
Open Access. © 2021 A. Bhattacharjee et al., published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 License

J. Math. Cryptol. 2021; 15:305–344

Research Article

Arghya Bhattacharjee*, Cuauhtemoc Mancillas López, Eik List, and Mridul Nandi

The Oribatida v1.3 Family of Lightweight
Authenticated Encryption Schemes
https://doi.org/10.1515/jmc-2020-0018
Received Apr 06, 2020; accepted Oct 20, 2020

Abstract: Permutation-based modes have been established for lightweight authenticated encryption, as can
be seen from the high interest in the ongoing NIST lightweight competition. However, their security is upper
bounded by O(σ2/2c) bits, where σ are the number of calls and c is the hidden capacity of the state. The
development of more schemes that provide higher security bounds led to the CHES’18 proposal Beetle that
raised the bound to O(rσ/2c), where r is the public rate of the state.
While authenticated encryption can be performed in an on-line manner, authenticated decryption assumes
that the resulting plaintext is buffered andnever released if the corresponding tag is incorrect. Since lightweight
devices may lack the resources for buffering, additional robustness guarantees, such as integrity under re-
lease of unverified plaintexts (Int-RUP), are desirable. In this stronger setting, the security of the established
schemes, including Beetle, is limited by O(qpqd/2c), where qd is the maximal number of decryption queries,
and qp that of off-line primitive queries, which motivates novel approaches.
This work proposes Oribatida, a permutation-based AE scheme that derives s-bit masks from previous per-
mutation outputs to mask ciphertext blocks. Oribatida can provide a security bound of O(rσ2/2c+s), which
allows smaller permutations for the same level of security. It provides a security level dominated by O(σ2d/2

c)
under Int-RUP adversaries, which eliminates the dependency on primitive queries. We prove its security under
nonce-respecting and Int-RUP adversaries. We show that our Int-RUP bound is tight and show general attacks
on previous constructions.

Keywords: Authenticated encryption, permutation, provable security

2020 Mathematics Subject Classification: 11T06, 11T71, 11Y16, 94A60

1 Introduction

1.1 Permutation-based Modes

Permutation-based modes have been established for various applications of symmetric-key cryptography
during the previous decade. Keyless modes have been standardized as the hash function SHA-3 and its
derivative SHAKE for the extendable-output functions [36]. Keyed modes are used for authentication [51] or
encryption [13]. Moreover, permutation-based schemes have found widespread adoption for authenticated
encryption, as the CAESAR co-selection Ascon [34], or many more candidates have shown, e.g., PRIMATES [6],
NORX [9], Ketje [19], or Keyak [20].

*Corresponding Author: Arghya Bhattacharjee: Applied Statistics Unit, Indian Statistical Institute, Kolkata, India;
Email: bhattacharjeearghya29@gmail.com
Cuauhtemoc Mancillas López: Computer Science Department, CINVESTAV-IPN, Mexico, Mexico;
Email: cuauhtemoc.mancillas83@gmail.com
Eik List: Bauhaus-Universität Weimar, Weimar, Germany; Email: eik.list@uni-weimar.de
Mridul Nandi: Applied Statistics Unit, Indian Statistical Institute, Kolkata, India; Email: mridul.nandi@gmail.com

https://doi.org/10.1515/jmc-2020-0018

306 | A. Bhattacharjee et al.

The sponge [17] and duplex [15] modes transform an internal n-bit state iteratively with a public permu-
tation. Both modes absorb an input stream block-wise to generate a pseudo-random output stream. While
sponges separate the input (absorption) and output (squeezing) phases, the duplex mode generates the i-th
output block directly after the i-th input block has been absorbed. In bothmodes, an n-bit permutation absorbs
the data in r-bit chunks, where the outer part of the state r < n is called the rate. The hidden inner part of the
state of c = n − r bits is called the capacity, where r and c are a trade-off between performance and security.

Keyed Sponge Variants were introduced by Bertoni et al. [18] and can be categorized into inner-keyed,
outer-keyed, and full-keyed variants (cf. [48]); recently, Dobraunig andMennink added the suffix-keyed sponge
[35]. The inner-keyed sponge [28] initializes the inner part with the key, (0 ‖ K), whereas the outer-keyed sponge
[18] (so-dubbed by [8]) concatenates key andmessage K ‖M for the output. The full-keyed sponge [16] employs
the full state in the absorption phase; the suffix-keyed sponge uses a keyed function only at the end.

Permutation-based modes are analyzed mostly in the ideal-permutation model. For authenticated en-
cryption, an adversary A shall distinguish between two worlds consisting of two oracles: each world has (1)
a construction oracle that A can ask encryption and verification queries to and (2) a primitive oracle that
provides access to the internal permutation. The former oracle represents on-line queries, whereas the latter
represents off-line queries. A can ask qe encryption queries, qv verification queries, and qp construction
queries; σ usually denotes the number of blocks over all construction queries.

Sponge Modes for Authenticated Encryption started with the Duplex construction and the AE scheme
SpongeWrap [15] and MonkeyDuplex [16], and led to a considerable corpus of analysis, e.g., [8, 32, 37, 49, 52].
Early, Bertoni et al. [14] showed that the sponge is indifferentiable from a random oracle [47] for up to O(2c/2)
calls to the permutation. Their follow-up work [18] improved the bounds for the unkeyed sponge to O(qpσ2c + qc

2k)
if σ ≪ 2c/2. For SpongeWrap, Bertoni et al. [15] had shown a privacy bound of O(q2k +

σ2
2c) and an authenticity

bound of O(q2k +
σ2
2c +

q
2τ).

Jovanovic et al. [41] improved the asymptotic authenticity bound, although under the limitation of at most
σ ≪ 2c/2 decryption queries. Summarizing many previous results, Mennink [48] showed that keyed sponges
achieve PRF security of around O(q

2
c+qcqp
2c) + AdvkpΠ . He coined the final term the key-prediction security, e.g.,

in O(qp2k) for full-keyed sponges and k < n. The recent duplex-based AE scheme Beetle [25] added a transform
to the output so that the plaintext input that is added to the inner part and to the ciphertext output block
differ. As a result, Beetle offered a bound of O(rqp+rσ2c + qv+qp

2r + σ2+q2p
2n). Table 1 summarizes some of the most

noteworthy results in the past. Improvements to those general bounds appear hard, which motivates the
search for novel constructions.

