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Abstract:We introduce a general framework encompassing themainhardproblems emerging in lattice-based

cryptography, which naturally includes the recently proposed Mersenne prime cryptosystem, but also prob-

lems coming from code-based cryptography. The framework allows to easily instantiate new hard problems

and to automatically construct plausibly post-quantum secure primitives from them. As a first basic applica-

tion, we introduce two new hard problems and the corresponding encryption schemes. Concretely, we study

generalisations of hard problems such as SIS, LWE andNTRU to freemodules over quotients ofℤ[X] by ideals
of the form (f, g), where f is amonic polynomial and g ∈ ℤ[X] is a ciphertext modulus coprime to f . For trivial
modules (i.e. of rank one), the case f = Xn + 1 and g = q ∈ ℤ>1 corresponds to ring-LWE, ring-SIS and NTRU,

while the choices f = Xn − 1 and g = X − 2 essentially cover the recently proposedMersenne prime cryptosys-

tems. At the other extreme, when considering modules of large rank and letting deg(f) = 1, one recovers the
framework of LWE and SIS.

Keywords: LWE, SIS, NTRU, quotient ring, post-quantum

MSC 2010: 13M10, 11T71, 11H06

1 Introduction
Lattice-basedandcode-based cryptographyare rapidly emergingas leading contenders for generatingpublic-

key cryptosystems that promise to withstand quantum attacks. The popularity of these branches of crypto-

graphy are due in large part to the simplicity and efficiency of their designs, but is certainly underscored

by their strong security guarantees. Two hard problems in particular, the short integer solution (SIS) [3] and

learningwith errors (LWE) [46] problems, stand out in this regard.While these hard problems are expressible

in the language of simple linear algebra over finite rings, and are hence easy to use, they are also provably

hard-on-average, assuming the worst-case hardness of certain problems in lattices.

In response to the quadratic scaling of both operational cost and memory associated with a full matrix

representation, many proposals switch to using structured matrices [34, 35, 48]. In essence, random matri-

ces are replaced by matrices of multiplication by elements of the ring Rq = ℤ[X]/(f(X), q) resulting in the

ring-based versions ring-SIS (RSIS) and ring-LWE (RLWE), respectively. Similar worst-to-average case reduc-

tions apply here, albeit from problems in structured lattices, which are potentially easier. Nevertheless, the

low bandwidth requirements and high speed made possible by the designs from this category make their

deployment an attractive option, and this in turn mandates careful study.
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Some recent constructions have similar features to these ring-based cryptosystems, but rely on modular

big integer arithmetic rather than arithmetic involving polynomials. We classify the AJPS cryptosystem [1]

and the I-RLWE cryptosystem of Gu [24] as members of this category, as well as several submissions to the

NIST PQC project [51] such as Ramstake [49] and ThreeBears [25]. Despite relying on different types of rings,

the underlying mechanisms of both categories bear a striking resemblance to each other in that a notion of

“smallness” of elements is preserved under addition and multiplication operations. This operational sim-

ilarity suggests the possibility of a unifying perspective and a generic framework for design and analysis.

While the existence of such a unification is, perhaps, folklore, a detailed elaboration has not appeared in the

literature before, at least not at the level of generality we have in mind.

Our main approach is to replace the ring Rq by a quotient ring of the form Rg = ℤ[X]/(f(X), g(X)) with
f, g ∈ ℤ[X] and some restrictions on which pairs one can take. This description captures both the familiar

RLWEsetting,where g = q ∈ ℤ>1, aswell as thebig integer arithmetic cryptosystems since,when g(X) = X − b
for some integer b, we have (f(X), g(X)) = (f(b), X − b) so that Rg = ℤ[X]/(f(b), X − b) ≅ ℤ/(f(b)). As such,
our framework contains both RLWE and AJPS as special cases. To capture plain LWE and module-LWE, we

will eventually work with free modules over Rg. Certain problems in code-based cryptography can also be

seen to fit within our framework, such as decrypting a ciphertext in many code-based encryption schemes

using only knowledge of the public key; this is sometimes called the general decoding (search) problem.

The syndrome decoding problem (SDP), used in the Niederreiter cryptosystem [43] and its variants, is also

closely related to the inhomogeneous version of the ideal-SIS problem. It is interesting to note that, just like

with RLWE, code-based cryptosystems use additional structure (structured codes) which presents additional

attack surfaces [47].

On top of the well-known examples, it should be clear that our framework will contain many more, pos-

sibly hard, problems that can be considered for use in cryptographic applications. A systematic treatment

of the exact hardness of these problems would divert attention away from our current focus; hence we defer

such analysis to a future work.

To identify some of the problems we face in this more general setting, consider the following standard

noisy key agreement protocol. Let G ∈ Rg be a public parameter, typically sampled uniformly at random or

generated pseudorandomly from a short seed. Alice samples two small elements a, b ∈ Rg, and Bob does the

same for c, d. They then exchange aG + b and cG + d, thus allowing Alice to obtain a(cG + d) and Bob to

obtain c(aG + b)while thwarting any passive eavesdropper. If the difference ad − cb is small, then, in princi-

ple, Alice can obtain secret key material identical to Bob’s by correcting the errors or extracting an identical

template, possibly with the aid of some additional reconciliation data. Several requirements are needed to

make this protocol work.

Condition 1. The representation of elements of Rg must be conducive to efficient computation.

Condition 2. Sampling small elements must be possible, and moreover, whenever a, b, c, d are small, then

so is ad − cb.
Condition 3. The adversary must be unable to obtain (a, b) from (G, aG + b) or (c, d) from (G, cG + d).
Condition 4. Itmust be possible to correct small perturbations like ad − cb or at least tolerate them somehow.

These conditions have been studied extensively in the standard case where g = q ∈ ℤ>1. This paper initiates
the study of these same conditions in ourmore general setting.We view the aforementioned ciphertext ring Rg
as the quotient of the parent ring R := ℤ[X]/(f(X)) by the ideal gR. The parent ring is used to define smallness:

informally, a small element of Rg is the reduction modulo g of an element of the parent ring having small

coordinates (in absolute value) with respect to the power basis 1, X, X2, . . . , Xdeg(f)−1. Furthermore, when

computing in Rg, all variables are to be reduced into a set of representatives Rep(Rg); see Section 2.2 for

details; this forces noisy expressions to wrap around so that they become hard to distinguish from random

expressions. Against this framework, we will provide a thorough analysis of Conditions 1 and 2, thereby

providing a new set of tools for the cryptographer’s toolbox that are useful for various specific applications.
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Condition 3. The adversary must be unable to obtain (a, b) from (G, aG + b) or (c, d) from (G, cG + d).
Condition 4. Itmust be possible to correct small perturbations like ad − cb or at least tolerate them somehow.

These conditions have been studied extensively in the standard case where g = q ∈ ℤ>1. This paper initiates
the study of these same conditions in ourmore general setting.We view the aforementioned ciphertext ring Rg
as the quotient of the parent ring R := ℤ[X]/(f(X)) by the ideal gR. The parent ring is used to define smallness:

informally, a small element of Rg is the reduction modulo g of an element of the parent ring having small

coordinates (in absolute value) with respect to the power basis 1, X, X2, . . . , Xdeg(f)−1. Furthermore, when

computing in Rg, all variables are to be reduced into a set of representatives Rep(Rg); see Section 2.2 for
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Condition 3 is addressed briefly in Section 3.1 but will be discussed in depth in a future work. Condition 4

will be discussed only superficially as it has a more ad hoc flavour.

Related work. The idea of using a polynomial rather than an integer for the plaintext modulus in lattice-

based encryption schemes has already been considered by a number of authors [10, 13, 16, 27]. The idea of

using general ideal lattices for the ciphertext space was also introduced in the context of fully homomorphic

encryption by Gentry [22]; however, the hard problem he considers is different to ours. Attempts at unifying

various lattice-based cryptographic problems is also not new, for example, the general learning with errors

(GLWE) problem was proposed in [13]; their proposal essentially amounts to our ideal-LWE problem when

restricting to g = q ∈ ℤ>1.

2 A recipe for generating problems
In this section, we present a general recipe for concocting problems on which to build cryptosystems. The

recipe is given as a number of decisions to be taken before ending up with a problem. When following this

recipe, it is instructive to think of having a fixed amount of resources (informally, this amount is the size of

the problem) to allocate to the different ingredients. Here we simply state the choices to be made and do not

attempt to answer the more difficult question of how to make the most appetising dish.

Throughout this section,we look atwhat choices aremade in five different examples. Firstly,we startwith

plain LWE. Secondly, ring-LWE together with module-LWE are examined. Thirdly, we consider the problem

underlying the NTRU Prime cryptosystem from [8]. Next, we have the problems underlying the twoMersenne

prime cryptosystems due to Aggarwal, Joux, Prakash and Santha [1, 2]. Finally, we take an example from

coding theory, that of the McEliece cryptosystem [37], in which quasi-cyclic codes are often used. We do not

concern ourselves here with which specific codes are used.

2.1 Select the parent ring

The first choice one needs to make is the monic polynomial f ∈ ℤ[X] defining the parent ring R = ℤ[X]/(f). If
we denote the degree of f by n ≥ 1, then choosing a larger n requires allotting more of our resources to this

ingredient. Furthermore, the size of the coefficients of f also affects the consumption of resources; one should

keep these small in general so that Condition 2 holds. The parent ring naturally carries the structure of a free

ℤ-module with (power) basis 1, X, . . . , Xn−1
.

Running example 1 (Plain LWE). Here f is taken to be a linear polynomial, the most obvious choice being

f = X, so that R = ℤ[X]/(f) ≅ ℤ. In this case, we use the least amount of resources possible.

Running example 2 (Ring-LWE and module-LWE). Here we let f be irreducible so that R = ℤ[X]/(f) is an order
in a number field.¹

Running example 3 (NTRU Prime). The NTRU Prime cryptosystem sets n to be an odd prime and takes

f = Xn − X − 1, an irreducible polynomial.

Running example 4 (AJPS). The Mersenne prime cryptosystem lets f = Xn − 1 be such that f(2) = 2n − 1 is

a prime number; note that n is necessarily prime as well.

Running example 5 (McEliece). As with plain LWE, one chooses f to be linear and R = ℤ.

1 More precisely, it is an order in the degree n number field K = ℚ[X]/(f). In fact, the formal definitions of ring-LWE [35] and

module-LWE [30] require R to be themaximal such order, denoted by OK , which may not be true in our setting (if K is not mono-

genic, then this is even impossible). However, allowing for arbitrary orders would needlessly complicate our discussion, themore

since there is no issue in the common scenario where f is a cyclotomic polynomial.

