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Abstract: We introduce a new homomorphic encryption scheme that is natively capable of computing with

complex numbers. This is done by generalizing recent work of Chen, Laine, Player and Xia, who modified

the Fan–Vercauteren scheme by replacing the integral plaintext modulus t by a linear polynomial X − b. Our
generalization studies plaintext moduli of the form Xm + b. Our construction significantly reduces the noise
growth in comparison to the original FV scheme, somuch deeper arithmetic circuits can be homomorphically

executed.
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1 Introduction
The goal of homomorphic encryption is to allow for arbitrary arithmetic operations on encrypted data, such

that the decrypted result equals the outcome of the same calculation carried out in the clear. Since the publi-

cation of Gentry’s seminal work [15], this research area has evolved rapidly and is on the verge of reaching a

first degree of maturity, as was recently demonstrated e.g. by practical implementations of privacy-enhanced

electricity load forecasting [2, 4], digital image processing [1, 10], and medical data management [8, 12, 17].

Most of the current focus lies on somewhat homomorphic encryption (SHE), where the schemes are capable

of homomorphically evaluating an arithmetic circuit having a certain predetermined computational depth.

The leading proposals for realizing this goal are the Brakerski-Gentry-Vaikunthanathan (BGV) scheme [5] and

the Fan-Vercauteren (FV) scheme [13].

In actual applications, the input to the homomorphic evaluation of an arithmetic circuit C needs to be

preprocessed in two steps. The first step is encoding, where one’s task is to represent the actual ‘real world

data’ as elements of the plaintext space of the envisaged SHE scheme. This plaintext space is a certain com-

mutative ring, and the encoding should be such that real world arithmetic agrees with the corresponding ring

operations, up to the anticipated computational depth.

In the original descriptions of BGV and FV, the plaintext space is a ring of the form Rt = Z[X]/(t, f (X))
where t ≥ 2 is an integer and f (X) ∈ Z[X] is a monic irreducible polynomial. Throughout this paper we will

stick to the common choice of 2-power cyclotomics f (X) = Xn +1, where n = 2

k
for some integer k ≥ 1. Encod-

ing numerical input is typically done by taking an integer-digit expansion with respect to some base b, then
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replacing b by X and finally reducing the digits modulo t. Decoding then amounts to lifting the coefficients

back to Z, for instance by choosing representatives in (−t/2, t/2], and evaluating the result at X = b. Thanks
to the relation X−1 ≡ −Xn−1 it is possible to allow the expansions to have a fractional part. In this case the

decoding step must be preceded by replacing the monomials Xi of degree i > B by −Xi−n, for some appropri-

ate point of separation B. All these parameters need to be chosen in such a way that the evaluation of C on

the encoded data decodes to the right outcome. At the same time one wants t to be as small as possible, be-

cause its size highly affects the efficiency of the resulting SHE computation. Selecting optimal parameters is

a tedious application-dependent balancing act to which a large amount of recent literature has been devoted,

see e.g. [2, 7, 9, 11, 12, 17, 19].

Because in practice n is of size at least 1024, the plaintext spaces Rt can a priori host an enormous range

of data, even for very small values of t. Unfortunately this is hindered by their structure, which is not a great
match with numerical input data types like integers, rationals or floats. For example, if t = 2 then it is not

even possible to add a non-zero element to itself without incorrect decoding. Because of such phenomena,

values of t are required that typically consist of dozens of decimal digits, badly affecting the efficiency. An

idea to remedy this situation has been around for a while [5, 14, 16] and uses a polynomial plaintext modulus,

rather than just an integer. Recently the first detailed instantiation of this idea was given by Chen, Laine,

Player and Xia [7], who adapted the FV scheme to plaintext moduli t = X − b for some b ∈ Z
≥2
. In this case

the plaintext space becomes Rt = Z[X]/(X − b, Xn + 1) = Z[X]/(X − b, bn + 1)
∼
= Zbn+1, whose structure is

a much better match with the common numerical input data types. This allows for much smaller plaintext

moduli (norm-wise), with beneficial consequences for the efficiency, or for the depth of the circuits C that can

be handled [7, Section 7.2].