Table 1: Existing PRF bounds for keyed sponges. FKS/IKS/OKS = full-/inner-/outer-keyed sponge, IP = ideal permutation, indiff.
= indifferentiability.

Scheme

FKS IKS OKS Model Bound Work

– – • Indiff. O(σ
2+σ
2c) [14]

– • • IP O(σ
2

2c) [28]
– – • IP O(σ

2+σqp
2c) [8]

– • – IP O(σ
2+σqp
2c + qp

2n) [8]
NORX-like IP O(min(σ

2

2n ,
σ
2c ,

q
2k)) [41]

Scheme

FKS IKS OKS Model Bound Work

– – • IP O(q
2
c+σqc+qcqp

2c) [37]
• – – IP O(σ

2

2n +
q2cm
2c + σcqp

2k) [49]
– • • IP O(q

2
c+qcqp
2c) [52]

• – – IP O(qcqp+q
2
c

2c + qp
2k) [32]

• – – IP O(q
2
c+qcqp
2c + qp

2k) [48]
– – • IP O(q

2
c+qcqp
2c + ck/rqp

2k) [48]

Correct Authenticated Decryption requires the entire plaintext to be buffered until the tag has been verified.
On certain architectures, this requirement can exceed the available storage and induce unacceptable latency.

Oribatida v1.3 | 307

Andreeva et al. [7] introduced notions for privacy and integrity under the release of unverified plaintext
material. Security guarantees such as Int-RUP represent valuable additional levels of robustness.

1.2 Research Gap

While Beetle improved the bound for nonce-based authenticated encryption, this bound does not hold in the
Int-RUP setting: as we will outline, there exists an attack with an advantage of O(qpqv2c). The naturally arising
question is whether one can achieve higher Int-RUP security. This is motivated by a practical demand: while
the primary advantage of sponges is simplicity, they are also useful for lightweight applications in resource-
constrained environments. In such contexts, buffering multi-block decryption outputs is likely infeasible,
which renders Int-RUP security advantageous. For example, the ongoing NIST lightweight competition [53]
requests 112-bit integrity security for AE schemes and support of at least 250 − 1 encrypted bytes of data.
Inserting them into Mennink’s bound [48] of q

2
c+qcqp
2c , the NIST requirements would imply permutation sizes of

at least 172 bits plus a plausible rate. A higher Int-RUP security could lead to smaller permutations, reducing
area, and energy consumption simultaneously.

1.3 Contribution

This work contains three contributions: First, it answers the question above in the affirmative by showing a
sponge with dynamic s-bit masks that achieves nAE security of O(qp2k +

qd
2τ +

qpσ
2c+s +

σ2
2n). Replacing the terms

by the NIST requirements of k ≥ 128, τ ≥ 64, qp ≤ 2112 and σ ≥ 250, a trade-off could use c + s ≥ 162, or
better c + s ≥ 192 bits to be secure for up to σ ∈ O(264) blocks and qp ≤ 2128 primitive queries. Thus, the rate
could be reduced considerably compared to the bound from [48]. We prove that the Int-RUP advantage is at
most O(q2d/2

c), i.e., depends solely on the number of on-line queries, contrasting the bound of O(qdqp/2c)
for the generic duplex and previous constructions. The difference may seemminor; though, eliminating the
dependency of off-line (i.e., primitive) queries is a valuable gain. We propose a novel permutation-based AE
scheme Oribatida that applies dynamic masks to the outputs and provides the NIST security bounds with
permutation sizes of only 192 bits. As our second contribution, we show that the bound provided by our
proposal is tight with an attack that matches the proved bound. Moreover, we show that it applies also to other
duplex-based designs in general if masks would be added.

Remark 1. Finally, we acknowledge an observation by Rohit and Sarkar on the NIST lightweight mailing list
[59]. We note that our proposal here represents a slightly updated variant Oribatida compared to the NIST
submission [21] that addresses their observation by masking the authentication tag. We call it also Oribatida
v1.3, but use Oribatida hereafter. We will discuss the effect of the slight update later.

1.4 Outline

After a brief recall of the necessary preliminaries, Section 3 motivates our proposal by showing Int-RUP
attacks on the duplex mode and other existing schemes. Section 4 describes Oribatida in general. We close the
parenthesis of Int-RUP attacks on Oribatida and other duplex-based modes when in Section 5. We analyze
the security on Oribatida for the standard nonce-based AE setting in Section 6 and in the Int-RUP setting in
Section 7. Next, Section 8 compares it with those second-round NIST lightweight candidates that claim Int-
RUP security. Section 9 discusses the slight update from [21] and the associated improvement. Subsequently,
Section 10 specifies an instance with a Simon-based permutation, whose security is discussed in Section 11
from previous works. Section 12 reports on the result of a hardware implementation of Oribatida before
Section 13 concludes this work.

308 | A. Bhattacharjee et al.

2 Preliminaries

2.1 General Notations

We use uppercase letters (e.g., X, Y) for functions and variables, lowercase letters (e.g., x, y) for indices
and lengths, as well as calligraphic uppercase letters (e.g., X, Y) for sets and spaces. We write F2 for the
field of characteristic 2 and Fn2 = {0, 1}n for the set of vectors over F2, i.e., strings of n bits. |X| denotes
the number of bits of X. Given X ∈ Fn2, we write X[i] for the i-th bit of X, and define the bit order by X =
(X[n − 1] ‖ . . . ‖ X[1] ‖ X[0]). For t ≤ n, we use msbt(X) = (X[n − 1] . . . X[n − t]) to return the t rightmost (or
most significant when interpreting X as integer) and lsbt(X) = (X[t − 1] . . . X[1]X[0]) to return the t leftmost
(or least significant when interpreting X as integer) bits of X. We write ∅ for the empty set and ε for the empty
string.

We denote by X[x..y] the range of X[x], . . . , X[y] for non-zero integers x and y. Given binary strings X and
Y, we denote their concatenation by X ‖ Y and their bitwise XOR by X ⊕ Y when |X| = |Y|. For positive integers
x and y and bit strings of different lengths X ∈ Fx2 and Y ∈ Fy2 with x ≥ y, we define X ⊕y Y =def X ⊕ (0x−y ‖ Y).