4 | C. Bootland et al., A framework for cryptographic problems from linear algebra

2.2 Select the ciphertext modulus

Next, we must choose a ciphertext modulus g ∈ ℤ[X], which defines the ciphertext ring Rg = ℤ[X]/(f, g) in
terms of which our problems will be formulated. We impose some restrictions on the possible choices for g;
throughout this paper, we assume that

(i) f and g are coprime, i.e., their only common divisors are ±1: this ensures that Rg is a finite ring,

(ii) deg(g) < n, which is not really a restriction since one can always replace g by g mod f ,
(iii) there exists a positive integer a and a monic polynomial r ∈ ℤ[X] such that (f, g) = (a, r) as ideals.
Assumption (iii) is the most restrictive, although not as badly as one might fear: a heuristic proportion of

6/π2 ≈ 60.8% of all random pairs f and g satisfies this condition, which is confirmed by experiment (if satis-

fied, then r is linear with overwhelming probability). The reason for (iii) is it ensures that the ciphertext ring

naturally comes equipped with a nice set of representatives

Rep(Rg) = {αdeg(r)−1Xdeg(r)−1 + ⋅ ⋅ ⋅ + α1X + α0 | αi ∈ {0, . . . , a − 1}}, (2.1)

in which all computations are to be reduced; this ensures Condition 1 is satisfied. We stress that having such

a nice set of representatives is our only reason for this assumption: it would be possible to weaken it if one is

willing to end up with uglier or less canonical sets of representatives; though we avoid a detailed discussion.

In Section 5, we will explain how to decide if such a and r exist, and if so, how to find them.

Just as with f , the degree of g and the size of the coefficients of g play a role in defining how much

resources a certain g uses. In fact, it is better to consider the values of deg(r) and a as this is what defines the
size of Rg: #Rg = #ℤ[X]/(f(X), g(X)) = #ℤ[X]/(a, r(X)) = adeg(r). It is also known that #Rg = |Res(f, g)|;² hence
one does not need to first compute a and r to compute this value. Increasing this value naturally increases

the size of the problem.

Running example 1 (Plain LWE). Here g is a positive integer, usually denoted by q, so that Rg ≅ ℤq and

#Rg = q. In this case, one can take a = q and r = f .
Running example 2 (Ring-LWE and module-LWE). Here again g is a positive integer q so that one can take

a = q and r = f , hence #Rg = qn.
Running example 3 (NTRU Prime). As above, g is a positive integer q and one takes a = q and r = f .
Running example 4 (AJPS). Here g = X − 2, and one can take a = 2n − 1 and r = g = X − 2 because we have

equality of the two ideals (Xn − 1, X − 2) = (2n − 1, X − 2). Thus we have #Rg = 2n − 1.
Running example 5 (McEliece). As with plain LWE, we take g to be an integer q, but whereas, in plain LWE,

q is relatively large, here we take q = 2, thus #Rg = 2.

2.3 Select the rank

Thirdly, one must select a positive integer m, the rank, and construct the free Rg-module

M := Rm
g = Rg × Rg × ⋅ ⋅ ⋅ × Rg⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

m copies

consisting of vectors of length m with entries in Rg.

As with n (the degree of f ), taking a larger m consumes more resources; indeed the size of an element of

M is m deg(r) log|a|.

2 If ϕg : R → R is the multiplication by g map, then [41] shows that det(ϕg) = Res(f, g); also kerϕg = {0} (since f and g are

coprime), and we have cokerϕg = Rg . Looking at the Smith normal form of ϕg, we conclude that #Rg = |det(ϕg)|.
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in which all computations are to be reduced; this ensures Condition 1 is satisfied. We stress that having such

a nice set of representatives is our only reason for this assumption: it would be possible to weaken it if one is

willing to end up with uglier or less canonical sets of representatives; though we avoid a detailed discussion.

In Section 5, we will explain how to decide if such a and r exist, and if so, how to find them.

Just as with f , the degree of g and the size of the coefficients of g play a role in defining how much

resources a certain g uses. In fact, it is better to consider the values of deg(r) and a as this is what defines the
size of Rg: #Rg = #ℤ[X]/(f(X), g(X)) = #ℤ[X]/(a, r(X)) = adeg(r). It is also known that #Rg = |Res(f, g)|;² hence
one does not need to first compute a and r to compute this value. Increasing this value naturally increases

the size of the problem.

Running example 1 (Plain LWE). Here g is a positive integer, usually denoted by q, so that Rg ≅ ℤq and

#Rg = q. In this case, one can take a = q and r = f .
Running example 2 (Ring-LWE and module-LWE). Here again g is a positive integer q so that one can take

a = q and r = f , hence #Rg = qn.
Running example 3 (NTRU Prime). As above, g is a positive integer q and one takes a = q and r = f .
Running example 4 (AJPS). Here g = X − 2, and one can take a = 2n − 1 and r = g = X − 2 because we have

equality of the two ideals (Xn − 1, X − 2) = (2n − 1, X − 2). Thus we have #Rg = 2n − 1.
Running example 5 (McEliece). As with plain LWE, we take g to be an integer q, but whereas, in plain LWE,

q is relatively large, here we take q = 2, thus #Rg = 2.

2.3 Select the rank

Thirdly, one must select a positive integer m, the rank, and construct the free Rg-module

M := Rm
g = Rg × Rg × ⋅ ⋅ ⋅ × Rg⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

m copies

consisting of vectors of length m with entries in Rg.

As with n (the degree of f ), taking a larger m consumes more resources; indeed the size of an element of

M is m deg(r) log|a|.

2 If ϕg : R → R is the multiplication by g map, then [41] shows that det(ϕg) = Res(f, g); also kerϕg = {0} (since f and g are

coprime), and we have cokerϕg = Rg . Looking at the Smith normal form of ϕg, we conclude that #Rg = |det(ϕg)|.
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Running example 1 (Plain LWE). Here m is a reasonably large integer and M = Rm
q ≅ ℤmq .

Running example 2 (Ring-LWE and module-LWE). In ring-LWE, we take m = 1 so that M = Rq. In module-

LWE, m > 1 is a relatively small integer, and the module M is given by Rm
q .

Running example 3 (NTRU Prime). Here m = 1 so that M = Rq.

Running example 4 (AJPS). Here again m = 1 so that M = RX−2.

Running example 5 (McEliece). In this case, the value of m is the dimension of the code used.

2.4 Select the family of hard problems

After choosing the rank, we select one of the following three problems, which we call ideal-LWE, ideal-SIS

and ideal-NTRU, respectively. Informally, these problems in their basic form are to solve a system of “noisy”

linear equations, to find a non-zero solution to a system of linear equations which is “small” and to express

amatrix as a quotient of two “small”matrices, respectively.³ In each case, the base ring isℤq for some positive

integer q. These basic problems refer to standard LWE, standard SIS and a matrix variant of NTRU, alluded

to in [26] when comparing NTRU to McEliece.⁴

The simplest way to generalise these basic problems is to replace the random matrix defining the linear

system by a matrix of multiplication; that is a linear map on a free ℤq-module defined by multiplying by an

element of thatmodule. This gives thematrix some structure allowing for amore compact representation and

gives rise to the ring versions of the problems. In particular, this gives the standard NTRU problem.

The secondmainway to generalise the basic problem is to take entries from a larger ring thanℤq, such as
the ring Rg, which is a ℤa module itself.⁵ Thus we can replace the ring elements by deg(r) × deg(r)matrices

of multiplication with entries in ℤa which gives a block structure to the original matrix. This is the general

module approach which gives rise to the module variants of the problems when g = a ∈ ℤ.
Now that we have seen the two main generalisations; we give the details of how this can be applied to

each problem.

Ideal-LWE. For the ideal-LWE problem, one chooses two further parameters k, the number of “keys”, and ℓ,
the number of samples (which will depend on the application).⁶ The problem is then defined as follows.

Problem 1 (Ideal-LWE search problem). Let χ be a distribution on R defining small elements, and let k and ℓ be
positive integers. Sample a uniformly random element s from Rm×k

g . The ideal-LWE search problem is to find s
given the tuple (a, b) ∈ Rℓ×mg × Rℓ×kg , where a ∈ Rℓ×mg is sampled uniformly at random and b = a × s + e ∈ Rℓ×kg
with e sampled from χℓ×k.

In a number of circumstances, one often wants to sample the secret s not from the whole space but some

subset of elements, for example by sampling it using the error distribution. This so-called “small secret” case

allows more powerful cryptographic constructions to be built as multiplying by s preserves smallness. See

[14, Section 4] and [40] for a reduction from the general case to the small secret case.

Ideal-SIS. In the ideal-SIS and ideal-NTRU problems, we require a norm on the parent ring, ‖ ⋅ ‖ : R → ℝ≥0.
We abuse notation and write ‖a‖ < ρ for a ∈ Rm

if, for all components ai of a, the relation ‖ai‖ < ρ holds.
Problem 2 (Ideal-SIS search problem). Given an integer ℓ > m and a bound ρ, sample ℓ elements fromM = Rm

g
uniformly at random, denoted a

1
, . . . , aℓ. The ideal-SIS problem is to find a non-zero z = (z

1
, . . . , zℓ) ∈ Rℓ such

that ‖z‖ ≤ ρ and∑ℓi=1 ai ⋅ zi = 0.

3 The definition of what exactly “small” means and what a distribution of small elements is, is left to the next section.

4 See also [42], where this is elaborated in more detail.

5 Recall we have (f, g) = (a, r) for some a ∈ ℤ.
6 Often one considers ℓ to simply be polynomially bounded in the security parameter rather than fixed.
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One often considers the inhomogeneous problemwhere, instead of finding a linear combination summing to

zero, one is given a target vector which the linear combination must sum to; this is also sometimes called the

knapsack problem.

Ideal-NTRU. The final problem we consider is the ideal-NTRU problem.

Problem 3 (Ideal-NTRU search problem). Let χ be a distribution of small elements on R with appropriate
bound ρ. Sample u← χm×m such that it is invertible in Rm×m

g and v← χm×m.⁷ Now, considering u and v as
elements of Rm×m

g , set h = vu−1 ∈ Rm×m
g .⁸ Then, given h and ρ, the ideal-NTRU search problem is to find a pair

(u󸀠󸀠, v󸀠󸀠) ∈ Rm×m × Rm×m with u󸀠󸀠 invertible modulo g, h = v󸀠󸀠u󸀠󸀠−1 mod g, ‖u󸀠󸀠‖ < ρ and ‖v󸀠󸀠‖ < ρ.
Unlike with the previous choices, the cost of picking a certain problem is not so obvious; one could consider,

for example, the size of the space to which the solution to the set of linear equations belongs, but this is not

so easy to compute in the ideal-SIS and ideal-NTRU cases when the solution is restricted to being small. We

point out that the size of the problem is related but not directly equivalent to the hardness of a problem. For

most choices of parameters, the best known attacks rely on lattice reduction; hence, in general, the cost will

depend on the dimension of the lattice being reduced which need not directly reflect the size of the problem.

Running example 1 (Plain LWE). Naturally, we select the ideal-LWE problem here.

Running example 2 (Ring-LWE and module-LWE). This again amounts to selecting the ideal-LWE problem.

Running example 3 (NTRU Prime). Here we select the ideal-NTRU problem.

Running example 4 (AJPS). The version of [1] amounts to selecting the ideal-NTRU problem, while the corre-

sponding NIST submission [2] amounts to selecting ideal-LWE.

Running example 5 (McEliece). Here we consider the general decoding problem of decrypting a ciphertext

using only the public key. One essentially takes the ideal-LWE problem with a fixed number of samples (the

length of the code).

2.5 Distribution of small elements

Finally, we come to the issue of what a small element is. Informally spoken, by a small element of R, wemean

anelementhaving small coordinates (in absolute value)with respect to thepower basis. The archetypal exam-

ple is that each coordinate is sampled from a discrete Gaussian distribution with standard deviation σ. The
LWE type problems all typically use this type of distribution. One can also consider the case when the coeffi-

cients are not sampled independently, as in the case of RLWE as defined in [35], as soon as one moves away

from the 2-power cyclotomic case. When σ becomes small enough, the coefficients are, with high probability,

in the set {−1, 0, 1}. When not sampled independently, it becomes possible to essentially sample vectors of

a specified Hamming weight; this is the distribution used in the NTRU setting.