This paper further explores the paradigm that the structure of the plaintext space Rt should match the

input data type as closely as possible. Concretely, we focus on complex-valued data types, such as cyclotomic

integers and floating point complex numbers. We study this setting mainly in its own right, but note that

complex input data has been considered in homomorphic encryption before, e.g., in the homomorphic eval-

uation of the Discrete Fourier Transform studied by Costache, Smart and Vivek [10] in the context of digital

image processing, where the input consists of cyclotomic integers.

Representing complex numbers.

One naive way to encode a complex number zwould be to view it as a pair of real numbers, for instance using

Cartesian or polar coordinates. These can be fed separately to the SHE scheme, which is now used to evaluate

two circuits. Amore direct way is to use a complex base b. For instance, one could take b = eπi/n, as was done
by Cheon, Kim, Kim and Song [9], albeit in a somewhat different context. This choice has the additional

feature that f (b) = 0, so that wrapping around modulo f (X) = Xn + 1 does not lead to incorrect decoding.

However, finding an integer-digit base b expansion with small norm which approximates z sufficiently well

is an n-dimensional lattice problem, which is practically infeasible. To get around this Costache, Smart and

Vivek [10] instead use b = ζ := eπi/m for some divisor m | n, which is small enough for finding short base ζ
approximations, while preserving the feature that wrapping around modulo f (X) is unharmful. But in their

approach, a huge portion of plaintext space is left unused. Indeed, the encoding map is

Z[ζ ]→ Rt : z =
m−1∑︁
i=0

zibi ↦→
m−1∑︁
i=0

ziY i ,

where Y = Xn/m, t ≥ 2 is an integral plaintext modulus and zi is the reduction of zi mod t, so that all plaintext
computations are carried out in the subring Z[Y]/(t, Ym + 1), which is of index tn−m in Rt. Our proposal is to
resort to a plaintext modulus of the form t = Xm + b for some small integer b, with |b| ≥ 2. In this case, for

m < n, we have RXm+b = Z[X]/(Xm + b, Xn + 1) = Z[X]/(bn/m + 1, Xm + b). An additional assumption (which

is discussed in more detail in the next section), is that

there exists an α ∈ Zbn/m+1 such that b = α
m
, (1)



Processing complex-valued data in homomorphic encryption | 57

where b denotes the reduction of bmodulo bn/m+1. Throughoutwefix such an α and let β be itsmultiplicative

inverse, which necessarily exists. This implies that (
¯βX)m + 1 = 0, therefore we have a well-defined ring

homomorphism

Z[ζ ]→ RXm+b :
m−1∑︁
i=0

ziζ i ↦→
m−1∑︁
i=0

ziβ
iXi , (2)

which is surjective with kernel (bn/m +1). In other words, while Costache, Smart and Vivek restrict their com-

putations to an injective copy ofZ[ζ ]/(t) inside Rt, we can view RXm+b as an isomorphic copy ofZ[ζ ]/(bn/m+1).
Essentially, our approach transfers the unused part of the plaintext space coming from the large dimension

n into a larger integral modulus, reflected in the exponent n/m.
In the remainder of this paper,we explainhow this observation canbeused to efficiently process complex-

valued input data in homomorphic encryption. First, in Section 2 we explain how to encode and decode

elements of the ring Z[ζ ] of 2mth

cyclotomic integers and discuss the assumption (1), with special attention

to the case m = 2 where Z[ζ ] = Z[i] is the ring of Gaussian integers. Next in Section 3 we explain how this

can be used to encode other data types such as cyclotomic rationals or complex floats, either by resorting

to LLL as in [10] or by using Chen et al.’s fractional encoder from [7]. In Section 4 we discuss how to adapt

the FV scheme so that it can cope with plaintext spaces of the form RXm+b. Finally, in Section 5 we discuss

the performance of this adaptation in comparison with previous approaches. In short we can reach a depth

at least 5 times that of the best approach which directly encrypts encodings of complex numbers [10]. We

can also reach very similar depths to the state of the art where one encrypts the real and imaginary parts

separately [7]. However, since we natively encrypt complex numbers our ciphertexts are two times smaller

and hence our approach is more efficient by roughly a factor two in time and three in space.

2 Encoding and decoding elements of Z[ζ ]
Encoding

Encoding an element of Z[ζ ] happens in two steps. The first step applies the map (2) yielding a polynomial

of degree less than m which typically has very large coefficients. The second step is comparable to the hat
encoder of Chen et al. [7] and switches to another representant by spreading this polynomial across the range

1, X, . . . , Xn−1 while making the coefficients a lot smaller. The result will then be lifted to R = Z[X]/(Xn + 1)
and fed to our adaptation of the FV scheme, where the smaller coefficients are important to keep the noise

growth bounded.