We write X � X to indicate that X is chosen uniformly at random and independent from other variables
from a set X. We consider Func(X, Y) to be the set of all mappings F : X→ Y, and Perm(X) to be the set of all
permutations over X. Given an event E, we denote the probability of E by Pr[E]. We denote the invalid symbol
by⊥. Moreover, we denote by (n)k =def

∏︀k−1
i=0 (n − i) the falling factorial.

For X ∈ F*2, we denote by (X1, X2, . . . , Xx)
n←− X the splitting of X into n-bit strings X1, . . . , Xx−1, and

|Xx| ≤ n, in form of X1 ‖ . . . ‖ Xx = X. For Y ∈ Fx2, we write (X1, X2, . . . , Xm)
x1 ,x2 ,...,xm←−−−−−−− Y for the splitting of Y

into X1 = Y[x−1..x−x1], X2 = Y[x−x1−1..x−x1−x2], . . . , Xm = Y[xm−1..0], where x = x1+x2+ . . .+xm holds.
For a given setX and non-negative integer x, wewriteX≤x for the union set∪xi=0Xi. For a natural x < 2n, wewrite
⟨x⟩n for its conversion to an n-bit binary string with the most significant bit left, e.g., ⟨135⟩8 = (10000111).
We omit n if clear from the context.

2.2 Nonce-based Authenticated Encryption

LetK be a set of keys,N be a set of nonces,A a set of associated data,M a set ofmessages,C a set of ciphertexts,
and T a set of authentication tags. A nonce N ∈ N is an input that must be unique for each authenticated
encryption query.

Anonce-basedAE scheme (with associateddata)Π = (E,D) is a tuple of deterministic encryption algorithm
E : K ×N × A ×M → C × T and deterministic decryption algorithmD : K ×N × A × C × T → M ∪ {⊥} with
associated key spaceK. The encryption algorithm E takes a tuple (K, N, A,M) and outputs (C, T), where C is
a ciphertext and T an authentication tag. We assume that |C| = |M| holds for all inputs (K, N, A,M) and their
corresponding ciphertexts. The associated data is authenticated, but not encrypted. The decryption functionD

takes a tuple (K, N, A, C, T) and outputs either the unique plaintext M for which EK(N, A,M) = (C, T) holds,
or outputs ⊥ if the input is invalid. We introduce EN,AK (M) as short form of EK(N, A,M) and DN,A

K (C, T) for
DK(N, A, C, T), respectively. We assume that AE schemes are correct, i.e., for all (K, N, A,M) ∈ K ×N ×A ×M,
it holds thatDN,A

K (EN,AK (M)) = M.
The ideal AE scheme provides two oracles $: N ×A ×M→ C × T and⊥ : N ×A × C × T →M ∪ {⊥} that

offer access to encryption and verification. We overload the ⊥ notation to mean the oracle and the symbol
of invalid decryption. Given (N, A,M), the ideal encryption oracle outputs ciphertext-tag tuples (C, T) that
are random bits of the expected length. The ideal decryption oracle ensures correctness, i.e., given an input
(N, A, C, T) where (C, T) had been the output to a previous encryption query (N, A,M), the decryption oracle
outputs the corresponding message M. Otherwise, the decryption always returns the invalid symbol ⊥ for
every new decryption query that had not been the answer to an earlier encryption query.

Since this work studies schemes based on public permutations, we employ the usual security notions in
the ideal-permutation model. So, the adversary always has an additional oracle π± that provides access to

Oribatida v1.3 | 309

the public permutation π in forward and backward direction. We write Π[π] and E[π],D[π], etc. to indicate
that an authenticated-encryption scheme Π and its algorithms are based on a primitive π � Perm(B), where
B = {0, 1}n is some block space. Note that in the analysis, the permutation is chosen uniformly at random
from the set of all permutations overB. Though, the model is an adaption of the ideal-cipher model [60], and
not of the random-oracle model [12]. We write ∆A(O1;O2) for the advantage of A to distinguish between O1

and O2.

Definition 1 (nAE Security). Let K � K, π � Perm(B), and let Π[π] = (E[π]K ,D[π]K) be a nonce-based
authenticated scheme. Let A be a nonce respecting adversary. Then,

AdvnAEΠ[π](A)
def= ∆

A

(︀
E[π]K ,D[π]K , π±; $,⊥, π±

)︀
.

In the RUP model, the understanding of nonce-based AE differs slightly from the previous definition. Here,
we use the notion that the adversary can always see the full resulting plaintext from a decryption query.
To formulate the forgery goal, the oracles are adapted. A verification oracle outputs 1 iff the input is valid,
and 0 otherwise. A nonce-based RUP authenticated encryption scheme ̃︀Π = (̃︀EK , ̃︀DK , ̃︀VK) is a three tuple of
encryption algorithm ̃︀E : K × N × A ×M → C × T, decryption algorithm ̃︀D : K × N × A × C × T → M, and
verification algorithm ̃︀VK : K × N × A × C × T → {0, 1}. The signature of the encryption and decryption
algorithms are unchanged.

Definition 2 (Int-RUP Security). Let K � K, π � Perm(B), and let ̃︀Π[π] = (̃︀E[π]K, ̃︀D[π]K, ̃︀V[π]K) be a nonce-
based RUP authenticated scheme. Let A be a nonce-respecting adversary. Then,

AdvInt-RUPΠ[π] (A) def= ∆
A

(︁̃︀E[π]K , ̃︀D[π]K , ̃︀V[π]K , π±; ̃︀E[π]K , ̃︀D[π]K ,⊥, π±
)︁
.

2.3 H-coeflcient Technique

We will need a proof method in the later parts, where we opt for Patarin’s well-suited H-coefficient technique
in the variant by Chen and Steinberger [30, 54]. The results of the interaction of an adversary Awith its oracles
are collected in a transcript τ. The oracles can sample randomness before the interaction (often a key or an
ideal primitive that is sampled beforehand), and are then deterministic throughout the experiment [30]. The
challenge of A is to distinguish the real world Oreal from the ideal world Oideal. We denote by Θreal and Θideal
random variables that represent the distribution of transcripts in the real and the ideal world, respectively. In
general, a transcript τ is called attainable if the probability to obtain τ in the ideal world – i.e. over Θideal – is
non-zero. The Fundamental Lemma of the H-coefficients technique, the proof to which is given in [30, 54],
states that we can partition the set of all attainable transcripts into two disjoint sets GoodT and BadT.

