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Abstract: In recent years, the block Korkine-Zolotarev (BKZ) and its variants such as BKZ 2.0 have been used
as de facto algorithms to estimate the security of a lattice-based cryptosystem. In 2017, DeepBKZwas proposed
as a mathematical improvement of BKZ, which calls LLL with deep insertions (DeepLLL) as a subroutine al-
ternative to LLL. DeepBKZ can find a short lattice vector by smaller blocksizes than BKZ. In this paper, we
develop a self-dual variant of DeepBKZ, as in the work of Micciancio andWalter for self-dual BKZ. Like Deep-
BKZ, our self-dual DeepBKZ calls bothDeepLLL and its dual variant asmain subroutines in order to accelerate
to find a very short lattice vector. We also report experimental results of DeepBKZ and our self-dual DeepBKZ
for random bases on the Darmstadt SVP challenge.
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1 Introduction
Since theUSNational Institute of Standards andTechnology (NIST) began aprocess to developnew standards
for post-quantum cryptography (PQC) in 2015 and called for proposals in 2016, it has rapidly accelerated to
research lattice-based cryptography as a candidate of PQC. At the submission deadline of November 30, 2017
for the call, NIST receivedmore than 20 proposals of lattice-based cryptosystems (see theweb page of “Round
1 Submissions” of [13]). The security of such proposals relies on the hardness of lattice problems such as LWE
and NTRU, and it is becoming more important to precisely evaluate the hardness.

Lattice basis reduction is a strong tool in cryptanalysis, and it has been used to estimate the security of
lattice-based cryptosystems. In particular, BKZ [16] and its variants such as BKZ 2.0 [3] are de facto algorithms
to estimate the security level (see [1]). Given β, BKZ repeatedly calls an SVP oracle in a β-dimensional lattice
to find a short lattice vector. In security estimation, it is discussed which blocksizes β are required for BKZ
to find a short lattice vector of target norm. A new improvement of BKZ, called DeepBKZ [18], was proposed,
which calls DeepLLL [16, Section 3] before every SVP oracle to find a short lattice vector by smaller blocksizes
than BKZ. In fact, DeepBKZ with around β = 40 had found new solutions for the SVP challenge [4] in most
dimensions from 102 to 127.

In this paper, we develop a self-dual variant of DeepBKZ, emulating the self-dual BKZ by Micciancio and
Walter [11]. The original self-dual BKZ calls SVP and dual SVP oracles in forward and backward tours, respec-
tively, to find a reduced basis B = [b1, . . . , bn] with short b1 and long b*n, where [b*1, . . . , b*n] denotes the
Gram-Schmidt orthogonalization of B. In our self-dual DeepBKZ, DeepLLL and dual DeepLLL [19] are respec-
tively called to reduce [b1, . . . , bn−1] and [π2(b1), . . . , π2(bn)] before every SVP and dual SVP oracles, where
π2 denotes the orthogonal projection. Our construction is similar to [11], but its mathematical background
is based on classical proofs of Mordell’s inequality as well as the slide reduction algorithm [6] (see also [12]).
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Like DeepBKZ [18], we hope that DeepLLL and its dual variant could help to find a basis with shorter b1 and
longer b*n than the original self-dual BKZ [11] (as a result, we expect that a very short lattice vector could be
found). To show practicality, we report experimental results of both DeepBKZ and our self-dual variant for
random bases on [4].

Notation 1.1. The symbols Z and R denote the ring of integers and the field of real numbers, respectively.
We represent all vectors in column format. For a vector a = (a1, . . . , an)⊤ ∈ Rn, let ‖a‖ denote its Euclidean
norm. For a = (a1, . . . , an)⊤ and b = (b1, . . . , bn)⊤, let ⟨a, b⟩ denote the inner product

∑︀n
i=1 aibi.

2 Preliminaries
In this section, we review some definitions on lattices. We also introduce typical reduction algorithms and
DeepBKZ [18], an improvement of BKZ.