Here is how this second step is carried out in practice: we think of the coefficients ziβ
i
as being repre-

sented by integers between −⌊bn/m/2⌋ and ⌈bn/m/2⌉. We then expand these integers to base b using digits
ai,j from the range −⌊b/2⌋, . . . , ⌊b/2⌋ to find

ziβ
i
= ai,n/m−1b

n/m−1
+ . . . + ai,1b + ai,0.

There is a minor caveat here, namely if b is odd then there are more integers modulo bn/m + 1 than there

are balanced b-ary expansions of length at most n/m. This is easily resolved by allowing the last digit to

be one larger. For even b the situation is opposite: since ziβ
i
is represented by an integer of size at most

bn/m/2 = b/2 · bn/m−1 we have a surplus of base-b expansions. Here it makes sense to choose an expansion

with the shortest Hamming weight (e.g., if b = 2 then we simply pick the non-adjacent form). We denote the

maximal number of non-zero coefficients that can appear in a fresh encoding by Nb.
Given such base-b expansions of the coefficients, we replace each occurrence of b by −Xm and then sub-

stitute the results in the image of (2). We end up with an expansion

∑︀n−1
i=0 ciX

i
where the ci are represented

by integers of absolute value at most ⌊b/2⌋, or in fact ⌊(b + 1)/2⌋ if we take into account the caveat.
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Decoding

In order to decode a given expansion

∑︀n−1
i=0 ciX

i
we walk through the same steps in reverse order. First we

pick another representant by reducing the expansion modulo Xm + b, in order to end up with

m−1∑︁
i=0

c′iXi ∈ Z[X]/(bn/m + 1, Xm + b).

This can be rewritten as

∑︀m−1
i=0 c′iα

iβiXi so we decode as
∑︀m−1

i=0 ziζ i ∈ Z[ζ ] where zi is a representant of c′iα
i

taken from the range −⌊bn/m/2⌋, . . . , ⌈bn/m/2⌉.

On the assumption (1)

Usually n andm are determined by security considerations and the concrete application. To apply our encod-

ing method we want to find a small value of b for which condition (1) is met. This is easiest if n/m is small or

m is small. If no satisfactory value of b can be found then one can try to enlargem and view Z[ζ ] as a subring
of a higher degree cyclotomic ring. Below we give two lemmas constraining the possible choices for b given
m and n; still assuming we are working with 2-power cyclotomic f . Their proofs are given in the full version
of this paper [3]. We note that it does not help to allow for negative b in our case, that is for n = 2

k
, because

b satisfies (1) if and only if −b does.

Lemma 2.1. Let n > m > 1. A necessary condition for (1) is that for every odd prime p | bn/m + 1 we have
2n | p − 1.

Lemma 2.2. Let g be an element of order n in Z×
4n and let t be an element of order 2 not in ⟨g⟩ so that Z×4n =

⟨t⟩ × ⟨g⟩. If condition (1) is satisfied for odd b > 1 and m > 1 then b mod 4n is an element of the subgroup
⟨t⟩ × ⟨gm⟩. In particular this implies that b ≡ ±1 mod 4m.

In fact, one may always take g = 3 and t = −1 in the above lemma.

Our method is particularly friendly towards Gaussian integers. Indeed if m = 2 then one can always take

b = 2, as one easily verifies that α2 = 2 where

α = 2

n/8
(︁
2

n/4
− 1

)︁
. (3)

The map (2) then defines an isomorphism between RX2+2 and Z[i]/(2n/2 + 1).
If this ring is not large enough to ensure correct decoding, then one can move to slightly larger values of

b. The next choice which always works is b = 4, where one can simply take α = 2. Here the ring becomes

Z[i]/(2n + 1).