Lemma 1 (Fundamental Lemma of H-coefficient Technique [54]). Assume that there exist ϵ1, ϵ2 ≥ 0 such
that for any transcript τ ∈ GoodT, it holds that Pr [Θreal = τ] / Pr [Θideal = τ] ≥ 1 − ϵ1. Moreover, assume
that Pr [Θideal ∈ BadT] ≤ ϵ2. Then under the aforementioned assumptions, for all adversaries A, it holds that
∆A (Oreal;Oideal) ≤ ϵ1 + ϵ2.

Note that in all our analyses, we consider information-theoretic distinguishers A, where we assume idealized
primitives. Thus, their resources are bounded only in terms of their maximal numbers of queries and blocks
that they can ask to their available oracles. One can derive the computation-theoretic counterparts easily by
adding a parameter of the distinguishers’ maximal computational efforts.

310 | A. Bhattacharjee et al.

3 Int-RUP Attacks on Existing AE Schemes
This section shows attacks under Int-RUP adversaries on the duplex mode, as well as on recent more secure
AE schemes Beetle or SPoC. For each construction, we briefly recall the necessary parts of their definition. As
summarized in Table 2, the proposed attacks possess an advantage of O(qpqd2c) on the previous constructions.
Thus, the improved bounds of Beetle or SPoC do not carry over to the Int-RUP setting. For all attacks, we
consider a random permutation π � Perm(B) and a randomly chosen secret key K � K. We denote by A a
nonce-respecting Int-RUP adversary against the individual schemes.

Table 2: Comparison of the security bounds for Int-RUP attacks on previous permutation-based AE schemes and our construc-
tion.

Bound

Scheme Unmasked Masked

Generic Duplex [15] O(qdqp/2c) O(q2d/2
c)

Beetle [25] O(qdqp/2c) O(q2d/2
c)

SPoC [5] O(qdqp/2c) O(q2d/2
r)

Oribatida [This work] – O(q2d/2
c)

The main idea of all the attacks in this section is as follows: A asks qd decryption queries s. t. any
predetermined r bits (e.g., the first r bits) of the input to one of the permutations of the construction are
fixed and known (say X). The remaining n − r = c bits may vary. Next, A asks qp primitive queries Q1, Q2,
. . . , Qqp with the first r bits fixed to X, but with pairwise distinct c bits, and receives R1, R2, . . . , Rqp . When
qd · qp ≈ O(2c), A can expect a state collision between an on-line input to the permutation and an (off-line)
permutation query. This collision can be detected from the first r bits of the outputs of the corresponding
construction queries, which will be equal for the colliding inputs. Once A knows the full state at the input to
the permutation of the construction, it can revert the permutation calls in the construction and finally recover
the key. We adapt this strategy for the duplex mode and Beetle before we consider the differences in SPoC and
hybrids.

3.1 Int-RUP Attack on The Duplex Mode

Let us consider the Sponge-Wrap mode [15].

1. The adversary A asks qd decryption queries (N, A1, C), (N, A2, C), . . . , (N, Aqd , C), and receives M1,
M2, . . ., Mqd . The associated data Ai consist of a single block, the ciphertexts C = (C1, C2) are fixed to
the same two blocks for each query.

2. Now A can follow the generic idea to complete the attack.

The attack complexity is qdqp ≈ O(2c).

3.2 Int-RUP Attack on Beetle

Beetle [25] is a recent permutation-based light-weight AE scheme. From now onward, we consider the updated
variant [26] that fixed the proof and details (such as no double call to the permutation). An overview of
the encryption process is provided in Figure 1. The map ρ : {0, 1}r × {0, 1}r → {0, 1}r × {0, 1}r computes
ρ(I1, I2)

def= (shuffle(I1)⊕ I2, I1⊕ I2) for all inputs I1, I2 ∈ {0, 1}r, where shuffle(x) =def (lsbr/2(x) ‖ lsbr/2(x)⊕
msbr/2(x)). The results of ρ are ordered as (Xa+i , Ci)← ρ(Ya+i ,Mi) and (Ya+i ,Mi)← ρ−1(Xa+i , Ci), respectively.

Oribatida v1.3 | 311

1. The adversaryA asks qd encryptionqueries (N1, A1,M), (N2, A2,M), . . . , (Nqd ,Aqd ,M) to the encryption
oracle, and receives C1, C2, . . . , Cqd . Size of M and Ai is one block for each i.

2. Then, A asks qd decryption queries (N1, A1, C1
′
), (N2, A2, C2

′
), . . . , (Nqd , Aqd , Cq

′
d) to the decryption

oracle where Ci
′
← Y i2⊕shuffle(Y i2). This ensures that the first r bits of the input to the third permutation

always equal zero.
3. Now A can follow the generic idea to complete the attack.

The attack complexity is again qdqp ≈ O(2c).

N ⊕ K1

K2

r

c

P

ρ
Y1

A1

X1

Z1

P P

ρ
Ya

Aa

Xa

constA

Za

P

Ya

Za+1

Xa

Za

P

ρ
Ya

M1 C1

Xa+1

Za+1

P P

ρ
Ya+m

Mm Cm

Xa+m

constM

Za+m

P

T

Figure 1: The Beetle authenticated encryption scheme.

3.3 Int-RUP Attack on SPoC

SPoC (see Figure 2a) is a permutation-based NIST Lightweight candidate [5]. that uses the capacity to derive
ciphertext outputs from, while it still absorbs the message in the rate. In SPoC, the adversary cannot fix any
part of the state in contrast to SpongeWrap and Beetle– though, there is a similar attack:

1. Aasks qd queries (N, A, C1), (N, A, C2), . . . , (N, A, Cqd) to thedecryptionoracle and receivesM1,M2, . . .,
Mqd . The associated data A and ciphertext Ci consist of a single block for every i. This ensures that the
first r bits of the input to the third permutation always equal M1 ⊕ C1.

Lo
adN0 , K P

A1

U1 X1

const1

Z1

P P

Aa

Ua Xa

constA

Za

P

Ua+1

Za+1

Xa

Za

P

M1

Ua+1 Xa+1

C1

M1

Ya+1

const2

P P

Mm

Ua+1 Xa+m

Cm

Mm

Ya+m

constM

P Ex
tr T

(a) The SPoC authenticated encryption scheme.