The question of precisely how small to take small elements is complex and depends on the problem and

application. In general, larger errors give harder problems but may inhibit functionality and performance of

certain cryptographic schemes.

7 The case of non-square v can also be considered.
8 We also have the choice of multiplying v on the left by u−1, but this leads to the same problem; however, there is a third option:

to multiply v by the inverse of two small square matrices, one on the left and one on the right. This is done in [18].
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Running example 1 (Plain LWE). Here m is a reasonably large integer and M = Rm
q ≅ ℤmq .

Running example 2 (Ring-LWE and module-LWE). In ring-LWE, we take m = 1 so that M = Rq. In module-

LWE, m > 1 is a relatively small integer, and the module M is given by Rm
q .

Running example 3 (NTRU Prime). Here m = 1 so that M = Rq.

Running example 4 (AJPS). Here again m = 1 so that M = RX−2.

Running example 5 (McEliece). In this case, the value of m is the dimension of the code used.

2.4 Select the family of hard problems

After choosing the rank, we select one of the following three problems, which we call ideal-LWE, ideal-SIS

and ideal-NTRU, respectively. Informally, these problems in their basic form are to solve a system of “noisy”

linear equations, to find a non-zero solution to a system of linear equations which is “small” and to express

amatrix as a quotient of two “small”matrices, respectively.³ In each case, the base ring isℤq for some positive

integer q. These basic problems refer to standard LWE, standard SIS and a matrix variant of NTRU, alluded

to in [26] when comparing NTRU to McEliece.⁴

The simplest way to generalise these basic problems is to replace the random matrix defining the linear

system by a matrix of multiplication; that is a linear map on a free ℤq-module defined by multiplying by an

element of thatmodule. This gives thematrix some structure allowing for amore compact representation and

gives rise to the ring versions of the problems. In particular, this gives the standard NTRU problem.

The secondmainway to generalise the basic problem is to take entries from a larger ring thanℤq, such as
the ring Rg, which is a ℤa module itself.⁵ Thus we can replace the ring elements by deg(r) × deg(r)matrices

of multiplication with entries in ℤa which gives a block structure to the original matrix. This is the general

module approach which gives rise to the module variants of the problems when g = a ∈ ℤ.
Now that we have seen the two main generalisations; we give the details of how this can be applied to

each problem.

Ideal-LWE. For the ideal-LWE problem, one chooses two further parameters k, the number of “keys”, and ℓ,
the number of samples (which will depend on the application).⁶ The problem is then defined as follows.

Problem 1 (Ideal-LWE search problem). Let χ be a distribution on R defining small elements, and let k and ℓ be
positive integers. Sample a uniformly random element s from Rm×k

g . The ideal-LWE search problem is to find s
given the tuple (a, b) ∈ Rℓ×mg × Rℓ×kg , where a ∈ Rℓ×mg is sampled uniformly at random and b = a × s + e ∈ Rℓ×kg
with e sampled from χℓ×k.

In a number of circumstances, one often wants to sample the secret s not from the whole space but some

subset of elements, for example by sampling it using the error distribution. This so-called “small secret” case

allows more powerful cryptographic constructions to be built as multiplying by s preserves smallness. See

[14, Section 4] and [40] for a reduction from the general case to the small secret case.

Ideal-SIS. In the ideal-SIS and ideal-NTRU problems, we require a norm on the parent ring, ‖ ⋅ ‖ : R → ℝ≥0.
We abuse notation and write ‖a‖ < ρ for a ∈ Rm

if, for all components ai of a, the relation ‖ai‖ < ρ holds.
Problem 2 (Ideal-SIS search problem). Given an integer ℓ > m and a bound ρ, sample ℓ elements fromM = Rm

g
uniformly at random, denoted a

1
, . . . , aℓ. The ideal-SIS problem is to find a non-zero z = (z

1
, . . . , zℓ) ∈ Rℓ such

that ‖z‖ ≤ ρ and∑ℓi=1 ai ⋅ zi = 0.

3 The definition of what exactly “small” means and what a distribution of small elements is, is left to the next section.

4 See also [42], where this is elaborated in more detail.

5 Recall we have (f, g) = (a, r) for some a ∈ ℤ.
6 Often one considers ℓ to simply be polynomially bounded in the security parameter rather than fixed.
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One often considers the inhomogeneous problemwhere, instead of finding a linear combination summing to

zero, one is given a target vector which the linear combination must sum to; this is also sometimes called the

knapsack problem.

Ideal-NTRU. The final problem we consider is the ideal-NTRU problem.

Problem 3 (Ideal-NTRU search problem). Let χ be a distribution of small elements on R with appropriate
bound ρ. Sample u← χm×m such that it is invertible in Rm×m

g and v← χm×m.⁷ Now, considering u and v as
elements of Rm×m

g , set h = vu−1 ∈ Rm×m
g .⁸ Then, given h and ρ, the ideal-NTRU search problem is to find a pair

(u󸀠󸀠, v󸀠󸀠) ∈ Rm×m × Rm×m with u󸀠󸀠 invertible modulo g, h = v󸀠󸀠u󸀠󸀠−1 mod g, ‖u󸀠󸀠‖ < ρ and ‖v󸀠󸀠‖ < ρ.
Unlike with the previous choices, the cost of picking a certain problem is not so obvious; one could consider,

for example, the size of the space to which the solution to the set of linear equations belongs, but this is not

so easy to compute in the ideal-SIS and ideal-NTRU cases when the solution is restricted to being small. We

point out that the size of the problem is related but not directly equivalent to the hardness of a problem. For

most choices of parameters, the best known attacks rely on lattice reduction; hence, in general, the cost will

depend on the dimension of the lattice being reduced which need not directly reflect the size of the problem.

Running example 1 (Plain LWE). Naturally, we select the ideal-LWE problem here.

Running example 2 (Ring-LWE and module-LWE). This again amounts to selecting the ideal-LWE problem.

Running example 3 (NTRU Prime). Here we select the ideal-NTRU problem.

Running example 4 (AJPS). The version of [1] amounts to selecting the ideal-NTRU problem, while the corre-

sponding NIST submission [2] amounts to selecting ideal-LWE.

Running example 5 (McEliece). Here we consider the general decoding problem of decrypting a ciphertext

using only the public key. One essentially takes the ideal-LWE problem with a fixed number of samples (the

length of the code).

2.5 Distribution of small elements

Finally, we come to the issue of what a small element is. Informally spoken, by a small element of R, wemean

anelementhaving small coordinates (in absolute value)with respect to thepower basis. The archetypal exam-

ple is that each coordinate is sampled from a discrete Gaussian distribution with standard deviation σ. The
LWE type problems all typically use this type of distribution. One can also consider the case when the coeffi-

cients are not sampled independently, as in the case of RLWE as defined in [35], as soon as one moves away

from the 2-power cyclotomic case. When σ becomes small enough, the coefficients are, with high probability,

in the set {−1, 0, 1}. When not sampled independently, it becomes possible to essentially sample vectors of

a specified Hamming weight; this is the distribution used in the NTRU setting.

The question of precisely how small to take small elements is complex and depends on the problem and

application. In general, larger errors give harder problems but may inhibit functionality and performance of

certain cryptographic schemes.

7 The case of non-square v can also be considered.
8 We also have the choice of multiplying v on the left by u−1, but this leads to the same problem; however, there is a third option:

to multiply v by the inverse of two small square matrices, one on the left and one on the right. This is done in [18].
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3 A catalogue of problems
Now that we have a general outline for our recipe, we can consider what problems we can create using it. To

this end, we start to build a catalogue of problems by looking at examples already in the literature, a number

of which we have seen already.

Ideal-LWE. We first consider those using the ideal-LWE problem. If one takes the ciphertext modulus g to
be an integer and set k = 1, then we get the familiar LWE type problems: when deg(f) = 1 and m > 1, we get
standard LWE, when deg(f) > 1 and m = 1, we have the (poly-)RLWE problem,⁹, and bridging them when

deg(f) > 1 and m > 1, we find module-LWE. An example for when k > 1 is the matrix LWE problem from [11]

which still takes g to be an integer.
In contrast, if one takes g(X) = X − b for some integer b and deg(f) > 1, then one obtains LWE-like prob-

lems but associated with big integer arithmetic. We identify the I-MLWE problem of ThreeBears [25] (m > 1,
k = 1) and I-RLWE problem of Gu [24] (m = k = 1) as members of this class. Further, the Mersenne-756839

submission to NIST [50] defines and uses the Mersenne low Hamming combination (MLHC) search problem

for security; this is essentially the I-RLWE problem when b = 2 and the secret s is not uniformly random but

sampled from the distribution χ. The Ramstake submission [49] also makes use of the MLHC problem.

Ideal-NTRU. Next we consider examples of the ideal-NTRU problem.Whenm = 1 and deg(f) > 1, we capture
standard NTRU [27] along with NTRU Prime [8] and many other variants when taking g(X) an integer; in

addition, we have the Mersenne low Hamming ratio (MLHR) problem [1] when g(X) = X − 2. Furthermore,

for m > 1 and g ∈ ℤ, we have the basic matrix formulation of NTRU [42] when deg(f) = 1, while MaTRU [18]

uses deg(f) > 1.
Ideal-SIS. Finally, with the ideal-SIS problem, there are relatively few examples in the existing literature; all

take g to be an integer. When deg(f) = 1 and m > 1, we have the standard SIS problem [3], when deg(f) > 1
and m = 1, we have the ring-SIS problem [39], and when both deg(f) > 1 and m > 1, we reach the module-

SIS problem [30]. In the case when both deg(f) and m are taken to be one, the resulting problem is the

(homogeneous) modular subset sum problem (SSP).

We arrange all of these examples in Table 1 classified by the problem family they utilise, the degrees of

f and g as well as whether the rank m is one or larger than one. We colour each cell either red (and mark

with a *) when we do not consider the problem as deg(g) ≥ deg(f), yellow when there is a known example

in the current literature, or green (marked with a question mark) when the problem has, to the best of our

knowledge, not yet been considered.

Looking at the green entries in the tables, we can immediately see a number of empty entries. Firstly,

there seems to be no analogue of NTRU over the integers which appears to be hard; the problem can be solved

easily by performing lattice reduction on the 2-dimensional lattice spanned by the row vectors (1, h), (q, 0)
and (0, q), where h is the quotient of small elements inℤq. Secondly, to the best of our knowledge, no one has
proposed amatrix version of theNTRUproblemover the AJPS ringℤ[X]/(Xn − 1, X − 2) ≅ ℤ/(2n − 1). Thirdly,
the ring andmodule variants of the SIS problem have also not been considered when using this ring. Finally,

as we have already stated, we know of no paper which explicitly considers the case when the modulus g has
degree larger than one.

Cryptographic applications. In practice, as cryptographers, our end goal is to build cryptographic schemes

which rely on the hardness of a given problem. Just as with deriving a problem by following the above recipe,

many of the known cryptographic applications can equally be built almost automatically on top of the new

problems in much the same way as when building them from the standard problems; see for example [5]

for a detailed analysis of what can be built from certain primitives using algebraic structure. The motivating

key-exchange example in the introduction essentially forms the basis formost applications we consider here.