3 Encoding complex-valued input data
In this section we look at the more general problem of encoding floating point complex numbers. Our ap-

proach will be to approximate these complex numbers by suitable cyclotomic rationals and then proceed as

in Section 2. We have many choices for such approximations including the choice of m which defines which

root of unity we are working with. We also have the choice between using integer or rational coefficients for

the approximation. Perhaps the most obvious and straightforward approach is to consider our complex num-

ber zwritten in terms of its real and imaginary parts, say z = x+yi for some real numbers x and y. We can then

approximate x and y by rationals depending on howmuch precision we require. This leads us to considering

the case m = 2 and the question then arises of how to encode fractional coefficients.
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3.1 Fractional encoding

Here we consider how to encode a rational number into the spaceZ/pZ for some integer p, so that it can then
be expanded using the technique in Section 2. This problem was considered by Chen, Laine, Player and Xia

in [7, Section 6]. Their approach is to define a finite subsetP ofQ alongwith an encodingmap Enc : P→ Z/pZ
and a decoding map Dec : Enc(P)→ P. The maps should satisfy, firstly, correctness: Dec(Enc(x/y)) = x/y for
x/y ∈ P and secondly, Enc should be both additively and multiplicatively homomorphic so long as it still

encodes an element of P.

The natural choice for themap Enc is Enc(x/y) = xy−1 mod pwhere the inverse of y is computedmodulo

p. Care thus needs to be taken to ensure that y has such an inverse, which is ensured with a careful choice of
P.

In our setting the coefficientmodulus p is of the form bn/2+1, thus if onewants roughly the sameprecision

for the integer and fractional parts one can take for an odd base b

P =

{︃
c + d

bn/4
: c, d ∈

[︃
−

bn/4 − 1
2

,

bn/4 − 1
2

]︃
∩ Z

}︃
;

while for even b one can choose

P =

{︃
c + d

bn/4−δ
: |c| ≤ (b

n/4+δ−1
− 1)b

2(b − 1) ; |d| ≤ (b
n/4−δ

− 1)b
2(b − 1) ; c, d ∈ Z

}︃
,

where δ ∈ {0, 1} depending on whether you want one more base-b digit in the fractional (δ = 0) or integer

(δ = 1) part.

The encoding of an element e ∈ P is then computed as −ebn/2 mod bn/2 + 1. The important thing to note

about using this encoding is that for decoding to work the result of the computations must lie in P. If your

input data are complex numbers and you approximate them using n/4 fractional b-ary digits then it is likely
that after one multiplication the result is no longer in P. Thus one must appropriately choose the precision

with which to encode the data, depending primarily on the depth of the circuit to be evaluated and the final

precision required. The only constraint is that the precision should be a divisor of bn/4 so that −ebn/2 is an
integer.

We note that the fractional encoder need not require m to be 2. However in this case there appears to

be no straightforward way to find a good rational approximation with small numerators and denominators

except when the denominators are all equal, in this case if this denominator is r then we simply require an

approximation of rz in Z[ζ ] subject to some constraint on the coefficients. However, the problem of finding

such an approximation to our complex number itself, rather than a scaling, is interesting in its own right as

it avoids the need for encoding fractional values and tracking the denominator inherently present in such

encodings.

3.2 Integer coeflcient approximation

The task of finding a cyclotomic integer closely approximating an arbitrary complex number was considered

by Costache, Smart and Vivek in [10]. Here the idea is to solve an instance of the closest vector problem (CVP)

in the (scaled) lattice Z[ζ ], where the power basis is scaled and split into real and complex part, which are

approximated by integers. In detail: we choose a scaling constant C > 0, and define the constants ai and bi
for i = 0, . . . ,m − 1, where ai = ⌈ℜ(Cζ i)⌋ and bi = ⌈ℑ(Cζ i)⌋. The lattice we then consider is given by the m
rows of the matrix ⎛⎜⎜⎝

1 0 a
0

b
0

.
.
.

.

.

.

.

.

.

0 1 am−1 bm−1

⎞⎟⎟⎠ .

The target vector in our CVP instance will then be the appropriately scaled real and complex parts of the

complex number z we wish to approximate. Concretely, this vector is (0, . . . , 0, ⌈ℜ(Cz)⌋, ⌈ℑ(Cz)⌋).
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If (z
0
, . . . , zm−1, A, B) is a solution to the CVP instance then we must have

⌈ℜ(Cz)⌋ ≈ A =

m−1∑︁
i=0

ziai ≈ ℜ
(︃
C
m−1∑︁
i=0

ziζ i
)︃

and similarly for the imaginary part. We therefore see that

∑︀m−1
i=0 ziζ i is a good approximation to z. Further,

C gives some control over the quality of the approximation, larger C gives a finer-grained lattice but also in-
creases the size of the last two coefficients of the basis vectorswhichmay lead to a larger distance between the

target vector and the closest lattice point, which in turnmakes solving the CVP instance harder andnegatively

affects the quality of our approximation of Cz.
In [10] the authors solve this CVP instance using the embedding technique. Namely they attempt to solve

the shortest vector problem in the lattice spanned by the rows of⎛⎜⎜⎜⎜⎝
1 0 a

0
b
0

0

.
.
.