Vi−1

Wi−1

Yi−1

Zi−1

P

ρ
Ui

M1
i C1i

Vi

Wi

P
M2
i

Xi Yi

C2i

M2
i

Zi

Vi+1

Wi+1

Yi+1

Zi+1

(b) A hybrid of Beetle and SPoC.

Figure 2

312 | A. Bhattacharjee et al.

2. Now A can follow the generic idea to complete the attack.

So, the attack needs qdqp ∈ O(2c) to work, as before.

3.4 Int-RUP Attack on A Hybrid of Beetle and SPoC

We can generalize our attacks to hybrid modes of Beetle and SPoC as well. Such a hybrid would use both
modes Beetle and SPoC in parallel to process the queries. We illustrate it in Figure 2b. Each message block
(say M) is parsed into two sections (say M1 and M2), where |M1| = r1 and |M2| = r2. M1 is processed with
Beetle to a ciphertext block C1; M2 with SPoC to a ciphertext block C2; The final ciphertext block becomes
C ← C1 ‖ C2, and the associated-data blocks and the ciphertext blocks for decryption are treated in a similar
manner. Note that the hybrid mode is parameterized by r1, r2 and c with the condition c ≥ r2. The size of rate
and capacity of the Beetle part are r1 and c − r2; the size of both rate and capacity of the SPoC part is r2. As
a result, the size of rate and capacity of the hybrid mode is r = r1 + r2 and c. When r2 = 0, the hybrid mode
translates to the Beetlemode. Similarly, when r1 = 0, the hybrid mode is equivalent to the SPoCmode.

An Int-RUP attack on such modes could be defined as follows:

1. A asks qd decryption queries (N, A1, C), (N, A2, C), . . ., (N, Aqd , C) to the decryption oracle and receives
M1,M2, . . . ,Mqd . The ciphertext C and associated data Ai consist of a single block for every i.

2. There exists at least one value of the last r2 bits of the input to the third permutation which remains
same for at least q = qd

2r2 queries. Suppose q such queries are (N, A
1′ , C), (N, A2

′
, C), . . ., (N, Aq

′
, C).

3. A can detect the previous step as it knows the value of the last r2 bits of the input to the third permutation
because that will be equal to the last r2 bits of C ⊕Mi.

4. A retains those q queries and discards the rest.
5. For each of the above queries, A updates the value of the first r1 bits of the ciphertext to Y2⊕ shuffle(Y2)

and varies the remaining r2 bits. This ensures that the first r1 bits of the input to the third permutation
always equal zero.

6. In the way mentioned above, A can ask qd more decryption queries to the decryption oracle. This time, a
total of r bits (first r1 bits and last r2 bits) of the input to the third permutation are fixed and known to A.

7. Then, A can follow the generic idea to complete the attack.

The attack needs again qdqp ∈ O(2c) as before.

3.5 Discussion

As a takeaway from this section, the unmasked sponge-based AE schemes allow Int-RUP attacks whose
advantage can depend linearly on the number of off-line primitive queries. We think that any AE construction
which uses linear feedback is vulnerable to such an attack (qdqp ∈ O(2c)) unless it uses more state. The next
section defines Oribatida that masks its ciphertexts for higher Int-RUP resistance. After its definition, we will
get back to attacks on it and on strengthened versions of the schemes sketched here to show that they can be
similarly extended by a ciphertext masking.

4 Specification of Oribatida
At its core, Oribatida is a variant of the monkey-wrap design [16], but adds a ciphertext masking. This section
considers a slightly updated version of Oribatida. Section 9 discusses the update from Oribatida (v1.2) from
[21] to Oribatida v1.3 in this work.

In the following, let P ∈ Perm(B) be a permutation. We denote by (Xi , Yi) the inputs and by (Ui , Vi) the
outputs of the primitive(s). As in the classical sponge, Oribatida considers the state Si = (Ui ‖Vi) as a rate Ui

Oribatida v1.3 | 313

Algorithm 1 Specification of Oribatida v1.3. The domain-encoding functions GetDomainForN, GetDomain-
ForA, and GetDomainForE are instantiation-specific. They are defined in Algorithm 2.
101: function EN,AK (M)
102: ℓA ← |A|
103: ℓE ← |M|
104: dN ← GetDomainForN(ℓA , ℓE)
105: dA ← GetDomainForA(ℓA , ℓE)
106: dE ← GetDomainForE(ℓE)
107: if |A| = 0 then A ← 1 ‖ 0r−1

108: A ← padr(A)
109: M ← padr(M)
110: (S1 , V1)← Init(K, N, dN , ℓA)
111: Sa+1 ← ProcessAD(S1 , A, dA)
112: (C, T)← Encrypt(Sa+1 ,M, V1 , dE , ℓE)
113: return (C, T)

121: function Encrypt(Sa+1 ,M, V1 , dE , ℓE)
122: x ← ℓE mod r
123: (M1 , · · · ,Mm)

r←− M
124: V ← V1
125: for i = 1..m do
126: (Ua+i , Va+i)

r,c←−− Sa+i
127: Xa+i ← Mi ⊕ Ua+i
128: Ci ← Xa+i ⊕s lsbs(V)
129: Ya+i ← Va+i
130: if i = m then
131: Ya+i ← Ya+i ⊕d dE
132: Cm ← msbx(Cm)
133: V ← Va+i
134: Sa+i+1 ← P(Xa+i ‖ Ya+i)
135: C ← (C1 ‖ C2 ‖ · · · ‖ Cm)
136: T ← msbτ(Sa+m+1)⊕s lsbs(V)
137: return (C, T)

141: function Init(K, N, dN , ℓA)
142: V0 ← lsbs(N ‖ K)
143: S1 ← P((N ‖ K)⊕d dN)
144: V1 ← lsbs(S1)
145: return (S1 , V1)

151: function ProcessAD(S1 , A, dA)
152: (A1 , · · · , Aa)

r←− A
153: for i = 1..a − 1 do
154: Si+1 ← P(Si ⊕ (Ai ‖ 0c))
155: Sa+1 ← P(Sa ⊕ (Aa ‖ 0c)⊕d dA)
156: return Sa+1

201: functionDN,A
K (C, T)

202: ℓA ← |A|
203: ℓE ← |C|
204: dN ← GetDomainForN(ℓA , ℓE)
205: dA ← GetDomainForA(ℓA , ℓE)
206: dE ← GetDomainForE(ℓE)
207: if |A| = 0 then A ← 1 ‖ 0r−1