2.1 Lattices

(Primal) lattices and bases
Let b1, . . . , bn be linearly independent vectors in Rn. The set of all integral linear combinations of the bi’s is
a (full-rank) lattice

L = L(b1, . . . , bn) =
{︃ n∑︁
i=1

xibi : xi ∈ Z for all 1 ≤ i ≤ n
}︃

of dimension nwith basisB = [b1, . . . , bn] ∈ Rn×n. Every lattice has infinitelymanybases if n ≥ 2; If two bases
B1 and B2 span the same lattice, there exists a unimodular matrix V ∈ GLn(Z) with B1 = B2V. The volume
of L is defined as vol(L) = |det(B)| > 0, which is independent of the choice of bases. The Gram-Schmidt
orthogonalization (GSO) for an ordered basisB is the orthogonal familyB* = [b*1, . . . , b*n], recursively defined
by b*1 := b1 and

b*i := bi −
i−1∑︁
j=1

µi,jb*j with µi,j :=
⟨bi , b*j ⟩
‖b*j ‖2

for 2 ≤ i ≤ n. Then vol(L) =
∏︀n
i=1 ‖b

*
i ‖. For 2 ≤ ℓ ≤ n, let πℓ denote the orthogonal projection over the

orthogonal supplement of the R-vector space ⟨b1, . . . , bℓ−1⟩R (note that πℓ depends on a basis, and set π1 =
id). For 1 ≤ i ≤ j ≤ n, we denote by B[i,j] the local projected block [πi(bi), πi(bi+1), . . . , πi(bj)], and by L[i,j] the
lattice spanned by B[i,j]. The first successive minimum is the length of a shortest non-zero vector in a lattice L,
denoted by λ1(L).

Dual lattices and dual bases
The dual of a lattice L is defined as

̂︀L = {︀
x ∈ spanR(L) : ⟨x, y⟩ ∈ Z for all y ∈ L

}︀
,

where spanR(L) denotes the R-vector space spanned by the vectors in L. The dual of a full-rank lattice with
basis B has a basis D =

(︀
B−1

)︀⊤. In other words, the relation D⊤B = I is always maintained, where I is the
identity matrix. This tells how the dual basis D changes with respect to changes of the primal basis B.

2.2 Lattice Basis Reduction

Here we introduce some notions of reduction and algorithms to achieve them.
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LLL
For a parameter 1

4 < δ < 1, a basis B = [b1, . . . , bn] is called δ-LLL-reduced if it satisfies the two conditions;
(i) It is size-reduced, namely, the GSO coefficients satisfy |µi,j| ≤ 1

2 for all j < i. (ii) It satisfies Lovász’ condition,
namely, δ‖b*k−1‖

2 ≤ ‖πk−1(bk)‖2 for all k. An LLL-reduced basis can be found by the LLL algorithm [10], in
which adjacent basis vectors bk−1 and bk are swapped if Lovász’ condition does not hold.

DeepLLL
It is a straightforward generalization of LLL, in which non-adjacent vectors can be changed; If the deep ex-
change condition ‖πi(bk)‖2 < δ‖b*i ‖2 is satisfied for some i < k, the vector bk is inserted between bi−1 and bi
as

B← [b1, . . . , bi−1, bk , bi , . . . , bk−1, bk+1, . . . , bn], (1)

This is called adeep insertion. Every output basis of DeepLLL satisfies the following condition; For 1
4 < δ < 1, a

basisB = [b1, . . . , bn] is called δ-DeepLLL-reduced if it is size-reduced and it also satisfies δ‖b*i ‖2 ≤ ‖πi(bk)‖2

for all i < k.