9 We note that the RLWE problem is usually stated in terms of the codifferent R∨ [35, 36], but this can be avoided by using

a different error distribution [15]. Therefore, we do not consider this option in detail.
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m = 1 m > 1

deg(g) deg(f) = 1 deg(f) > 1 deg(f) = 1 deg(f) > 1

Ideal-LWE
0 1-dimensional LWE [14] RLWE [35] LWE, LPN [46],

McEliece [37],
matrix LWE [11]

M-LWE [13, 30]

1 * I-RLWE [24], MLHC [2] * I-MLWE [25]
... * ? * ?

Ideal-NTRU
0 ? NTRU [27], NTRU Prime [8] matrix NTRU [42] MaTRU [18]

1 * MLHR [1] * ?
... * ? * ?

Ideal-SIS
0 modular SSP RSIS [39] SIS [3] M-SIS [30]

1 * ? * ?
... * ? * ?

Table 1: The catalogue of problems, separated into their separate problem families, and classified by whether m is one or
larger, whether the degree of f is one or larger, and the degree of g. Known examples are filled in and the cell coloured yellow,
red (*) boxes we do not consider due to the restriction on g, and green (?) give new problems.

In this respect, we find that the LWE family is the most useful to us, while the SIS family has the fewest

known applications to date.

From the problems belonging to the LWE family, we can build basic primitives such as public key encryp-

tion [44, 46], key exchange [7, 19], digital signatures [4, 33]¹⁰ and oblivious transfer [12, 44], as well asmore

advanced constructs such as identity-based encryption [23] and fully homomorphic encryption [13, 21].

As for the NTRU family, there are known constructions for much the same primitives: public key encryp-

tion [8, 27], digital signatures [28], oblivious transfer [38], identity-based encryption [20] and fully homo-

morphic encryption [32]; although the latter is not considered competitive due to the attacks presented in [6,

17, 29].

The SIS family has turned out to be far less fruitful; however, it has still been used to create a digi-

tal signature scheme via hashing [23]. It is also known that one can build zero knowledge proofs from the

inhomogeneous SIS problem [31].

We expect that most of the above primitives can be straightforwardly adapted to work using our more

general problems, andwe give some simple examples in the case of public-key encryption in the next section.

3.1 An introduction to security

Here, we briefly look at lattice attacks on the three families of problems. The general idea of such an attack

is to construct a lattice from the publicly available information which either contains a short vector which

depends on secret information (such as an element from the distribution of small elements used), or forwhich

we know a vector (in the ambient space) which is close to a lattice point which again depends on a secret; by

finding such a short or closest vector, we can recover information about the secret key. To be able to find such

a lattice vector, one uses a technique called lattice reduction. This is a process which takes as input some

generating set for the lattice with the goal of returning a basis of the lattice consisting of short and nearly

orthogonal vectors. One important property of lattice reduction is that it works on integer lattices. Since we

10 See also the NIST competition for more constructions of these three primitives [51].
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Now that we have a general outline for our recipe, we can consider what problems we can create using it. To

this end, we start to build a catalogue of problems by looking at examples already in the literature, a number

of which we have seen already.

Ideal-LWE. We first consider those using the ideal-LWE problem. If one takes the ciphertext modulus g to
be an integer and set k = 1, then we get the familiar LWE type problems: when deg(f) = 1 and m > 1, we get
standard LWE, when deg(f) > 1 and m = 1, we have the (poly-)RLWE problem,⁹, and bridging them when

deg(f) > 1 and m > 1, we find module-LWE. An example for when k > 1 is the matrix LWE problem from [11]

which still takes g to be an integer.
In contrast, if one takes g(X) = X − b for some integer b and deg(f) > 1, then one obtains LWE-like prob-

lems but associated with big integer arithmetic. We identify the I-MLWE problem of ThreeBears [25] (m > 1,
k = 1) and I-RLWE problem of Gu [24] (m = k = 1) as members of this class. Further, the Mersenne-756839

submission to NIST [50] defines and uses the Mersenne low Hamming combination (MLHC) search problem

for security; this is essentially the I-RLWE problem when b = 2 and the secret s is not uniformly random but

sampled from the distribution χ. The Ramstake submission [49] also makes use of the MLHC problem.

Ideal-NTRU. Next we consider examples of the ideal-NTRU problem.Whenm = 1 and deg(f) > 1, we capture
standard NTRU [27] along with NTRU Prime [8] and many other variants when taking g(X) an integer; in

addition, we have the Mersenne low Hamming ratio (MLHR) problem [1] when g(X) = X − 2. Furthermore,

for m > 1 and g ∈ ℤ, we have the basic matrix formulation of NTRU [42] when deg(f) = 1, while MaTRU [18]

uses deg(f) > 1.
Ideal-SIS. Finally, with the ideal-SIS problem, there are relatively few examples in the existing literature; all

take g to be an integer. When deg(f) = 1 and m > 1, we have the standard SIS problem [3], when deg(f) > 1
and m = 1, we have the ring-SIS problem [39], and when both deg(f) > 1 and m > 1, we reach the module-

SIS problem [30]. In the case when both deg(f) and m are taken to be one, the resulting problem is the

(homogeneous) modular subset sum problem (SSP).

We arrange all of these examples in Table 1 classified by the problem family they utilise, the degrees of

f and g as well as whether the rank m is one or larger than one. We colour each cell either red (and mark

with a *) when we do not consider the problem as deg(g) ≥ deg(f), yellow when there is a known example

in the current literature, or green (marked with a question mark) when the problem has, to the best of our

knowledge, not yet been considered.

Looking at the green entries in the tables, we can immediately see a number of empty entries. Firstly,

there seems to be no analogue of NTRU over the integers which appears to be hard; the problem can be solved

easily by performing lattice reduction on the 2-dimensional lattice spanned by the row vectors (1, h), (q, 0)
and (0, q), where h is the quotient of small elements inℤq. Secondly, to the best of our knowledge, no one has
proposed amatrix version of theNTRUproblemover the AJPS ringℤ[X]/(Xn − 1, X − 2) ≅ ℤ/(2n − 1). Thirdly,
the ring andmodule variants of the SIS problem have also not been considered when using this ring. Finally,

as we have already stated, we know of no paper which explicitly considers the case when the modulus g has
degree larger than one.

Cryptographic applications. In practice, as cryptographers, our end goal is to build cryptographic schemes

which rely on the hardness of a given problem. Just as with deriving a problem by following the above recipe,

many of the known cryptographic applications can equally be built almost automatically on top of the new

problems in much the same way as when building them from the standard problems; see for example [5]

for a detailed analysis of what can be built from certain primitives using algebraic structure. The motivating

key-exchange example in the introduction essentially forms the basis formost applications we consider here.

9 We note that the RLWE problem is usually stated in terms of the codifferent R∨ [35, 36], but this can be avoided by using

a different error distribution [15]. Therefore, we do not consider this option in detail.
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m = 1 m > 1

deg(g) deg(f) = 1 deg(f) > 1 deg(f) = 1 deg(f) > 1

Ideal-LWE
0 1-dimensional LWE [14] RLWE [35] LWE, LPN [46],

McEliece [37],
matrix LWE [11]

M-LWE [13, 30]

1 * I-RLWE [24], MLHC [2] * I-MLWE [25]
... * ? * ?

Ideal-NTRU
0 ? NTRU [27], NTRU Prime [8] matrix NTRU [42] MaTRU [18]

1 * MLHR [1] * ?
... * ? * ?

Ideal-SIS
0 modular SSP RSIS [39] SIS [3] M-SIS [30]

1 * ? * ?
... * ? * ?

Table 1: The catalogue of problems, separated into their separate problem families, and classified by whether m is one or
larger, whether the degree of f is one or larger, and the degree of g. Known examples are filled in and the cell coloured yellow,
red (*) boxes we do not consider due to the restriction on g, and green (?) give new problems.

In this respect, we find that the LWE family is the most useful to us, while the SIS family has the fewest

known applications to date.

From the problems belonging to the LWE family, we can build basic primitives such as public key encryp-

tion [44, 46], key exchange [7, 19], digital signatures [4, 33]¹⁰ and oblivious transfer [12, 44], as well asmore

advanced constructs such as identity-based encryption [23] and fully homomorphic encryption [13, 21].

As for the NTRU family, there are known constructions for much the same primitives: public key encryp-

tion [8, 27], digital signatures [28], oblivious transfer [38], identity-based encryption [20] and fully homo-

morphic encryption [32]; although the latter is not considered competitive due to the attacks presented in [6,

17, 29].

The SIS family has turned out to be far less fruitful; however, it has still been used to create a digi-

tal signature scheme via hashing [23]. It is also known that one can build zero knowledge proofs from the

inhomogeneous SIS problem [31].

We expect that most of the above primitives can be straightforwardly adapted to work using our more

general problems, andwe give some simple examples in the case of public-key encryption in the next section.

3.1 An introduction to security

Here, we briefly look at lattice attacks on the three families of problems. The general idea of such an attack

is to construct a lattice from the publicly available information which either contains a short vector which

depends on secret information (such as an element from the distribution of small elements used), or forwhich

we know a vector (in the ambient space) which is close to a lattice point which again depends on a secret; by

finding such a short or closest vector, we can recover information about the secret key. To be able to find such

a lattice vector, one uses a technique called lattice reduction. This is a process which takes as input some

generating set for the lattice with the goal of returning a basis of the lattice consisting of short and nearly

orthogonal vectors. One important property of lattice reduction is that it works on integer lattices. Since we

10 See also the NIST competition for more constructions of these three primitives [51].
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primarily work with the ring Rg and small elements are only defined in R, when describing such a lattice, we
will have to include the generators Xig(X) mod f(X) which will account for the fact that we work modulo g.
For example, in the simple case of the primal attack on the ideal-LWE problem instantiated with k = m = 1
and a being lifted to a vector of polynomials (a

1
, a

2
, . . . , aℓ)T ∈ Rℓ and similarly for b, lattice reduction is

performed on the (ℓn + 1)-dimensional lattice generated by the rows of the matrix

((((((((((((((((((((((((

(

— b
1

— ⋅ ⋅ ⋅ — bℓ — w
— a

1
— ⋅ ⋅ ⋅ — aℓ —

.

.

.

.

.

.

— Xn−1a
1
mod f — ⋅ ⋅ ⋅ — Xn−1aℓ mod f —

— g mod f —

.

.

.

— Xn−1g mod f —

.
.
.

— g mod f —

.

.

.

— Xn−1g mod f —

))))))))))))))))))))))))

)
for some positive integer weight w. The aim is then to recover the short vector ±(e

1
, . . . , eℓ, w).

In the classical setting, when g(X) = q is simply an integer, this will mean we use as generators vectors

which are zero in all but one component where it takes the value q. In applications using LWE and RLWE, the

value of q will be rather large and does not cause any problems, but in code-based cryptography, it is typical

to take q = 2. This implies that the lattice contains many trivial vectors of Euclidean length √2 essentially

rendering lattice reduction attacks useless. Another consequence of taking q = 2 is that removing the errors

introduced by the scheme is in general a hard task and why special codes which have an efficient decoding

algorithm are needed in practical applications.