208: A ← padr(A)
209: C ← padr(C)
210: (S1 , V1)← Init(K, N, dN , ℓA)
211: Sa+1 ← ProcessAD(S1 , A, dA)
212: (M, T′)← Decrypt(Sa+1 , C, V1 , dE , ℓE)
213: if T = T′ then return M
214: else return⊥

221: function Decrypt(Sa+1 , C, V1 , dE , ℓE)
222: x ← ℓE mod r
223: V ← V1
224: if ℓE = 0 then
225: T′ ← msbτ(Sa+1)⊕s lsbs(V)
226: return (ε, T′)
227: (C1 , · · · , Cm)

r←− C
228: for i = 1..m do
229: (Ua+i , Va+i)

r,c←−− Sa+i
230: Xa+i ← Ci ⊕s lsbs(V)
231: Ya+i ← Va+i
232: Mi ← Ua+i ⊕ Xa+i
233: if i = m then
234: Ya+i ← Ya+i ⊕d dE
235: Mm ← msbx(Mm)
236: V ← Va+i
237: Sa+i+1 ← P(Xa+i ‖ Ya+i)
238: M ← (M1 ‖M2 ‖ · · · ‖Mm)
239: T′ ← msbτ(Sa+m+1)⊕s lsbs(V)
240: return (M, T′)

241: function padx(X)
242: if |X| mod x = 0 then return X
243: return X ‖ 1 ‖ 0x−(|X| mod x)−1

251: function lsbx(X)
252: if |X| ≤ x then return X
253: return X[(|X| − x − 1)..0]

261: functionmsbx(X)
262: if |X| ≤ x then return X
263: return X[(|X| − 1)..(|X| − x)]

of r bits, where inputs are XORed to, and a capacity Vi of c = n − r bits. Unlike the usual sponge, an s-bit part
of the capacity is used to mask the subsequent ciphertext block. The definition is given in Algorithm 1. We
assume that the key size is at most the capacity, k ≤ c, and the tag size is at most τ ≤ r bits.

314 | A. Bhattacharjee et al.

4.1 Initialization

Each variant of Oribatida uses a fixed-size nonce N, whose length ν is such that k+ν = n bits. N is concatenated
with the key K to initialize the state: N ‖ K: (X0, Y0)← (N ‖ K)⊕d ⟨dN⟩d. The domain dN is XORed to the d least
significant bits of the initial state. The first value S1 results from S1 ← P(U0 ‖V0); V1 is stored for masking the
first block of ciphertext later.

N
‖
K

r
U0

c
V0

dN

d

X0

Y0
P

A1

U1

V1

X1

Y1
P

A2

U2

V2

X2

Y2
P

Ua

Va

Aa

padn

dA

d

Xa

Ya
P

Ua+1

Va+1

Xa

Ya
P

M1

Ua+1

Va+1

C1

s

V1

lsbs

Xa+1

Ya+1
P P

Mm

padr

Ua+m

Va+m

Cm

msb|Mm|

s

Va+m−1

lsbs

dE

d

Xa+m

Ya+m
P

m
sb

τ T

Va+m

lsbτ

Figure 3: Authenticated encryption of a-block associated data A and m-block message M with Oribatida.

4.2 Processing Associated Data

After the initialization, the associated data A is split into r-bit blocks and is absorbed in the rate. If its length
is not a multiple of r bits, A is padded with a 10*-padding if |A| mod r /≡0 such that its length becomes the
next highest multiple of r bits. If the associated data is empty, it is padded to one full block 10r−1. In this case,
we denote the length of the padded associated data A in blocks also as a = 1. The padded A is split into r-bit
blocks (A1, · · · , Aa). Given (Ui , Vi)

r,c←−− Si, Ai is XORed to the rate of the state: Xi ← Ui ⊕ Ai, for 1 ≤ i < a.
For all non-final blocks of A, the capacity of the permutation output, Vi, is simply forwarded to that of the
subsequent input to the permutation P: Yi ← Vi. The state is updated with P afterwards, for all 1 < i < a (that
is, except the final a-th block of A): Si+1 ← P(Xi ‖ Yi). When the final block Aa is processed, a domain dA is
XORed to the least significant byte of the capacity.

4.3 Encryption

After A has been processed, the message M is encrypted. Similarly as for the associated data, if its length is
not a multiple of r bits, M is padded with a 10*-padding such that its length after padding becomes the next
highest multiple of r bits. An empty message M = ε will not be padded.

After M is split into r-bit blocks (M1, · · · ,Mm) (after padding if necessary), the blocks Mi are processed
one after the other. Given the state value (Ua+i , Va+i)

r,c←−− Sa+i, the current block Mi is XORed to the rate Ua+i:
Xa+i ← Mi ⊕ Ua+i. The capacity is simply forwarded: Ya+i ← Va+i. Then, (Xa+i ‖ Ya+i) is used as input to a call
to P to derive the next state value Sa+i+1 ← P(Xa+i ‖ Ya+i).

The ciphertext blocks Ci are computed from a sum of the current rate, the current plaintext block, and a
(partial) earliermask value from the capacity. The first ciphertext block is computed from C1 ← Xa+i⊕s lsbs(V1).
If C1 is the final ciphertext block, it is computed as C1 ← msbℓE (Xa+i⊕s lsbs(V1)), where ℓE denotes the length
of M before padding. Non-final ciphertext blocks Ci, 1 < i < m are computed from Ci ← Xa+i ⊕s lsbs(Va+i−1),

Oribatida v1.3 | 315

for 1 < i < m. Ifm > 1, the final ciphertext block results from Cm ← msbℓE mod r(Xa+m⊕s lsbs(Va+m−1)). For the
final message block, a domain dE is XORed to the least significant byte of the capacity: Ya+m ← Va+m ⊕d ⟨dE⟩d.
Similar as for A, dE uses three pairwise distinct domains depending on whether M was empty, non-empty
and required no padding, or non-empty and has been padded. P is called another time to derive Sa+m+1 ←
P(Xa+m ‖ Ya+m). Its rate is XORed with the most significant τ bits of the key Va+m, and – truncated to τ bits if
necessary – is released as the authentication tag: T ← msbτ(Sa+m+1)⊕s lsbs(Va+m). Note that, for s = τ as for
our instantiations, the tag is masked as the ciphertext output blocks, which unifies this process.