BKZ
AbasisB = [b1, . . . , bn] of a lattice L is calledHKZ-reduced if it is size-reduced and it satisfies ‖b*i ‖ = λ1(πi(L))
for every 1 ≤ i ≤ n. The notion of BKZ-reduction is a local block version of HKZ-reduction, defined as fol-
lows [14–16]; For β ≥ 2, a basisB = [b1, . . . , bn] of a lattice L is called β-BKZ-reduced (simply called β-reduced
in [14, 16]) if it is size-reduced and every local blockB[j,j+β−1] isHKZ-reduced for 1 ≤ j ≤ n−β+1. The second con-
dition means ‖b*j ‖ = λ1(L[j,k]) for every 1 ≤ j ≤ n −1 with k = min(j + β −1, n). The original BKZ algorithm [16]
finds an almost β-BKZ-reduced basis, and it calls LLL to reduce every local block before enumeration of a
shortest vector over the block lattice. Efficient variants of BKZ have been proposed such as BKZ 2.0 [3], and
some of them have been implemented in software (e.g., [5]).

Self-dual BKZ
Motivated from the slide reduction algorithm [6], an elegant generalization of LLL (see also Section 3.3 below),
the self-dual BKZ algorithm was proposed by Micciancio and Walter [11]. Their algorithm is based on a new
notion [11, Definition 1] of block reduction using lattice duality (cf., the slide reduction algorithm is based
on classical proofs of Mordell’s inequality, see also [12] for details). The output quality of self-dual BKZ in
the worst case is proven to be at least as the worst case behavior of BKZ [11, Theorem 1]. The self-dual BKZ
algorithmcalls primal SVPanddual SVPoracles over local blocks in forwardandbackward tours, respectively,
and it calls forward and backward tours alternately. Like BKZ, self-dual BKZ is a proper block generalization
of the LLL algorithm.

DeepBKZ
It was proposed in [18], which calls DeepLLL as a subroutine alternative to LLL in BKZ. Every output basis
of DeepBKZ satisfies the following condition of reduction; For 1

4 < δ < 1 and β ≥ 2, a basis is called (δ, β)-
DeepBKZ-reduced if it is both δ-DeepLLL-reduced and β-BKZ-reduced. In Algorithm 1, we give a detailed al-
gorithm of DeepBKZ with early-abort strategy, adopted in BKZ 2.0; For an input basis B = [b1, . . . , bn] of a
lattice L, we terminate DeepBKZ with blocksize β after

N = C
(︂
n
β

)︂2(︂
log n + log logmax

1≤i≤n

‖b*i ‖
vol(L)1/n

)︂
(2)

tours, where C is a small constant. Since it is proven in [9] that the output basis of BKZ after N tours has an
enough quality, we expect that a similar result would hold for DeepBKZ (we took different values for C in our
experiments).
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Dual DeepBKZ
It is a dual version of DeepBKZ proposed in [19]. It consists of the dual enumeration in self-dual BKZ [11]
and a dual version of DeepLLL to reduce the dual basis of an input basis. In particular, in dual DeepLLL [19,
Algorithm 1], a basis transformation is performed as

B← [b1, . . . , bi−1, bi+1, . . . , bk , bi , bk+1, . . . , bn], (3)

called a dual deep insertion (this is opposite to the primal deep insertion (1)).

3 Self-dual DeepBKZ
In this section, we develop a self-dual variant of DeepBKZ.

3.1 Overview of algorithm

Algorithm 2 is our self-dual DeepBKZ. It consists of two parts of a forward tour and a backward tour, as in
self-dual BKZ by Micciancio andWalter [11]. Let B = [b1, . . . , bn] be an input basis of self-dual DeepBKZ with
blocksize 3 ≤ β ≤ n − 1. We describe an overview for each part as follows:

Forward tour
As in the original self-dual BKZ [11], we call SVP oracles in dimension β to reduce every local block B[j,j+β−1]
from j = 1 to n − β. In our self-dual DeepBKZ, we additionally call DeepLLL for the sub-basis [b1, . . . , bn−1]
before enumeration to find a shortest vector over every block lattice L[j,j+β−1]. Note that this part does not
change the last basis vector bn.