Just as in the integer ciphertext modulus case, when g is chosen as a polynomial, it may be that the

constructed integer lattice has trivial short vectors, much shorter than any vector containing information

about the secret key. In our Running example 4, for example, g is taken as X − 2 which, in combination

with f(X) = Xn − 1, yields many vectors of length √5 being present in the lattice which once again renders

straightforward lattice reduction attacks futile.

That is not to say lattice reduction does not have a place in attacking our problems for this choice of g; see
for example [9], only that it is not the main cost in such attacks. The attack is very similar in spirit to the fam-

ily of general information-set decoding attacks first introduced by Prange [45] and is more combinatorial in

nature, involving finding a set of coordinateswhich are in some sense error-free. Similar to code-based crypto-

graphy, it is in general difficult to recover the small elements used when g = X − 2. This problemwas avoided

in [1] by ensuring decryption could be performed without recovering the error in the ciphertext; however,

they were only able to encrypt one bit per ciphertext. To improve the efficiency of the scheme, by allowing

a much larger plaintext space, the authors had to employ an error-correcting code in their scheme [2].

The cases of “large” g and “small” g are in some sense two ends of a spectrum, and the applicable attacks

in each case are very different.¹¹ This leaves open the problem of finding the boundary between the two cases

where lattice attacks stop working and combinatorial approaches start to become feasible. It may be possible

that choices of parameters towards the middle of this spectrum offer superior security guarantees and/or

allow for more efficient schemes.

More details on lattice attacks, and more general attacks, on our problems will appear in a future work;

see also the forthcoming PhD thesis of the first author.

11 Technically, the distinction is whether gR contains a polynomial with a sufficiently short vector of coefficients.
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4 New examples

4.1 Generalising the Gu encryption scheme to higher degree g

Here, we present a generalisation of the Gu encryption scheme [24] where, instead of taking g to be lin-

ear, we consider g of higher degree. We first define our parent ring as R = ℤ[X]/(Xn + 1), that is, we take
f(X) = Xn + 1. Next, we carefully choose our ciphertext modulus g = Xd + b, where b > 1, such that d | n,
d < n and q = bn/d + (−1)n/d is prime.¹² Then we have that the ideal generated by f and g is also generated
by g and the prime q; this is because f = (Xd)n/d + 1 ≡ (−b)n/d + 1 = (−1)n/dq mod g. Therefore, we have that
RXd+b ≅ ℤdq as abelian groups by considering a polynomial of degree atmost d − 1 as a vector of d coefficients.

Wewill use this as a set of representatives of Rg; see equation (2.1).We also take the rank to be one to simplify

the discussion somewhat, but one can easily consider a module version of our scheme. Finally, we choose

a plaintext modulus p; the plaintext space will beℤnp.
Next, we define a distribution of small elements in R, χσ, by sampling n coefficients fromadiscrete Gauss-

ian distribution with standard deviation σ, and forming a polynomial of degree n − 1 from these coefficients.

This polynomial will then be reduced modulo g in our scheme to one with d coefficients, which need not be

small with respect to q; indeed we expect them not to be. We denote by χσ the distribution on ℤdq given by

sampling from χσ and reducing modulo g. In practice, to sample from χσ, one will, for each of the d entries,
sample n/d coefficients from the discrete Gaussian, say ϵi, and compute∑n/d−1i=0 ϵi(−b)i as the entry. Thus we
see that σ should be much smaller than b.

Key generation. To generate a key, we sample an element a uniformly at random from RXd+b ≅ ℤdq as well as
elements s, e← χσ. Compute b = as + pe. The public key is the pair (a, b), while the private key is s.
Encryption. Given a plaintextm ∈ ℤnp, consider it as a polynomial in R with coefficients in [−p/2, p/2), and
denote bym the reduction of this polynomial modulo Xd + b. Sample elements r, e1, e2 ← χσ, and compute

c1 = ar + pe1 and c2 = br + pe2 +m, where (a, b) is the public key of the intended recipient. The ciphertext
is the pair (c1, c2).
Decryption. Given a ciphertext (c1, c2) and a private key s, one first computes d = c2 − c1s. For each
coefficient di, consider it an integer in [−q/2, q/2), and compute the balanced expansion with base −b,
say di = ∑j αi,j(−b)j, where αi,j ∈ [−b/2, b/2). Then, for k = 0, . . . , n − 1, define mk = αi,j mod p, where
i = k mod d and j = ⌊kd/n⌋. Return the vectorm = (mk).
Security. Just as in [24, Theorem 3.9], for the specific choices of f and g taken here, we can convert an RLWE

sample with f = Xn + 1 and g = b to an ideal-LWE sample with the same f but g = Xd + b and conversely

transform an ideal-LWE sample into a RLWE sample, in both cases with a growth in the noise present in

the sample. The conversions are simple to write down. To go from RLWE to ideal-LWE, for each polynomial

in Rb (i.e. a, b and s), lift it to a polynomial in R with coefficients in the symmetric interval around zero,

and then reduce modulo Xd + b. In the reverse direction, for each element in RXd+b with coefficients in the

symmetric interval about zero, lift it to a polynomial in R by expanding the coefficients to the base b with the
coefficients of powers of b in the range [−b/2, b/2) and then substituting b with −Xd

. Reduction modulo b
gives an element of Rb.

A proof of the reductions is essentially the same as that given in [24] with the same bound on the growth

of the noise.

12 If n/d is odd, then bn/d − 1 is divisible by b − 1, so the only way for it to be prime is when b = 2 and n/d is prime; hence q
must be a Mersenne prime. In our case, we want b to be large, so we will always require n/d to be even. The choice of n being

a power of two gives generalised Fermat primes, and we, of course, require b to be even.
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primarily work with the ring Rg and small elements are only defined in R, when describing such a lattice, we
will have to include the generators Xig(X) mod f(X) which will account for the fact that we work modulo g.
For example, in the simple case of the primal attack on the ideal-LWE problem instantiated with k = m = 1
and a being lifted to a vector of polynomials (a

1
, a

2
, . . . , aℓ)T ∈ Rℓ and similarly for b, lattice reduction is

performed on the (ℓn + 1)-dimensional lattice generated by the rows of the matrix

((((((((((((((((((((((((
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— b
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— ⋅ ⋅ ⋅ — bℓ — w
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))))))))))))))))))))))))

)
for some positive integer weight w. The aim is then to recover the short vector ±(e

1
, . . . , eℓ, w).

In the classical setting, when g(X) = q is simply an integer, this will mean we use as generators vectors

which are zero in all but one component where it takes the value q. In applications using LWE and RLWE, the

value of q will be rather large and does not cause any problems, but in code-based cryptography, it is typical

to take q = 2. This implies that the lattice contains many trivial vectors of Euclidean length √2 essentially

rendering lattice reduction attacks useless. Another consequence of taking q = 2 is that removing the errors

introduced by the scheme is in general a hard task and why special codes which have an efficient decoding

algorithm are needed in practical applications.

Just as in the integer ciphertext modulus case, when g is chosen as a polynomial, it may be that the

constructed integer lattice has trivial short vectors, much shorter than any vector containing information

about the secret key. In our Running example 4, for example, g is taken as X − 2 which, in combination

with f(X) = Xn − 1, yields many vectors of length √5 being present in the lattice which once again renders

straightforward lattice reduction attacks futile.

That is not to say lattice reduction does not have a place in attacking our problems for this choice of g; see
for example [9], only that it is not the main cost in such attacks. The attack is very similar in spirit to the fam-

ily of general information-set decoding attacks first introduced by Prange [45] and is more combinatorial in

nature, involving finding a set of coordinateswhich are in some sense error-free. Similar to code-based crypto-

graphy, it is in general difficult to recover the small elements used when g = X − 2. This problemwas avoided

in [1] by ensuring decryption could be performed without recovering the error in the ciphertext; however,

they were only able to encrypt one bit per ciphertext. To improve the efficiency of the scheme, by allowing

a much larger plaintext space, the authors had to employ an error-correcting code in their scheme [2].

The cases of “large” g and “small” g are in some sense two ends of a spectrum, and the applicable attacks

in each case are very different.¹¹ This leaves open the problem of finding the boundary between the two cases

where lattice attacks stop working and combinatorial approaches start to become feasible. It may be possible

that choices of parameters towards the middle of this spectrum offer superior security guarantees and/or

allow for more efficient schemes.

More details on lattice attacks, and more general attacks, on our problems will appear in a future work;

see also the forthcoming PhD thesis of the first author.

11 Technically, the distinction is whether gR contains a polynomial with a sufficiently short vector of coefficients.

10 | C. Bootland et al., A framework for cryptographic problems from linear algebra

4 New examples

4.1 Generalising the Gu encryption scheme to higher degree g

Here, we present a generalisation of the Gu encryption scheme [24] where, instead of taking g to be lin-

ear, we consider g of higher degree. We first define our parent ring as R = ℤ[X]/(Xn + 1), that is, we take
f(X) = Xn + 1. Next, we carefully choose our ciphertext modulus g = Xd + b, where b > 1, such that d | n,
d < n and q = bn/d + (−1)n/d is prime.¹² Then we have that the ideal generated by f and g is also generated
by g and the prime q; this is because f = (Xd)n/d + 1 ≡ (−b)n/d + 1 = (−1)n/dq mod g. Therefore, we have that
RXd+b ≅ ℤdq as abelian groups by considering a polynomial of degree atmost d − 1 as a vector of d coefficients.

Wewill use this as a set of representatives of Rg; see equation (2.1).We also take the rank to be one to simplify

the discussion somewhat, but one can easily consider a module version of our scheme. Finally, we choose

a plaintext modulus p; the plaintext space will beℤnp.
Next, we define a distribution of small elements in R, χσ, by sampling n coefficients fromadiscrete Gauss-

ian distribution with standard deviation σ, and forming a polynomial of degree n − 1 from these coefficients.

This polynomial will then be reduced modulo g in our scheme to one with d coefficients, which need not be

small with respect to q; indeed we expect them not to be. We denote by χσ the distribution on ℤdq given by

sampling from χσ and reducing modulo g. In practice, to sample from χσ, one will, for each of the d entries,
sample n/d coefficients from the discrete Gaussian, say ϵi, and compute∑n/d−1i=0 ϵi(−b)i as the entry. Thus we
see that σ should be much smaller than b.

Key generation. To generate a key, we sample an element a uniformly at random from RXd+b ≅ ℤdq as well as
elements s, e← χσ. Compute b = as + pe. The public key is the pair (a, b), while the private key is s.
Encryption. Given a plaintextm ∈ ℤnp, consider it as a polynomial in R with coefficients in [−p/2, p/2), and
denote bym the reduction of this polynomial modulo Xd + b. Sample elements r, e1, e2 ← χσ, and compute

c1 = ar + pe1 and c2 = br + pe2 +m, where (a, b) is the public key of the intended recipient. The ciphertext
is the pair (c1, c2).
Decryption. Given a ciphertext (c1, c2) and a private key s, one first computes d = c2 − c1s. For each
coefficient di, consider it an integer in [−q/2, q/2), and compute the balanced expansion with base −b,
say di = ∑j αi,j(−b)j, where αi,j ∈ [−b/2, b/2). Then, for k = 0, . . . , n − 1, define mk = αi,j mod p, where
i = k mod d and j = ⌊kd/n⌋. Return the vectorm = (mk).
Security. Just as in [24, Theorem 3.9], for the specific choices of f and g taken here, we can convert an RLWE

sample with f = Xn + 1 and g = b to an ideal-LWE sample with the same f but g = Xd + b and conversely

transform an ideal-LWE sample into a RLWE sample, in both cases with a growth in the noise present in

the sample. The conversions are simple to write down. To go from RLWE to ideal-LWE, for each polynomial

in Rb (i.e. a, b and s), lift it to a polynomial in R with coefficients in the symmetric interval around zero,

and then reduce modulo Xd + b. In the reverse direction, for each element in RXd+b with coefficients in the

symmetric interval about zero, lift it to a polynomial in R by expanding the coefficients to the base b with the
coefficients of powers of b in the range [−b/2, b/2) and then substituting b with −Xd

. Reduction modulo b
gives an element of Rb.

