking, this means that a fault attack which randomly flips a fixed substring of bits in x of
length slightly larger than half of the entire length of x provably satisfies the desired condition. Indeed, the
set of resulting x-coordinates is a subset of Fp of the form {x0, x0+2k , x0+2k ·2, · · · , x0+2k · (2ℓ−1)} (where
k is the position of the least significant bit modified by the fault attack, ℓ is the length of the corresponding bit
string, and x0 is the value obtained from x by zeroing out that substring of bits). This subset I is an interval
in the sense of Definition 2.3, with β = 2k, s = (x0/2k) mod p and t = 2ℓ − 1, as required. Note that the
distribution of points on E(Fp) obtained by taking a random x in I and choosing a corresponding curve point
if it exists (and try again otherwise) is not necessarily identical to the uniform distribution of points of E(Fp)
with an x-coordinate in I, because a given x may correspond to either one or two curve points. However,
the two distributions are always statistically close, because there are at most 3 values of x with only one



Equidistribution Among Cosets of Elliptic Curve Points in Intervals | 345

corresponding curve point (namely, the roots of the Weierstrass polynomial), and they only account for a
negligible fraction of I. This is therefore sufficient for the stated purpose.

The fault model described above (a random flip of a substring of bits of x) can typically be realized using
optical fault injection techniques [7] (such as laser faults on memory), as discussed in [8].
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