Backward tour
As in [11], we call dual SVP oracles in dimension β to reduce the dual basis of every local block B[j−β+1,j] from
j = n down to β + 1. Similarly to the above part, we call dual DeepLLL [19, Algorithm 1], a dual variant of
DeepLLL, before the dual enumeration [11, Algorithm 2] (see also Appendix A for the dual enumeration). As
in the above part, we restrict the index i in every dual deep insertion (3) from i = n − 1 to 2 in order not to
change the first basis vector b1 by dual DeepLLL. This means that it reduces the local block B[2,n] by dual
DeepLLL, equivalently, it reduces its dual basis by (primal) DeepLLL.

3.2 Terminating condition

A mathematical terminating condition is given in [11, Lemma 1] for the original self-dual BKZ, but it is men-
tioned in [11] that such condition might never be met in practice. As in [11], we use the early-abort strategy
(cf., the termination of the original self-dual BKZ depends on the behavior of GSA slopes). We count a pair of
forward and backward tours as one tour of our self-dual DeepBKZ. After

M = C
(︂
n
2β

)︂2(︂
log n + log logmax

1≤i≤n

‖b*i ‖
vol(L)1/n

)︂
(4)

tours with the same constant C as in (2), we terminate self-dual DeepBKZ with blocksize β for an input basis
B = [b1, . . . , bn] of a lattice L (we replace the denominator of (2) by 2β, see [11, Section 4] for details).
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3.3 Mathematical background and our motivation

Inspired by classical proofs of Mordell’s inequality, a reduction notion is introduced in [12]; A basis B =
[b1, . . . , bn] of a lattice L is calledMordell-reduced with factor ε ≥ 0 if it satisfies both

‖b1‖ = λ1 (L (b1, . . . , bn−1)) and 1
‖b*n‖

≤ (1 + ε)λ1(π̂2(L)).

Mordell’s reduction satisfies some important properties such as [12, Lemma 10], and the slide reduction algo-
rithm [6] is designed to achieve a blockwise version of Mordell’s reduction. In particular, the output quality
of the slide reduction algorithm in the worst case is proven to be slightly better than that of BKZ for a fixed
blocksize β. (However, from [11, Figure 2], the output quality of the slide reduction algorithm is worse than
both BKZ and self-dual BKZ in practice.)

In order to describe the basic idea of our self-dual DeepBKZ, consider

b1 b2 · · · · · · bn−1
π2(b2) π2(b3) · · · · · · π2(bn).

for a basisB = [b1, . . . , bn] of a lattice L. Our self-dual DeepBKZ reduces the sub-basis [b1, . . . , bn−1] by Deep-
BKZ [18] in forward tours. It also reduces the basis [π2(b2), . . . , π2(bn)] of the projected lattice π2(L) by dual
DeepBKZ [19] in backward tours, equivalently, it reduces the dual basis by DeepBKZ. With this construction,
we expect that our self-dual DeepBKZ could find a basis satisfying a condition close to Mordell’s reduction.
In particular, like DeepBKZ [18], we hope that our self-dual DeepBKZ could find a shorter b1 (resp., longer b*n)
with help of DeepLLL (resp., dual DeepLLL [19]) than the original self-dual BKZ [11].

3.4 Implementation

We implemented DeepBKZ (Algorithm 1) and self-dual DeepBKZ (Algorithm 2) in C++ programs with the NTL
library [17]. We used the g++ complier with -O3 -std=c++11 option. We set a triple of B = [b1, . . . , bn], µ =
(µi,j)1≤j<i≤n and (Bi)1≤i≤n as a class, where B is a basis, µ its GSO coefficients, and Bi = ‖b*i ‖2. We used the int
data type forB, and long double for both µ and (Bi)1≤i≤n. To keep track of the GSO information inDeepLLL and
dual DeepLLL, we implemented pseudo-codes of [18, Algorithm 4] and [19, Algorithm 2], respectively.We also
implemented [8, Algorithm 2] and Algorithm 3 in Appendix A for primal and dual enumerations, respectively.
We took a full enumeration setting as in [18] for both enumerations. Our experiments ran on an Intel Xeon
CPU E3-1225 v6@3.30GHz with 32.0 GB RAM (we run every reduction algorithm over a single thread).