.

.

.

.

.

.

.

.

.

0 1 am−1 bm−1 0

0 · · · 0 ⌈ℜ(Cz)⌋ ⌈ℑ(Cz)⌋ T

⎞⎟⎟⎟⎟⎠
for some non-zero constant T. With suitable parameter choices, performing LLL reduction on this lattice will

return a basis of short vectors for this lattice, among which at least one has ±T in the final coordinate. The

remaining coefficients then give plus or minus the target vector minus a close vector.

One issue with the embedding technique is that each new instance of the CVP problem requires perform-

ing lattice reduction which for large m is rather time-consuming. In typical applications we want to approxi-

mate many different complex numbers, using the same C so only the target vector changes. A more efficient

approach therefore is to perform lattice reduction on the CVP lattice itself and since this is independent of

the target vector it needs only to be done once so we can spend significantly more time in this step to find a

good basis of this lattice. We can then apply a technique such as Babai’s nearest plane algorithm, or Babai’s

rounding algorithm, with this reduced basis to find an approximate closest vector.

4 Adapting the Fan-Vercauteren SHE scheme
In this section we construct a variant of the FV scheme [13] with plaintext modulus Xm + b following the

blueprint given in [7]. We prove correctness of this scheme (Theorem 4.1) and analyze the noise growth in-

duced by homomorphic arithmetic operations (Theorem 4.2). The proofs of these theorems are given in the

full version of the paper [3].

4.1 Basic scheme

Writing R = Z[X]/(Xn +1), the ciphertext space is defined by Rq = R/(q) for some positive integer q, while the
plaintext space is RXm+b = R/(Xm + b). We will assume that b ≪ q. Recall that in the original FV scheme the

plaintext space is R/(t) for some positive integer t ≪ q. We define the scaling parameter ∆b as

∆b =
⌊︁ q
Xm + b mod

(︀
Xn + 1

)︀⌉︁
=

⎢⎢⎢⎣
−

q
bn/m + 1

n/m∑︁
i=1

(−b)i−1 · Xn−im
⎤⎥⎥⎥ .

Obviously, ∆b is the analogue of the scalar ∆ = ⌊q/t⌋ in the original FV scheme. Other parameters are the

error distribution χe = D(σ2) on R (coefficient-wise with respect to the power basis, with standard deviation

σ) and the key distribution χk = U
3
which uniformly generates elements of R with ternary coefficients (with

respect to the power basis). We also define the decomposition base w and denote ℓ = ⌊logw q⌋.
The new encryption scheme ComFV is then defined in the same way as FV where t and ∆ are replaced by

Xm + b and ∆b, respectively.
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• ComFV.KeyGen( ): Let s ← χk and e, e0, . . . eℓ ← χe. Uniformly sample random a, a
0
, . . . , aℓ ∈ Rq and

compute bi =
[︁
−(ai · s + ei) + wi · s2

]︁
q
. Output the secret keysk = s, thepublic keypk =

(︁[︀
−(a · s + e)

]︀
q , a

)︁
and the evaluation key evk = {(bi , ai)}ℓi=0.

• ComFV.Encrypt(pk,msg): Sample u ← χk and e0, e1 ← χe. Set p0 = pk[0] and p
1
= pk[1], and compute

c
0
= [∆b ·msg + p0 · u + e0]q and c1 = [p1 · u + e1]q. Output ct = (c0, c1).

• ComFV.Decrypt(sk, ct): Return

msg′ =
⌊︂
Xm + b
q [c0 + c1 · s]q

⌉︂
mod (Xm + b).

The security of this scheme is based on the same argument as of the original FV scheme. In particular, it

is hard to distinguish the public key pk and ciphertext pairs from uniform tuples according to the decision

version of the Ring-LWE problem [18]. The evaluation key evk does not leak any information about the secret

key as long as a circular security assumption holds [13].