4.4 Decryption

The decryption takes a tuple (K, N, A, C, T). The initialization with K and N as well as the processing of the
associated data A is performed in the same manner as for encryption. If |C| mod r ≠ 0, the decryption pads C
with a 10*-padding to the next multiple of r bits. In all cases, it splits C into r-bit blocks (C1, · · · , Cm−1) plus
a final block Cm. If m > 1, the plaintext block is computed as Xa+i ← Ci ⊕s lsbs(V) and Mi ← (Ua+i ⊕ Xa+i),
where V = V1 for i = 1, and V = Va+i−1 otherwise. The capacity is simply forwarded to the next call of the
permutation: Ya+i ← Va+i. The subsequent state is then (Ua+i+1 ‖Va+i+1)← Sa+i+1 ← P(Xa+i ‖ Ya+i).

The final plaintext block is computed from the padded ciphertext block Cm as Xa+m ← Cm ⊕s lsbs(V)
and Mm ← lsbx(Ua+m ⊕ Xa+m), where x ← ℓE mod r. For the final block, the domain dE is XORed to the
least significant byte of the capacity: Ya+m ← Va+m ⊕d ⟨dE⟩d. The would-be tag T′ is derived by computing
(T′ ‖ Z)← P(Xa+m ‖ Ya+m)⊕s lsbs(Va+m), and using only its most significant τ bits: T′ ← msbτ(T′ ‖ Z) as for
the encryption If T = T′, the ciphertext is considered valid, and M = (M1 ‖ · · · ‖Mm) is released as plaintext.
Otherwise, the ciphertext is deemed invalid, and⊥ is returned.

4.5 Domain Separation

For domain separation, Oribatida defines constants dN , dA and dE. The domains are XORed with the least
significant byte of the state at three stages. Domains are encoded as d-bit strings, where d = 4 bits suffice in
practice. The value depends on the presence of A and M and whether their final blocks are absent, partial, or
integral to prevent trivial collisions of inputs to P among blocks of A and M. The constants are determined by
four bits (t3, t2, t1, t0) that reflect inputs in the hardware API, similar to, e.g., [25]:

– EOI: t3 is the end-of-input control bit. This bit is set to 1 if the current data block is the final block of
the input. Note that if the associated data is empty, then the created 10r−1-block is never treated as the
final block of the input.

– EOT: t2 is the end-of-type control bit. This bit is set to 1 if the current data block is the final block of the
same type, i.e., it is the last block of the nonce/associated data/message. Note that if both the associated
data and the message are empty, then neither the nonce nor the created 10r−1-block of the associated
data is considered as the final block of its type.

– Partial: t1 is the partial-control bit. This bit is set to 1 if the size of the current block is less than the
block size. Note that if the associated data is empty and the message is non-empty, then the created
10r−1-block is treated as a partial block.

– Type: t0 is the type-control bit, identifying the type of the current block. For the nonce and the final
message block, t0 = 1. If the associated data is empty and the message is non-empty, then t0 = 1 for the
created 10r−1-block of the associated data. For all other cases, t0 = 0.

While processing a data block, the domains are set as the integer representation of t3 ‖ t2 ‖ t1 ‖ t0. For example,
processing the nonce (which is always a complete r-bit block) with empty associated data and non-empty
message yields dN = (t3t2t1t0) = (0101)2 = 5. Details are provided in Algorithm 2; ℓA denotes the length of A
and ℓE that of M in bits before padding. An overview is given in Table 3.

316 | A. Bhattacharjee et al.

Algorithm 2 Instantiated Domains.
11: function GetDomainForN(ℓA , ℓE)
12: if ℓA = 0 ∧ ℓE = 0 then return ⟨9⟩d
13: return ⟨5⟩d

21: function GetDomainForA(ℓA , ℓE)
22: if ℓA = 0 ∧ ℓE = 0 then return ⟨0⟩d
23: if ℓA = 0 ∧ ℓE > 0 then return ⟨7⟩d
24: if ℓE > 0 ∧ ℓA mod r ≡ 0 then return ⟨4⟩d
25: if ℓE > 0 ∧ ℓA mod r /≡0 then return ⟨6⟩d
26: if ℓE = 0 ∧ ℓA mod r ≡ 0 then return ⟨12⟩d
27: if ℓE = 0 ∧ ℓA mod r /≡0 then return ⟨14⟩d

31: function GetDomainForE(ℓE)
32: if ℓE mod r ≡ 0 then return ⟨13⟩d
33: if ℓE mod r /≡0 then return ⟨15⟩d

Table 3: Instantiated domains in Oribatida. • = yes, – = no.

|A| |M| Domains

> 0 modr ≡ 0 > 0 modr ≡ 0 dN dA dE

– – – – ⟨9⟩d ⟨0⟩d –
– – • – ⟨5⟩d ⟨7⟩d ⟨15⟩d
– – • • ⟨5⟩d ⟨7⟩d ⟨13⟩d

• – – – ⟨5⟩d ⟨14⟩d –
• – • – ⟨5⟩d ⟨6⟩d ⟨15⟩d
• – • • ⟨5⟩d ⟨6⟩d ⟨13⟩d

• • – – ⟨5⟩d ⟨12⟩d –
• • • – ⟨5⟩d ⟨4⟩d ⟨15⟩d
• • • • ⟨5⟩d ⟨4⟩d ⟨13⟩d

5 Int-RUP Attacks on Schemes with Masked Ciphertexts
The approach of Oribatida is to employ (a portion of) the capacity of the previous permutation output to
mask the ciphertext outputs. This strategy is generic enough to also apply it to other modes, such as Beetle
or SPoC. We can informally define a masked variant of Beetle and SPoC. The masked beetle uses Zi−1 and
XORs lsbs(Zi−1) to the s rightmost bits of the ciphertext block Ci, for i > 1 and s ≤ c. If there is no associated
data present, we define Z0 = K2. A masked variant of SPoC would employ the rate (since it is the hidden part).
Thus, for the masked SPoC, we define s ≤ r and define that lsbs(Ui−1) is XORed to Ci for i > 0. If no associated
data is present, we define U0 for the rate of the initial input to the permutation P.