3.5 Experimental results

Here we report experimental results of DeepBKZ and self-dual DeepBKZ for random bases on [4] in terms of
both the output quality and performance.

Output quality
The Hermite factor is a good index to measure the (practical) output quality of a reduction algorithm [7]. The
factor of an algorithm for a basis of an n-dimensional lattice L is defined as

𝛾 = ‖b‖
vol(L)1/n

,

where b is a shortest non-zero basis vector output by the algorithm. Smaller 𝛾 means that the algorithm can
find a shorter lattice vector. For practical algorithms such as LLL and BKZ, Gama and Nguyen [7] experimen-
tally showed that the root Hermite factor 𝛾 1

n converges a constant for high dimensions. In Table 1 (resp., Ta-
ble 2), we show the average of the root Hermite factor of DeepBKZ (resp., self-dual DeepBKZ), for random
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Table 1: The average of the root Hermite factor 𝛾
1
n of DeepBKZ with early-abort for some constants C, for the SVP challenge in

dimensions n with seeds 0–9 (C = ∞means the average factor without early-abort, which data are from [18])

n C β = 20 β = 25 β = 30 β = 35 β = 40 β = 45

100
1.0 1.01077 1.01051 1.01039 1.01033 1.01022 1.01008
4.0 1.01077 1.01035 1.01011 1.01005 1.00994 1.00987
∞ – 1.01043 1.00999 1.00958 1.00949 –

105
1.0 1.01071 1.01028 1.01022 1.01014 1.01005 1.01003
4.0 1.01071 1.01023 1.00994 1.00994 1.00991 1.00979
∞ – 1.01041 1.00983 1.00937 1.00924 –

110
1.0 1.01057 1.01031 1.01023 1.01012 1.01017 1.01004
4.0 1.01057 1.01024 1.01009 1.01004 1.00998 1.00983
∞ – 1.01010 1.00975 1.00941 1.00916 –

115
1.0 1.01065 1.01039 1.01027 1.01020 1.01003 1.00997
4.0 1.01065 1.01032 1.01010 1.00995 1.00993 1.00980
∞ – 1.01021 1.00964 1.00917 1.00899 –

Table 2: Same as Table 1, but the root Hermite factor of self-dual DeepBKZ

n C β = 20 β = 25 β = 30 β = 35 β = 40 β = 45

100 1.0 1.01078 1.01065 1.01060 1.01056 1.01051 1.01049
4.0 1.01038 1.01035 1.01031 1.01025 1.01024 1.01016

105 1.0 1.01053 1.01053 1.01045 1.01042 1.01036 1.01031
4.0 1.01033 1.01016 1.01008 1.01008 1.01007 1.01007

110 1.0 1.01060 1.01048 1.01038 1.01036 1.01036 1.01029
4.0 1.01038 1.01033 1.01030 1.01015 1.01009 1.01002

115 1.0 1.01054 1.01036 1.01036 1.01036 1.01022 1.01017
4.0 1.01026 1.01021 1.01016 1.01014 1.01013 1.01012

bases on the SVP challenge [4] in dimensions from n = 100 to 115 with seeds 0–9. We took C = 1.0 and
4.0 for two different early-abort constants in (2) and (4) (cf., C = 0.25, 2.0 and 8.0 were taken in [20]). As
in [18, 19], we set δ = 0.99 as reduction parameters of both DeepLLL and its dual variant. We took as input
bases reduced by BKZ with blocksize 20, implemented in the fplll library [5]. We increased blocksizes β by
every 5 from 20 up to 45 for both DeepBKZ and its self-dual variant (it becomes very slow for β ≥ 50 since
we did not use any pruning in [8]). We see from Tables 1 and 2 that the root Hermite factor (i.e., the output
quality) of DeepBKZ is slightly better than that of self-dual DeepBKZ for β ≥ 30. In Table 1, we also show the
average of the root Hermite factor of DeepBKZ without early-abort, which data are from [18, Table 2]. As seen
from Table 1, the root Hermite factor of DeepBKZ with early-abort is pretty worse than without early-abort for
β ≥ 30.