Recall that for an element a ∈ K the canonical (infinity) norm of a is defined as

‖a‖can
∞

=

⃦⃦⃦(︁
a(ζ ), a(ζ 3), . . . , a(ζ 2n−1)

)︁⃦⃦⃦
∞

.

To verify correctness we use the notion of invariant noise introduced in [7]. The invariant noise of a ciphertext
ct = (c

0
, c

1
) encrypting a plaintextmsg ∈ RXm+b is an element v ∈ K with the smallest canonical norm such

that

Xm + b
q · [c0 + c1 · s]q = msg + v + g · (Xm + b) (4)

for some g ∈ R.¹ Then decryption works correctly when ‖v‖can
∞

< 1/2 that is supported by the following

theorem.

Heuristic 4.1 (Fresh noise). Letctbea fresh ciphertext encrypting themessagemsg,ct = ComFV.Encrypt(pk,msg),
then the invariant noise of ct is bounded with very high probability by

b + 1
q

(︃√
3n
2

(b + 1)Nb + 2σn
√︂
12 +

9

n

)︃
,

where Nb is the number of non-zero coefficients that can appear in a fresh encoding and σ is the standard
deviation of the error distribution χe.

4.2 Homomorphic operations

In this section we show how homomorphic addition and multiplication are performed in the new scheme.

We prove correctness of these operations and estimate the invariant noise growth. Throughout this section,

Ct(msg, v) denotes a ciphertext encrypting messagemsg ∈ RXm+b with invariant noise v.
Addition is the coordinate-wise sum of corresponding ciphertext components:

• ComFV.Add(ct
0
, ct

1
): Return (

[︀
ct

0
[0] + ct

1
[0]

]︀
q ,
[︀
ct

0
[1] + ct

1
[1]

]︀
q).

The invariant noise grows additively after homomorphic addition.

Multiplication consists of two steps. The first one, denoted ComFV.BMul, returns the coefficients of the

ciphertext product when expressed as of a polynomial in s, namely of (ct
0
[0] + ct

0
[1]s)(ct

1
[0] + ct

1
[1]s).

The second step then maps the degree two term back to degree one using the relinearization technique.

1 In [7] they do not reduce c
0
+ c

1
· s modulo q but this doesn’t change v as the quotient is absorbed into g.
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• ComFV.BMul(ct
0
, ct

1
): Compute

c
0
=

[︂⌊︂
Xm + b
q · ct

0
[0] · ct

1
[0]

⌉︂]︂
q
,

c
1
=

[︂⌊︂
Xm + b
q · (ct

0
[0] · ct

1
[1] + ct

0
[1] · ct

1
[0])

⌉︂]︂
q
,

c
2
=

[︂⌊︂
Xm + b
q · ct

0
[1] · ct

1
[1]

⌉︂]︂
q

and return ctBMul = (c0, c1, c2).
• ComFV.Relin(ctBMul, evk): Writing ctBMul = (c

0
, c

1
, c

2
), expand c

2
in base w, namely c

2
=

∑︀ℓ
i=0 c2,iw

i
with

c
2,i ∈ Rw. Compute

c′
0
= c

0
+

ℓ∑︁
i=0

evk[i][0] · c
2,i and c′

1
= c

1
+

ℓ∑︁
i=0

evk[i][1] · c
2,i

and output cRelin = (c′
0
, c′

1
).

• ComFV.Mul(ct
0
, ct

1
, evk): Return

cMul = (c′
0
, c′

1
) = ComFV.Relin(ComFV.BMul(ct

0
, ct

1
), evk).

The next theorem bounds the norm of the invariant noise upon multiplication.

Heuristic 4.2 (Multiplication noise). Given two ciphertexts ct
1
= Ct(msg

1
, v

1
) and ct

1
= Ct(msg

2
, v

2
), the

function ComFV.Mul(ct
1
, ct

2
, evk) outputs a ciphertext ctMul = Ct(msg

1
·msg

2
, vMul) with

‖vMul‖can
∞

≤ (b + 1)
√︀
3n + 2n2

(︀
‖v

1
‖can
∞

+ ‖v
2
‖can
∞

)︀
+ 3 ‖v

1
‖can
∞

‖v
2
‖can
∞

+

b + 1
q

√︂
3n + 2n2 + 4n3

3

+

b + 1
q σnw

√︀
3(ℓ + 1)

with very high probability.