A proof of the reductions is essentially the same as that given in [24] with the same bound on the growth

of the noise.

12 If n/d is odd, then bn/d − 1 is divisible by b − 1, so the only way for it to be prime is when b = 2 and n/d is prime; hence q
must be a Mersenne prime. In our case, we want b to be large, so we will always require n/d to be even. The choice of n being

a power of two gives generalised Fermat primes, and we, of course, require b to be even.
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Somewhat homomorphic encryption. It is easy to transform this scheme into a somewhat homomorphic

scheme akin to, for example, the Brakerski–Fan–Vercauteren scheme [21]. Implementing this, we found

that, with the same parameters used in practice, we could perform on average between zero and three fewer

multiplicative levels than with the original scheme.¹³

4.2 Module-NTRU over the AJPS ring

In this section, we briefly describe a cryptosystem employing the ideal-NTRU problem with rank larger

than one and which takes as the underlying ring the AJPS ring; this means, we will take f as Xn − 1 for

some prime n such that q = 2n − 1 is also prime, and g as X − 2. We also choose positive integers d and

w ≪ n, where d will be the rank of the module used and w will be the Hamming weight of elements sam-

pled from our distribution of small elements. Formally, we define χw to be the uniform distribution over the

set {∑i∈I 2i | I ⊂ {0, 1, . . . , n − 1}, #I = w}. The plaintext space will be {0, 1}d, and for decryption, we will

choose two thresholds tl and tu satisfying 0 ≤ tu < tl ≤ n.
Key generation. To generate keys, first sample two matrices u and v from χd×dw with the condition that u is

invertible modulo q. Computew = vu−1. The public key isw, and the private key is u.
Encryption. Given a public keyw and amessagem ∈ {0, 1}d, denote bym the d × d diagonal matrix with the

message bits down the diagonal. To encrypt, sample two matrices r and e from χd×dw and a diagonal matrix d
with uniformly random coefficients modulo q. Compute the ciphertext as c = rw +md + e.
Decryption. To decrypt the ciphertext c with the private key u, first compute the product p = cu. Then, for
each i in {1, . . . , d}, consider the elements in the ith row of p as binary strings of length n, and compute the

mean of the Hamming weights of these binary strings. If this mean is at most the threshold tl, set mi = 0; if
this mean is no smaller than tu, set mi = 1, and otherwise abort. Return the vector (mi).

Decryption works since we have p = cu = rv +mdu + eu, and the entries of rv and euwill still have rela-
tively small Hamming weight, while the entries ofmduwill be zero in the ith row if mi = 0 and be uniformly

random if mi = 1. The probability that d uniformly random elements have a mean Hamming weight smaller

than the threshold tl can be made negligibly small by choosing the parameters appropriately.

5 Generic moduli
In this final section, we look at the structure of the ring Rg for generic g. Then our ring Rg = ℤ[X]/(f(X), g(X))
does not have an obvious canonical set of representatives. In order to have useful representatives, we will try

to find a pair a ∈ ℤ>0 and r ∈ ℤ[X] such that (f, g) = (a, r). When r is monic, we can use the set of representa-

tives from equation (2.1). We note that if r is not monic, then a set of representatives is still possible to write

downbut is not so user-friendly. Our choice of gwill be constrained by Rg having such a set of representatives.

Now our task is to find such a and r if they exist. It is natural to choose a to be the smallest positive

integer in (f, g) so that (f, g) ∩ ℤ = (a) which always exists due to the coprimality of f and g. This integer is
called the “congruence number” or “reduced resultant” of the polynomials f and g. Then r is defined only

modulo a and up to units ofℤa[X]. The overall strategy is first to find a. Afterwards, we search for an r using
the Euclidean algorithm in the ringℤa[X]. When a is composite,ℤa is not an integral domain so that finding

inverses modulo a can fail. However, in this case, we will have found a factor of a and can use this factor,

with some work, to either split a into a product of coprime factors, work modulo each of these factors and

combine the results using the Chinese remainder theorem, or write a as a power and use Hensel lifting to

find r. Of course, these subroutines can also fail when a division fails, but we recurse until an r is found. We

13 We dropped the condition that bn/d + 1 must be prime for this.
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remark that if we do not assume r exists, then it is only possible to determine no r exists during the lifting
procedure. This ad hoc recursion strategy allows us to bypass the need to factorise a at the onset.

Lemma 1. Let s, t ∈ ℤ[X] be such that sf + tg ∈ ℤ, with deg(s) < deg(g) and deg(t) < deg(f), and further
assume that the greatest common divisor of s and t is 1. Then a = sf + tg is a generator of the ideal (f, g) ∩ ℤ.
Proof. We proceed by assuming (f, g) ∩ ℤ is not generated by sf + tg but some proper divisor and derive

a contradiction.

For some prime factor p of sf + gt, we must have (sf + gt)/p ∈ (f, g) ∩ ℤ and thus (sf + gt)/p = s󸀠󸀠f + t󸀠󸀠g
for some s󸀠󸀠, t󸀠󸀠 ∈ ℤ[X]. We therefore have sf + tg = ps󸀠󸀠f + pt󸀠󸀠g, and rearranging gives (s − ps󸀠󸀠)f = (pt󸀠󸀠 − t)g.
Since f and g are coprime, we must have s − ps󸀠󸀠 = kg as well as pt󸀠󸀠 − t = kf for some polynomial k ∈ ℤ[X].

Denote by ̄⋅ : ℤ[X] → 𝔽𝔽p[X] the reduction modulo p map. Then k̄ ̄g = ̄s and k̄ ̄f = − ̄t. The polynomial f is
monic, so the assumption deg(t) < deg(f) implies deg( ̄t) < deg( ̄f ). Since 𝔽𝔽p[X] is an integral domain, k̄ ̄f = − ̄t
can only hold if k̄ = ̄t = 0, which implies ̄s = 0. But ̄t = ̄s = 0 implies p divides both s and t, which contradicts
the assumption that s and t have greatest common divisor 1.

The question is thus how to find such s and t. One way to proceed is by computing, using the extended

Euclidean algorithm over ℚ[X], rational polynomials s󸀠󸀠 and t󸀠󸀠 such that s󸀠󸀠f + t󸀠󸀠g = 1 and deg(s󸀠󸀠) < deg(g)
and deg(t󸀠󸀠) < deg(f); then, multiplying by the lowest commonmultiple of all the denominators appearing in

the coefficients of both s󸀠󸀠 and t󸀠󸀠, we find such s and t. The a we require is this lowest common multiple.

Next we show that, when it does not fail, we can use Euclid’s algorithm to find rmodulo a positive divisor

of a. Thus we assume in the lemma that an r exists.

Lemma 2. Let d be a positive divisor of a, and suppose that applying Euclid’s algorithm to f and g in the ring
ℤd[X] does not fail and outputs the polynomial ρ. Then ρ ≡ r mod d up to units inℤd[X].
Proof. Denote by ̄⋅ the reduction modulo d. Since (f, g) = (a, r), we have ( ̄f , ̄g) = ( ̄a, ̄r) = ( ̄r) since d | a. Now,
by the properties of Euclid’s algorithm, we have ( ̄f , ̄g) = (ρ). Therefore, r ≡ ρ mod d up to a unit ofℤd[X].
If d is taken to be a prime p, then Euclid’s algorithm never fails, so we can use it to find a suitable rmodulo p.
However, it is possible that a larger power of the prime divides a, say pe, and in this case, if Euclid’s algorithm
fails modulo pe, we need to use Hensel lifting to lift ρ, our solution modulo p, to one modulo pe. Algorithm 1

shows how to do this iteratively from pj to pj+1. It is at this point where a solution may fail to exist, showing

that no such r exists.

Lemma 3. Algorithm 1 for Hensel lifting is correct.

Proof. Firstly, we assume that ρ󸀠󸀠 exists. By the preconditions, there exist α, β, and further μ and ν such that
ρ ≡ αf + βg, f ≡ μρ and g ≡ νρmodulo pj, andwewrite eachof these in p-ary formwith the subscript indexing

the digit, starting at zero. Note that α
0
and β

0
can be computed from f

0
and g

0
using the extended Euclidean

algorithm over 𝔽𝔽p[X]. Also, μ and ν can easily be computed from f , g and ρ. Then f − ρμ is divisible by pj, so
defining u via f − ρμ = pju mod pj+1, ρj and μj must satisfy

0 ≡ f − (ρ + pjρj)(μ + pjμj) ≡ pj(u − (ρjμ + ρμj)) mod pj+1,

or equivalently ρjμ + ρμj ≡ u mod p. Hence, u ∈ (ρ
0
, μ

0
) = (γ), where γ is the greatest common divisor of ρ

0

and μ
0
in 𝔽𝔽p[X], say with Bézout coefficients ξ and ζ so that γ = ξρ

0
+ ζμ

0
. So γ divides u, and all solutions

for ρj and μj are given by

ρj = ζ uγ − κ
ρ
0

γ
and μj = ξ uγ + κ

μ
0

γ
for some κ ∈ 𝔽𝔽p[X]. (5.1)

The same computation for g implies that δmust divide v, where δ = ϕρ
0
+ ψν

0
is the greatest commondivisor

of ρ
0
and ν

0
over 𝔽𝔽p[X] and v = (g − ρν)/pj mod p. The solutions for ρj and νj are given by

ρj = ψ v
δ
− λ ρ0

δ
and νj = ϕ v

δ
+ λ ν0

δ
for some λ ∈ 𝔽𝔽p[X]. (5.2)
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Somewhat homomorphic encryption. It is easy to transform this scheme into a somewhat homomorphic

scheme akin to, for example, the Brakerski–Fan–Vercauteren scheme [21]. Implementing this, we found

that, with the same parameters used in practice, we could perform on average between zero and three fewer

multiplicative levels than with the original scheme.¹³

4.2 Module-NTRU over the AJPS ring

In this section, we briefly describe a cryptosystem employing the ideal-NTRU problem with rank larger

than one and which takes as the underlying ring the AJPS ring; this means, we will take f as Xn − 1 for

some prime n such that q = 2n − 1 is also prime, and g as X − 2. We also choose positive integers d and

w ≪ n, where d will be the rank of the module used and w will be the Hamming weight of elements sam-

pled from our distribution of small elements. Formally, we define χw to be the uniform distribution over the

set {∑i∈I 2i | I ⊂ {0, 1, . . . , n − 1}, #I = w}. The plaintext space will be {0, 1}d, and for decryption, we will

choose two thresholds tl and tu satisfying 0 ≤ tu < tl ≤ n.
Key generation. To generate keys, first sample two matrices u and v from χd×dw with the condition that u is

invertible modulo q. Computew = vu−1. The public key isw, and the private key is u.
Encryption. Given a public keyw and amessagem ∈ {0, 1}d, denote bym the d × d diagonal matrix with the

message bits down the diagonal. To encrypt, sample two matrices r and e from χd×dw and a diagonal matrix d
with uniformly random coefficients modulo q. Compute the ciphertext as c = rw +md + e.
Decryption. To decrypt the ciphertext c with the private key u, first compute the product p = cu. Then, for
each i in {1, . . . , d}, consider the elements in the ith row of p as binary strings of length n, and compute the

mean of the Hamming weights of these binary strings. If this mean is at most the threshold tl, set mi = 0; if
this mean is no smaller than tu, set mi = 1, and otherwise abort. Return the vector (mi).