Performance
In Tables 3 (resp., Table 4), we show the average of the running time of DeepBKZ (resp., self-dual DeepBKZ) for
the SVP challenge in dimensions from n = 100 to 115with seeds 0–9. FromTables 3 and4, our self-dual Deep-
BKZ is at least 3 times slower than DeepBKZ for β ≥ 30. In particular, DeepBKZ is much faster for 20 ≤ β ≤ 30
due to that a DeepBKZ-reduced basis can be found by tours less than the terminating condition (2). Moreover,
DeepBKZ with early-abort is much faster than without early-abort; For example, it took 5242 seconds ≈ about
1.5 hours to run DeepBKZ with early-abort constant C = 4.0 in n = 115 for blocksizes up to β = 45, while a
few days are required to run DeepBKZ without early-abort.
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Table 3: The average of the total running time (seconds) of DeepBKZ with blocksizes β for the SVP challenge in dimensions n
with seeds 0–9 (each time was counted from blocksize 20 to given β)

n C β = 20 β = 25 β = 30 β = 35 β = 40 β = 45

100 1.0 9 21 52 112 258 439
4.0 9 43 138 323 750 1330

105 1.0 10 34 71 193 433 801
4.0 10 53 202 510 1177 2032

110 1.0 27 55 122 298 637 1006
4.0 28 59 273 803 1985 3529

115 1.0 76 85 173 424 882 1470
4.0 78 91 437 1329 2916 5242

Table 4: Same as Table 3, but the total running time (seconds) of self-dual DeepBKZ

n C β = 20 β = 25 β = 30 β = 35 β = 40 β = 45

100 1.0 231 340 392 484 664 911
4.0 539 943 1293 1559 2196 3198

105 1.0 315 410 599 785 1104 1714
4.0 1075 1735 2437 3012 4758 7548

110 1.0 777 1182 1460 1861 2647 4109
4.0 1151 2795 4443 6043 8335 12154

115 1.0 1254 1817 2565 3295 4622 6606
4.0 3263 6886 9702 12899 17325 24118

4 Concluding remarks
In this section, we first compare reduction algorithms in terms of both the output quality and performance.
We then conclude this work and give our future work.

4.1 Comparison of algorithms

Output quality
A prediction of limiting value of the root Hermite factor 𝛾 1

n achieved by BKZ is given in Chen’s thesis [2] (it is
based on Gaussian Heuristic, and it seems to hold for β ≥ 40 in practice);

lim
n→∞

𝛾
1
n ≈

(︂
β

2πe (πβ)
1
β

)︂ 1
2(β−1)

. (5)

Actually, as seen from [11, Figure 2], the output quality of both BKZ and self-dual BKZ approximately follows
the prediction (5) for β ≥ 40. As discussed in Subsection 3.5, the output quality of our self-dual DeepBKZ is
slightly worse than that of DeepBKZ for every β ≥ 30. This is the same as the relation between BKZ and self-
dual BKZ, shown in [11]. While the prediction (5) implies that β ≥ 85 is required for BKZ to achieve 𝛾 1

n = 1.01,
it requires only β ≥ 40 for both DeepBKZ and our self-dual DeepBKZ with early-abort from Tables 1 and 2 (cf.,
only β ≥ 30 is required for DeepBKZ without early-abort).

Performance
Since DeepLLL and dual DeepLLL are somewhat costly, DeepBKZ and our self-dual DeepBKZ are more costly
thanBKZand self-dual BKZ.However, for blocksizes β ≥ 30, SVPanddual SVPoracles (i.e., enumerations) are
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dominant in DeepBKZ and our self-dual DeepBKZ. Hence DeepBKZ and its variants have comparable running
time to BKZ and its variants for high blocksizes.