We note that the dominating term here is the first term and not the term containing the product of the canon-

ical norms of the multiplicands since the canonical norms are smaller than 1/2 when the ciphertext can be

decrypted correctly.

5 Comparison with FV: regular circuits
To estimate the performance of ComFV in a general setting and fairly compare it with the original FV scheme

and the work of [7], we resort to regular circuits as introduced in [11]. These circuits have already been used

in [7] for the same purpose.

A regular circuit consists of D computational levels where each level contains A ∈ {0, 3, 10} addition
levels, requiring 2

A
inputs, followed by one multiplication. Therefore, in total the number of inputs required

is 2

D(A+1)
. Each circuit input is given by a complex number with real and imaginary parts from (−U, U) for

some U ∈ {28, 216, 232, 264}. We will always use a precision of 16 fractional bits in this paper which in the

case of a complex number refers to both the real and complex parts independently.

Our aim is to compare ComFV to the previously best known scheme allowing native complex inputs as

well as to the state of the art when encoding the real and imaginary parts separately [7]. We will compare this

method with our method where we use the same encoding of the complex number as a cyclotomic integer.

We chose m = 4 as this is the minimal m for which Z[ζ ] is dense in C and it allows us to use b = 4

h
for some

h ∈ N, taking α = 2

h/2
if h is even and α = 2

(h(n+4)−4)/8
(2

hn/4
− 1) if h is odd. We also use m = 4 when using



Processing complex-valued data in homomorphic encryption | 63

Table 1:Maximal heuristic regular circuit depths of the original FV scheme with native complex inputs (DO), the CLPX approach
encrypting the real and imaginary parts separately (DM), ComFV with the approximation encoding (DA) and the fractional
encoding (DF ) depending on input size (U), number of additions per level (A), n and q. A corresponding t or b is provided.