Decryption works since we have p = cu = rv +mdu + eu, and the entries of rv and euwill still have rela-
tively small Hamming weight, while the entries ofmduwill be zero in the ith row if mi = 0 and be uniformly

random if mi = 1. The probability that d uniformly random elements have a mean Hamming weight smaller

than the threshold tl can be made negligibly small by choosing the parameters appropriately.

5 Generic moduli
In this final section, we look at the structure of the ring Rg for generic g. Then our ring Rg = ℤ[X]/(f(X), g(X))
does not have an obvious canonical set of representatives. In order to have useful representatives, we will try

to find a pair a ∈ ℤ>0 and r ∈ ℤ[X] such that (f, g) = (a, r). When r is monic, we can use the set of representa-

tives from equation (2.1). We note that if r is not monic, then a set of representatives is still possible to write

downbut is not so user-friendly. Our choice of gwill be constrained by Rg having such a set of representatives.

Now our task is to find such a and r if they exist. It is natural to choose a to be the smallest positive

integer in (f, g) so that (f, g) ∩ ℤ = (a) which always exists due to the coprimality of f and g. This integer is
called the “congruence number” or “reduced resultant” of the polynomials f and g. Then r is defined only

modulo a and up to units ofℤa[X]. The overall strategy is first to find a. Afterwards, we search for an r using
the Euclidean algorithm in the ringℤa[X]. When a is composite,ℤa is not an integral domain so that finding

inverses modulo a can fail. However, in this case, we will have found a factor of a and can use this factor,

with some work, to either split a into a product of coprime factors, work modulo each of these factors and

combine the results using the Chinese remainder theorem, or write a as a power and use Hensel lifting to

find r. Of course, these subroutines can also fail when a division fails, but we recurse until an r is found. We

13 We dropped the condition that bn/d + 1 must be prime for this.
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remark that if we do not assume r exists, then it is only possible to determine no r exists during the lifting
procedure. This ad hoc recursion strategy allows us to bypass the need to factorise a at the onset.

Lemma 1. Let s, t ∈ ℤ[X] be such that sf + tg ∈ ℤ, with deg(s) < deg(g) and deg(t) < deg(f), and further
assume that the greatest common divisor of s and t is 1. Then a = sf + tg is a generator of the ideal (f, g) ∩ ℤ.
Proof. We proceed by assuming (f, g) ∩ ℤ is not generated by sf + tg but some proper divisor and derive

a contradiction.

For some prime factor p of sf + gt, we must have (sf + gt)/p ∈ (f, g) ∩ ℤ and thus (sf + gt)/p = s󸀠󸀠f + t󸀠󸀠g
for some s󸀠󸀠, t󸀠󸀠 ∈ ℤ[X]. We therefore have sf + tg = ps󸀠󸀠f + pt󸀠󸀠g, and rearranging gives (s − ps󸀠󸀠)f = (pt󸀠󸀠 − t)g.
Since f and g are coprime, we must have s − ps󸀠󸀠 = kg as well as pt󸀠󸀠 − t = kf for some polynomial k ∈ ℤ[X].

Denote by ̄⋅ : ℤ[X] → 𝔽𝔽p[X] the reduction modulo p map. Then k̄ ̄g = ̄s and k̄ ̄f = − ̄t. The polynomial f is
monic, so the assumption deg(t) < deg(f) implies deg( ̄t) < deg( ̄f ). Since 𝔽𝔽p[X] is an integral domain, k̄ ̄f = − ̄t
can only hold if k̄ = ̄t = 0, which implies ̄s = 0. But ̄t = ̄s = 0 implies p divides both s and t, which contradicts
the assumption that s and t have greatest common divisor 1.

The question is thus how to find such s and t. One way to proceed is by computing, using the extended

Euclidean algorithm over ℚ[X], rational polynomials s󸀠󸀠 and t󸀠󸀠 such that s󸀠󸀠f + t󸀠󸀠g = 1 and deg(s󸀠󸀠) < deg(g)
and deg(t󸀠󸀠) < deg(f); then, multiplying by the lowest commonmultiple of all the denominators appearing in

the coefficients of both s󸀠󸀠 and t󸀠󸀠, we find such s and t. The a we require is this lowest common multiple.

Next we show that, when it does not fail, we can use Euclid’s algorithm to find rmodulo a positive divisor

of a. Thus we assume in the lemma that an r exists.

Lemma 2. Let d be a positive divisor of a, and suppose that applying Euclid’s algorithm to f and g in the ring
ℤd[X] does not fail and outputs the polynomial ρ. Then ρ ≡ r mod d up to units inℤd[X].
Proof. Denote by ̄⋅ the reduction modulo d. Since (f, g) = (a, r), we have ( ̄f , ̄g) = ( ̄a, ̄r) = ( ̄r) since d | a. Now,
by the properties of Euclid’s algorithm, we have ( ̄f , ̄g) = (ρ). Therefore, r ≡ ρ mod d up to a unit ofℤd[X].
If d is taken to be a prime p, then Euclid’s algorithm never fails, so we can use it to find a suitable rmodulo p.
However, it is possible that a larger power of the prime divides a, say pe, and in this case, if Euclid’s algorithm
fails modulo pe, we need to use Hensel lifting to lift ρ, our solution modulo p, to one modulo pe. Algorithm 1

shows how to do this iteratively from pj to pj+1. It is at this point where a solution may fail to exist, showing

that no such r exists.

Lemma 3. Algorithm 1 for Hensel lifting is correct.

Proof. Firstly, we assume that ρ󸀠󸀠 exists. By the preconditions, there exist α, β, and further μ and ν such that
ρ ≡ αf + βg, f ≡ μρ and g ≡ νρmodulo pj, andwewrite eachof these in p-ary formwith the subscript indexing

the digit, starting at zero. Note that α
0
and β

0
can be computed from f

0
and g

0
using the extended Euclidean

algorithm over 𝔽𝔽p[X]. Also, μ and ν can easily be computed from f , g and ρ. Then f − ρμ is divisible by pj, so
defining u via f − ρμ = pju mod pj+1, ρj and μj must satisfy

0 ≡ f − (ρ + pjρj)(μ + pjμj) ≡ pj(u − (ρjμ + ρμj)) mod pj+1,

or equivalently ρjμ + ρμj ≡ u mod p. Hence, u ∈ (ρ
0
, μ

0
) = (γ), where γ is the greatest common divisor of ρ

0

and μ
0
in 𝔽𝔽p[X], say with Bézout coefficients ξ and ζ so that γ = ξρ

0
+ ζμ

0
. So γ divides u, and all solutions

for ρj and μj are given by

ρj = ζ uγ − κ
ρ
0

γ
and μj = ξ uγ + κ

μ
0

γ
for some κ ∈ 𝔽𝔽p[X]. (5.1)

The same computation for g implies that δmust divide v, where δ = ϕρ
0
+ ψν

0
is the greatest commondivisor

of ρ
0
and ν

0
over 𝔽𝔽p[X] and v = (g − ρν)/pj mod p. The solutions for ρj and νj are given by

ρj = ψ v
δ
− λ ρ0

δ
and νj = ϕ v

δ
+ λ ν0

δ
for some λ ∈ 𝔽𝔽p[X]. (5.2)
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Input: Polynomials f, g, ρ inℤ[X] (with f monic), a prime p and a positive integer j,
satisfying αf + βg ≡ ρ mod pj for some α, β ∈ ℤ[X], as well as f ≡ ρμ mod pj and g ≡ ρν mod pj

for some μ, ν ∈ ℤ[X].
Output: A polynomial ρ󸀠󸀠 ∈ ℤ[X] such that ρ󸀠󸀠 ≡ α󸀠󸀠f + β󸀠󸀠g mod pj+1 for some α󸀠󸀠, β󸀠󸀠 ∈ ℤ[X], as well as ρ󸀠󸀠 | f

and ρ󸀠󸀠 | g inℤpj+1 [X], or Fail if no such polynomial exists.

μ ← f/ρ ⊳ Arithmetic inℤpj [X].
ν ← g/ρ ⊳ Arithmetic inℤpj [X].
u ← ((f − ρμ)/pj) mod p ⊳ Thus f ≡ ρμ + pju mod pj+1.
v ← ((g − ρν)/pj) mod p ⊳ Thus g ≡ ρν + pjv mod pj+1.
γ, ξ, ζ = xgcd𝔽𝔽p[X](ρ, μ) ⊳ Thus γ = ξρ + ζμ mod p.
δ, ϕ, ψ = xgcd𝔽𝔽p[X](ρ, ν) ⊳ Thus δ = ϕρ + ψν mod p.
θ ← ζψ(uν − vμ) mod p
ρ
0
← ρ mod p

if γ ∤ u or δ ∤ v or ρ
0
∤ θ then

return Fail

κ ← (θ/ρ
0
+ ζϕu − ψξv)τ

ρj ← (ζu − κρ0)/γ mod ρ
0

⊳ Hence deg(ρj) < deg(ρ0).
ρ󸀠󸀠 ← ρ + pjρj ⊳ Arithmetic inℤ[X].
return ρ󸀠󸀠

Algorithm 1: Hensel lifting.

Equating the two expression for ρj in equations (5.1) and (5.2), we see that (κδ − λγ)ρ
0
= ζuδ − ψvγ. Now,

using our expressions for γ and δ, we have (κδ − λγ)ρ
0
= (ζuϕ − ψvξ)ρ

0
+ ζψ(uν

0
− vμ

0
). Thus wemust have

that ρ
0
divides θ := ζψ(uν

0
− vμ

0
) and then κδ − λγ = ζuϕ − ψvξ + θ/ρ

0
.

Next we note that gcd(γ, δ) = 1 as otherwise there would be a non-trivial factor of μ
0
and ν

0
, and then ρ

0

could not be the highest-degree common factor of f and g modulo p. Therefore, we can write 1 = σγ + τδ for
some σ, τ ∈ 𝔽𝔽p[X], and all solutions for κ and λ are given by

κ = (θ/ρ
0
+ζϕu − ψξv)τ + ϵγ and λ = −(θ/ρ

0
+ζϕu − ψξv)σ + ϵδ for some ϵ ∈ 𝔽𝔽p[X],

and each such ϵ will give a valid solution. Algorithm 1 chooses to take ϵ = 0 at first but implicitly changes

its value later via modular reduction. We find ρj by plugging in the expression for κ in equation (5.1) then

reducing modulo ρ
0
. If this modular reduction subtracts kρ

0
, then this is equivalent to choosing ϵ = k.