4.2 Conclusion and future work

We showed by experiments that DeepLLL [16] and dual DeepBKZ [19] can accelerate to find a short lattice
vector in the framework of self-dual BKZ [11] even for small blocksizes. Furthermore, our self-dual DeepBKZ
has comparable running time to self-dual BKZ for high blocksizes since the enumeration cost is dominant for
β ≥ 30. However, DeepBKZ [18] is more efficient than our self-dual DeepBKZ in both the output quality and
performance. Therefore, as a future work, we would like to improve DeepBKZ with pruning as in BKZ 2.0 [3],
and analyze its practical output quality for high blocksizes β ≥ 50.
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A Dual enumeration with modifications
In Algorithm 3, we show an algorithm of dual enumeration by [11, Algorithm 2] with modifications for effi-
ciency. The modifications are based on [8, Appendix B] for primal enumeration. The strategy of dual enumer-
ation is as follows; Let B = [b1, . . . , bn] be a basis of a lattice L, and v a short vector over the dual lattice ̂︀L. By
definition of ̂︀L, we have xi := ⟨v, bi⟩ ∈ Z for all 1 ≤ i ≤ n, that is, we have v =

∑︀n
i=1 xidi ∈ ̂︀L for the dual basis

D = [d1, . . . , dn] of B. Since xi = ⟨v, b*i ⟩ −
∑︀i−1

j=1 µi,j⟨v, b*j ⟩ for each 1 ≤ i ≤ n, we can compute x*i := ⟨v, b*i ⟩
from (x1, . . . , xi) ∈ Zi as x1 = x*1 and x*i = xi +

∑︀i−1
j=1 µi,jx*j for 2 ≤ i ≤ n. On the other hand, for a search bound

A > 0 with ‖v‖2 ≤ A, we have⃒⃒⃒⃒
⃒⃒xi + i−1∑︁

j=1
µi,jx*j

⃒⃒⃒⃒
⃒⃒
2

≤ ‖v‖2 · ‖b*i ‖2 ≤ A · ‖b*i ‖2 for 1 ≤ i ≤ n.

With these equations, we enumerate all coefficient vectors x = (x1, . . . , xn)⊤ ∈ Zn of dual lattice vectors
v ∈ ̂︀L with ‖v‖2 ≤ A.

Algorithm 1 DeepBKZ [18] with early-abort

Input: A basis B = [b1, . . . , bn] of a lattice L, a reduction parameter 1
4 < δ < 1, a blocksize β ∈ Z with

2 ≤ β ≤ n, and the maximum number of tours N > 0
Output: A (δ, β)-DeepBKZ-reduced basis B of L (if N is sufficiently large)
1: B← DeepLLL(B, δ) /* Compute µ := (µi,j) and Bi := ‖b*i ‖2 together */
2: z ← 0, j ← 0, t ← 0 /* t is the current number of tours */
3: while z < n − 1 do
4: if j = n − 1 then
5: j ← 0 and t ← t + 1
6: if t ≥ N then
7: break /* Early-abort */
8: end if
9: end if
10: j ← j + 1 /* j mod n − 1 */
11: k ← min(j + β − 1, n) and h ← min(k + 1, n)
12: v = (vj , . . . , vk) ← Enum(µ[j,k], (Bi)j≤i≤k , R) /* Find v ∈ Zk−j+1 such that

⃦⃦⃦
πj

(︁∑︀k
i=j vibi

)︁⃦⃦⃦
= λ1

(︀
L[j,k]

)︀
by enumeration for a search bound R (see [8, Algorithm 2], and we took R = δBj for our experiments)
*/

13: if v ≠ (±1, 0, . . . , 0) then
14: z ← 0
15: w←

∑︀k
i=j vibi ∈ L

16: [b1, . . . , bh , 0] ← MLLL([b1, . . . , bj−1,w, bj , . . . , bh], δ) /* Remove the linear dependency after in-
sertion ofw at the j-th position */