n 4096 8192 16384 32768

log q 116 226 435 889

A 0 3 10 0 3 10 0 3 10 0 3 10

U
=
2

8

DO 1 1 0 1 1 1 2 2 2 3 3 2

tO 2

35

2

41

2

18

2

35

2

41

2

55

2

70

2

88

2

130

2

164

2

182

2

202

DM 6 5 4 10 9 8 13 12 11 15 15 14

bM 2 2 2 2

5

2

4

2

2

2

16

2

14

2

10

2

37

2

34

2

31

DA 6 5 4 9 9 7 12 11 10 14 13 13

bA 2

2

2

2

2

2

2

6

2

6

2

6

2

18

2

18

2

10

2

40

2

40

2

38

DF 6 5 4 9 9 7 12 12 10 14 14 13

bF 2 2 2 2

4

2

4

2

2

2

16

2

15

2

8

2

32

2

33

2

33

U
=
2

1
6

DO 1 1 0 1 1 1 2 2 2 3 3 2

tO 2

35

2

41

2

18

2

35

2

41

2

55

2

70

2

88

2

130

2

164

2

173

2

201

DM 6 5 4 10 9 7 12 12 11 15 14 13

bM 2 2 2 2

5

2

4

2

2

2

17

2

14

2

10

2

37

2

38

2

35

DA 6 5 4 9 9 7 12 11 10 14 13 13

bA 2

2

2

2

2

2

2

6

2

6

2

6

2

18

2

18

2

10

2

40

2

40

2

38

DF 6 5 4 9 9 7 12 11 10 14 13 13

bF 2

2

2 2 2

5

2

6

2

3

2

17

2

15

2

10

2

33

2

41

2

37

U
=
2

3
2

DO 0 0 0 1 1 1 1 1 1 2 2 2

tO 2

33

2

33

2

33

2

65

2

71

2

84

2

65

2

71

2

85

2

206

2

205

2

198

DM 5 5 4 9 9 7 12 11 10 14 14 13

bM 2

2

2 2 2

7

2

5

2

2

2

17

2

16

2

13

2

40

2

39

2

35

DA 5 5 4 8 8 7 11 10 10 13 13 12

bA 2

2

2

2

2

2

2

6

2

6

2

6

2

18

2

18

2

14

2

40

2

40

2

40

DF 5 5 4 9 8 7 11 10 10 13 13 12

bF 2

2

2

2

2 2

9

2

6

2

4

2

17

2

15

2

14

2

33

2

41

2

38

U
=
2

6
4

DO — — — 0 0 0 1 1 1 2 1 1

tO — — — 2

65

2

65

2

65

2

129

2

135

2

149

2

258

2

266

2

262

DM 5 5 4 8 8 7 11 11 10 13 13 12

bM 2

2

2

2

2 2

9

2

6

2

3

2

19

2

18

2

13

2

44

2

41

2

39

DA 5 4 4 8 7 7 10 10 9 12 12 12

bA 2

4

2

4

2

2

2

10

2

6

2

6

2

18

2

18

2

14

2

40

2

40

2

44

DF 5 5 4 8 8 7 10 10 9 12 12 12

bF 2

3

2

3

2

2

2

9

2

9

2

6

2

17

2

18

2

14

2

33

2

41

2

43

FV and one may wonder if taking a largerm is better. However, we found that using largerm in this case gave

the same depths and only increased the time to encode a complex number.

For the current state of the art we use the scheme of Chen et al. [7], which we call CLPX, and encode

the real and imaginary parts of our complex number separately. Thus an encryption now consists of two

ciphertext pairs and addition is performed component-wise while we use the Karatsuba algorithm to perform

multiplication using only three calls to the multiplication algorithm of the underlying scheme. We use the

same values for n and q for comparison so that ciphertexts will be twice as large compared to our work. The

fractional encoder is used to encode the real and imaginary parts sowe usem = 2 in this case. For the optimal

value of b we restrict our search space to powers of 2, since we require a precision of 2−16, the simplest way
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to ensure correct decoding at depth D is to require 2

16D
| bn/4 so taking b a power of two looks a good fit. We

again compare this approach with ours, in this case we also use the fractional encoder.

We computed the theoretical and heuristicmaximal depth of a regular circuit which can be reached using

FV, the CLPX approach of using plaintextmodulus X−b and our ComFVwith parameters n, q and σ given in the
SEAL library [6] and the relinearization base w = 2

32

. Our results are presented in Table 1. In the table we also

give a value for b (or t)which allowsone to reach thismaximal depth, this b is very oftennot unique and in this
casewe give the smallest b forwhich there is a decryption error at the next level. To find a heuristic estimate of

the maximal depth that can be reached in each scheme we take a carefully chosen complex number and use

this as the complex number given for all inputs of the circuit. One reason for this can be seen in the table of

results, Table 1, where we see that for A = 10, depths of 14 can be achieved, this requires 2

14·11

= 2

154

inputs,

meaning using different inputs would be completely infeasible in practice. Another good reason for choosing

all inputs to be the same is that during addition there is no cancellation occurring, indeed the A levels of

addition simply become the worst case of scaling by 2

A
. The precise complex number we chose depends on

the encoding scheme but essentially one finds one with an encoding which has many large coefficients. If

the fractional encoder is used then we take the complex number to be (U − 2−16)(1 + i) while when using the
cyclotomic integer approximation approach it is a matter of trial and error but this need only be done once

for each U and m.
From Table 1 we see that in all cases ourmethods greatly outperform the best scheme natively encrypting

complex numbers. At a minimum we can achieve 5 times the depth and for larger n our method becomes

even more efficient as the amount of plaintext space not being efficiently used only grows in the current

solution. The CLPX method on the other hand is able to achieve slightly larger depths than our scheme, at

most onemore for the largest nwe consider. Where our method improves is on efficiency, we effectively halve

the ciphertext size and are expected to be roughly three times faster due to the fact that we can use one

multiplication operation per level whereas the CLPX approach requires three.

6 Conclusion
We constructed a new encoding algorithm for complex data values and a corresponding somewhat homomor-

phic encryption scheme by utilizing a polynomial plaintext modulus of the form Xm + b. This choice allows
for a much better use of the available plaintext space and much slower noise growth compared to existing

solutions encrypting complex numbers. As a result, for the same ciphertext modulus q and degree n, we can
homomorphically evaluate between 5 and 12 times deeper circuits compared to existing solutions based on

FV andnatively encoding complex numbers. In comparison to the state of the art, which encrypts the real and

imaginary parts of the complex numbers separately, our method reduces the size of ciphertexts by a factor of

2 making our scheme at least twice as efficient in time and three times more efficient in space.
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