The post-conditions are satisfied because there is a solution for μj and νj whenever there is one for ρj.
Setting μ󸀠󸀠 = μ + μjpj and ν󸀠󸀠 = ν + νjpj, this shows that necessarily ρ󸀠󸀠μ󸀠󸀠 = f and ρ󸀠󸀠ν󸀠󸀠 = g inℤpj+1 [X]. Moreover,
the requirement

ρ󸀠󸀠 = (α + pjαj)ρ󸀠󸀠μ󸀠󸀠 + (β + pjβj)ρ󸀠󸀠ν󸀠󸀠 mod pj+1

is equivalent to w + α
0
μj + αjμ0 + β0νj + βjν0 = 0 mod p, where w = (αμ + βν − 1)/pj mod p, which always

has a solution for αj and βj as μ0 and ν
0
are coprime. Therefore, for any such solution, α󸀠󸀠 = α + pjαj and

β󸀠󸀠 = β + pjβj satisfy ρ󸀠󸀠 = α󸀠󸀠f + β󸀠󸀠g mod pj+1.
The proof up until this point shows that if a ρj exists, then Algorithm 1 finds one. Therefore, if the

algorithm fails, such a ρj does not exist.

Remark 1. The algorithm can bemodified to avoid computing γ, ξ, ζ and δ, ϕ, ψ every iteration as these vari-

ables change only when p does. Also, it is possible to output α󸀠󸀠, β󸀠󸀠, μ󸀠󸀠 and ν󸀠󸀠 along with ρ󸀠󸀠, if required, but
we opted here for brevity and simplicity.

One casewhere this additional output is useful is when computing inverses in Rg. This can be done in the

sameway inwhich r is computed, only replacing the inputs f and g by r and s and using the extended version
of Euclid’s algorithm; here s ∈ Rg is the element to be inverted considered as an element of ℤ[X]. Assuming

this does not fail, this gives an expression of the form h ≡ αr + βs mod a, and if s is invertible in Rg, then h
will be an integer coprimewith a, so bymultiplying by a constant, we can assume h = 1; then β is the inverse.
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Computing inverses is required in the ideal-NTRU problem, and this again shows that a factorisation of a is
not needed to do this.

In practice, onewill not checkwhether we are workingmodulo a prime, and the requirement that p is a prime

inAlgorithm1 and Lemma3 is there only to guarantee that the various calls to the Euclidean algorithm return

a valid result and will not fail. In practice, if the Euclidean algorithm fails, it will be because it was unable to

invert an integer modulo p, and hence we will have found a factor of p and can split it appropriately and try
again on each factor until it succeeds.

In more detail, if one is working modulo a and finds a factor d, then one can find the largest power of d
dividing a, say dk. Then if a/dk is coprime to d, we canworkmodulo a/dk and dk. Otherwise, h = gcd(a/dk , d)
is such that 1 < h < d; thenwe find the largest power of h dividing d and the largest power of h dividing a/dk,
say hl and hm, respectively. Then hkl+m divides a, and recurse using factors hkl+m, (d/hl)k and a/(dkhm) until
all factors are coprime. A solution modulo a is then found by using the Chinese remainder theorem, and this

may result in a non-monic r if the degrees modulo each factor are different.

Our calculations (and some heuristics) suggest that 6/π2 ≈ 60.8%of all randompairs f and g satisfy this
condition, and that r is linear with overwhelming probability in this case. Of the remaining 39.2%, a little

over 25% give non-monic r, and in just under 14% of the cases, no r exists. We leave open the question

whether non-monic r can be useful in ways that a monic r cannot.
Finally, we note that we can use the fact that |Res(f, g)| = adeg(r) whenever such a monic r exists as

a test of whether such an r exists. Compute a and |Res(f, g)|, and test if the latter is an integer power

of the former; if not, then we know that if an r exists, it will not be monic. As a small example, we can

compute Res(X4 + 1, X3 + 4X + 1) = 306, while a = 102 in this case, implying no monic r exists such that

(X4 + 1, X3 + 4X + 1) = (102, r(X)); indeed r(X) = 68X2 + 101X + 19 in this case.
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Input: Polynomials f, g, ρ inℤ[X] (with f monic), a prime p and a positive integer j,
satisfying αf + βg ≡ ρ mod pj for some α, β ∈ ℤ[X], as well as f ≡ ρμ mod pj and g ≡ ρν mod pj

for some μ, ν ∈ ℤ[X].
Output: A polynomial ρ󸀠󸀠 ∈ ℤ[X] such that ρ󸀠󸀠 ≡ α󸀠󸀠f + β󸀠󸀠g mod pj+1 for some α󸀠󸀠, β󸀠󸀠 ∈ ℤ[X], as well as ρ󸀠󸀠 | f

and ρ󸀠󸀠 | g inℤpj+1 [X], or Fail if no such polynomial exists.

μ ← f/ρ ⊳ Arithmetic inℤpj [X].
ν ← g/ρ ⊳ Arithmetic inℤpj [X].
u ← ((f − ρμ)/pj) mod p ⊳ Thus f ≡ ρμ + pju mod pj+1.
v ← ((g − ρν)/pj) mod p ⊳ Thus g ≡ ρν + pjv mod pj+1.
γ, ξ, ζ = xgcd𝔽𝔽p[X](ρ, μ) ⊳ Thus γ = ξρ + ζμ mod p.
δ, ϕ, ψ = xgcd𝔽𝔽p[X](ρ, ν) ⊳ Thus δ = ϕρ + ψν mod p.
θ ← ζψ(uν − vμ) mod p
ρ
0
← ρ mod p

if γ ∤ u or δ ∤ v or ρ
0
∤ θ then

return Fail

κ ← (θ/ρ
0
+ ζϕu − ψξv)τ

ρj ← (ζu − κρ0)/γ mod ρ
0

⊳ Hence deg(ρj) < deg(ρ0).
ρ󸀠󸀠 ← ρ + pjρj ⊳ Arithmetic inℤ[X].
return ρ󸀠󸀠

Algorithm 1: Hensel lifting.

Equating the two expression for ρj in equations (5.1) and (5.2), we see that (κδ − λγ)ρ
0
= ζuδ − ψvγ. Now,

using our expressions for γ and δ, we have (κδ − λγ)ρ
0
= (ζuϕ − ψvξ)ρ

0
+ ζψ(uν

0
− vμ

0
). Thus wemust have

that ρ
0
divides θ := ζψ(uν

0
− vμ

0
) and then κδ − λγ = ζuϕ − ψvξ + θ/ρ

0
.

Next we note that gcd(γ, δ) = 1 as otherwise there would be a non-trivial factor of μ
0
and ν

0
, and then ρ

0

could not be the highest-degree common factor of f and g modulo p. Therefore, we can write 1 = σγ + τδ for
some σ, τ ∈ 𝔽𝔽p[X], and all solutions for κ and λ are given by

κ = (θ/ρ
0
+ζϕu − ψξv)τ + ϵγ and λ = −(θ/ρ

0
+ζϕu − ψξv)σ + ϵδ for some ϵ ∈ 𝔽𝔽p[X],

and each such ϵ will give a valid solution. Algorithm 1 chooses to take ϵ = 0 at first but implicitly changes

its value later via modular reduction. We find ρj by plugging in the expression for κ in equation (5.1) then

reducing modulo ρ
0
. If this modular reduction subtracts kρ

0
, then this is equivalent to choosing ϵ = k.

The post-conditions are satisfied because there is a solution for μj and νj whenever there is one for ρj.
Setting μ󸀠󸀠 = μ + μjpj and ν󸀠󸀠 = ν + νjpj, this shows that necessarily ρ󸀠󸀠μ󸀠󸀠 = f and ρ󸀠󸀠ν󸀠󸀠 = g inℤpj+1 [X]. Moreover,
the requirement

ρ󸀠󸀠 = (α + pjαj)ρ󸀠󸀠μ󸀠󸀠 + (β + pjβj)ρ󸀠󸀠ν󸀠󸀠 mod pj+1

is equivalent to w + α
0
μj + αjμ0 + β0νj + βjν0 = 0 mod p, where w = (αμ + βν − 1)/pj mod p, which always

has a solution for αj and βj as μ0 and ν
0
are coprime. Therefore, for any such solution, α󸀠󸀠 = α + pjαj and

β󸀠󸀠 = β + pjβj satisfy ρ󸀠󸀠 = α󸀠󸀠f + β󸀠󸀠g mod pj+1.
The proof up until this point shows that if a ρj exists, then Algorithm 1 finds one. Therefore, if the

algorithm fails, such a ρj does not exist.

Remark 1. The algorithm can bemodified to avoid computing γ, ξ, ζ and δ, ϕ, ψ every iteration as these vari-

ables change only when p does. Also, it is possible to output α󸀠󸀠, β󸀠󸀠, μ󸀠󸀠 and ν󸀠󸀠 along with ρ󸀠󸀠, if required, but
we opted here for brevity and simplicity.

One casewhere this additional output is useful is when computing inverses in Rg. This can be done in the

sameway inwhich r is computed, only replacing the inputs f and g by r and s and using the extended version
of Euclid’s algorithm; here s ∈ Rg is the element to be inverted considered as an element of ℤ[X]. Assuming

this does not fail, this gives an expression of the form h ≡ αr + βs mod a, and if s is invertible in Rg, then h
will be an integer coprimewith a, so bymultiplying by a constant, we can assume h = 1; then β is the inverse.
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Computing inverses is required in the ideal-NTRU problem, and this again shows that a factorisation of a is
not needed to do this.

In practice, onewill not checkwhether we are workingmodulo a prime, and the requirement that p is a prime

inAlgorithm1 and Lemma3 is there only to guarantee that the various calls to the Euclidean algorithm return

a valid result and will not fail. In practice, if the Euclidean algorithm fails, it will be because it was unable to

invert an integer modulo p, and hence we will have found a factor of p and can split it appropriately and try
again on each factor until it succeeds.

In more detail, if one is working modulo a and finds a factor d, then one can find the largest power of d
dividing a, say dk. Then if a/dk is coprime to d, we canworkmodulo a/dk and dk. Otherwise, h = gcd(a/dk , d)
is such that 1 < h < d; thenwe find the largest power of h dividing d and the largest power of h dividing a/dk,
say hl and hm, respectively. Then hkl+m divides a, and recurse using factors hkl+m, (d/hl)k and a/(dkhm) until
all factors are coprime. A solution modulo a is then found by using the Chinese remainder theorem, and this

may result in a non-monic r if the degrees modulo each factor are different.

Our calculations (and some heuristics) suggest that 6/π2 ≈ 60.8%of all randompairs f and g satisfy this
condition, and that r is linear with overwhelming probability in this case. Of the remaining 39.2%, a little

over 25% give non-monic r, and in just under 14% of the cases, no r exists. We leave open the question

whether non-monic r can be useful in ways that a monic r cannot.
Finally, we note that we can use the fact that |Res(f, g)| = adeg(r) whenever such a monic r exists as

a test of whether such an r exists. Compute a and |Res(f, g)|, and test if the latter is an integer power

of the former; if not, then we know that if an r exists, it will not be monic. As a small example, we can

compute Res(X4 + 1, X3 + 4X + 1) = 306, while a = 102 in this case, implying no monic r exists such that

(X4 + 1, X3 + 4X + 1) = (102, r(X)); indeed r(X) = 68X2 + 101X + 19 in this case.
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