17: [b1, . . . , bh]← DeepLLL([b1, . . . , bh], δ) at stage j
18: else
19: z ← z + 1
20: [b1, . . . , bh]← DeepLLL([b1, . . . , bh], δ) at stage h − 1
21: end if
22: end while
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Algorithm 2 Self-dual DeepBKZ
Input: A basis B = [b1, . . . , bn] of a lattice L, a reduction parameter 1

4 < δ < 1, a blocksize 3 ≤ β ≤ n − 1, and
the maximum number of tours M > 0

Output: A reduced basis B of L
1: t ← 0
2: Compute the GSO information µi,j and Bi = ‖b*i ‖2

3: while t ≤ M do
4: /* Part of a forward tour */
5: [b1, . . . , bn−1]← DeepLLL([b1, . . . , bn−1], δ)
6: for j = 1 to n − β do
7: k ← j + β − 1
8: h ← min(k + 1, n − 1)
9: Same as steps from 8 to 21 in Algorithm 1 for DeepBKZ
10: end for
11: /* Part of a backward tour */
12: B← Dual_DeepLLL(B, δ) at stages from n − 1 downto 2
13: for j = n downto β + 1 do
14: k ← j − β + 1
15: x← Dual_Enum(µ[k,j], (Bi)k≤i≤j , A) /* Enumerate coefficient vectors x ∈ Zj−k+1 of short vectors v ∈ ̂︀L

(Appendix A) */
16: if x ≠ (0, . . . , 0, ±1) then
17: Insert v ∈ ̂︀L into the dual basis ofB at the j-th position to obtain a newbasisB /* it can be achieved

by LLL, see [11, Section 7] */
18: B← Dual_DeepLLL(B, δ) at stages from n − 1 downto 2
19: end if
20: end for
21: t ← t + 1 /* current number of tours */
22: end while
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Algorithm 3 Dual_Enum: Dual-Enumeration [11] with modifications

Input: GSO information (µi,j) and Bi = ‖b*i ‖2 of a basis B = [b1, . . . , bn] of a lattice L, and a search bound
A > 0

Output: The coordinate vector x = (x1, . . . , xn)⊤ ∈ Zn of a dual lattice vector v ∈ ̂︀L satisfying ‖v‖2 ≤ A (if
such v exists)

1: for k = 1 to n do
2: Ck = 1/Bk /* inverse of Bk */
3: ̂︀µk,k = 1; for j = k + 1 to n: ̂︀µk,j ← −∑︀j−1

h=k µj,ĥ︀µk,h;
4: end for
5: σ ← (0)(n+1)×n /* (n + 1) × n matrix with all entries 0 */
6: r1 = 0, r2 = 1, . . . , rn = n − 1, rn+1 = n
7: ρ0 = ρ1 = · · · = ρn = 0 /* partial norm */
8: x1 = 1, x2 = · · · = xn = 0 /* current coordinate vector x */
9: c1 = · · · = cn = 0; w1 = · · · = wn = 0 /* centers and jumps */
10: k ← 1, last_nonzero← 1 /* largest i for which xi ≠ 0 */
11: while true do
12: ρk ← ρk−1 + (xk − ck)2Ck
13: if ρk ≤ A then
14: if k = n then
15: return x = (x1, . . . , xn)⊤ ∈ Zn /* solution found; program ends */
16: else
17: k ← k + 1; rk+1 ← min(rk , rk+1)
18: for i = rk to k − 1 do
19: σi+2,k ← σi+1,k + xî︀µi,k
20: end for
21: ck ← −σk+1,k; xk ← ⌊ck⌉; wk ← 1
22: end if
23: else
24: k ← k − 1
25: if k = 0 then return ∅ /* there is no solution */
26: rk+1 ← k
27: if k ≥ last_nonzero then
28: last_nonzero← k; xk ← xk + 1
29: else
30: if xk > ck then xk ← xk − wk; else xk ← xk + wk;
31: wk ← wk + 1
32: end if
33: end if
34: end while
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