For Oribatida, the masked Beetle or the masked SPoC, the attacks in Section 3 do not apply directly.
Though, there exist attacks on each of them with complexity O(q2d/2

c).

5.1 The Generic Int-RUP Attack on Oribatida (Masked Duplex)

Here, we consider an attack on Oribatida that shows that our Int-RUP bound of O(q2d/2
c) will be tight, so the

attack will be successful for q2d ≈ O(2
c):

1. A asks qd decryption queries (N i , Ai , Ci , T i), where N i and Ci is static for all queries. We assume that
the associated data Ai are pairwise distinct and consist of a single block for all queries. A obtains Mi

from the encryption oracle, for 1 ≤ i ≤ qd. The rate Xi2 ← Ci1 ⊕s lsbs(V i1) is constant for all queries.
2. For qd ≈ O(2c/2), A can expect a collision in the capacity of the input: V i2 ← V j2 for some distinct i ≠ j,
i, j ∈ [1..qd]. Then, this collision leads to a full-state collision that can be detected when Mi

1 = M
j
1.

3. A asks encryption queries (N, Ai ,Mi) and obtains (Ci , T) for some tag T.
4. (N, Aj , Ci , T) is a valid forgery and yields Mj.

5.2 Int-RUP Attack on The Masked Beetle

1. The adversaryA asks qd encryptionqueries (N1, A1,M), (N2, A2,M), . . . , (Nqd ,Aqd ,M) to the encryption
oracle, and receives C1, C2, . . ., Cqd . The associated data Ai consist of a single block for each i; the
message M contains ⌈ cr ⌉ blocks.

2. A asks qd − 1 decryption queries, one for each encryption query except the first encryption query, to
the decryption oracle. The decryption query of the i-th encryption query is (N i , Ai , Ci

′
), where Ci

′
=

Oribatida v1.3 | 317

Y12 ⊕ Y i2 ⊕ shuffle(Y12) ⊕ shuffle(Y i2). A can calculate the r.h.s. as shuffle(Y12) ⊕ shuffle(Y i2) = C1 ⊕ Ci,
and Y12 ⊕ Y i2 directly from shuffle(Y12)⊕ shuffle(Y i2) with the definition of shuffle. So, the first r bits of
the input to the third permutation call always equal those of the first encryption query.

3. Afterwards, A repeats Step 2 to 6 from Section 5.1 to complete the attack.

The attack is successful for q2d ≈ O(2
c). However, the attack strategy differs for SPoC.

5.3 Int-RUP Attack on The Masked SPoC

Here, A has to perform the attack in two stages.

1. First, A asks qd decryption queries (N, A1, C), (N, A2, C), . . . , (N, Aqd , C) to the decryption oracle, and
receives M1, M2, . . ., Mqd . The associated data Ai consists of a single block for each i; the ciphertext C
consists of two blocks.

2. When qd ≈ O(2r), A expects a collision in the first r bits of the input to the third permutation call. A
can detect this collision by looking at the first message block because it will be equal only for the two
colliding queries.

3. Suppose the associated data of the two colliding queries are Ai and Aj.
4. Amakes q1 queries (N, Ai , C1), (N, Ai , C2), . . . , (N, Ai , Cq1), and q2 queries (N, Aj , C1), (N, Aj , C2), . . .

, (N, Aj , Cq2) to the decryption oracle.
5. When q1 · q2 ≈ O(2r), A expects a full state collision at the input to the third permutation, between one

query with associated data Ai and another query with associated data Aj.
6. Suppose the two ciphertexts corresponding to the two colliding queries are Cp and Cq, and the corre-

sponding messages are Mp and Mq.
7. A identifies those pairs of queries (N, Ai , Cx), (N, Aj , Cy), 1 ≤ x ≤ q1 and 1 ≤ y ≤ q2, for which the sum
of the second message blocks equals that of the first message blocks. For each such pair, A updates
Cx and Cy by appending ⌈ cr ⌉ − 1 ciphertext blocks to each s.t., C

x
2 = C

y
2, . . . , C

x
⌈ cr ⌉

= Cy⌈ cr ⌉, and makes
decryption queries with the updated ciphertexts. For k > 2, Mp

k will equal M
q
k .

8. Next, A asks (N, Ai ,Mp) to the encryption oracle; suppose, the tag is T.
9. Then, A successfully forges with the query (N, Aj , Cq , T).

Again, the probability for forgeries becomes non-negligible when q2d ≈ O(2
c).

6 nAE Security Analysis
This section analyzes the nAE security of Oribatida. In the following, let K � K and π � Perm(B). We use
Π[π, π]K = Π[π]K as short form of Oribatida, instantiated with π for P and for P′, and keyed by K. Let A be a
nonce-respecting nAE adversary w.r.t. Π[π]K . We denote by qp, qf , qb, qc, qe, qd, σc, σe, σd the number of
primitive queries, forward primitive queries, backward primitive queries, construction queries, encryption
queries, decryption queries, blocks summed over all construction queries, blocks summed over only all
encryption queries, and blocks summed over all decryption queries, respectively. It holds that qp = qf + qb,
qc = qe + qd, and σc = σe + σd. For simplicity, we define a function ρ as

ρ(i, j) def=
{︃
1 if j = 1
ai + j − 1 otherwise .

So, V iρ(i,j) denotes the used block for masking the ciphertext block Cij.
Recall the notion of a longest common prefix from [11]. Let Q = (N, A,M, C, T) be a query of Awith the

response. Let Q denote a set of queries without Q, i.e., Q ∉ Q. We define the length of the longest common
prefix ofM and another messageM′ as LCP(M,M′) def= maxi

{︀
1 ≤ j ≤ i : Mj = M′

j
}︀
. Given Q andM, we overload

318 | A. Bhattacharjee et al.

the notation by considering the longest common prefix of M with the queries in Q′ = (N′, A′,M′, C′, T′) ∈ Q:
LCP(M,Q) def= maxM′∈Q

{︀
LCP(M,M′)

}︀
. We also define

LCPN,A(M,Q) def= max
(N′ ,A′ ,M′ ,C′ ,T′)∈Q

N′=N∧A′=A

{︀
LCP(M,M′)

}︀
.

Collisions of chaining values are trivial if in the longest common prefix and non-trivial otherwise.

Theorem 1 (nAE Security of Oribatida). LetA be a nonce-respecting adversaryw.r.t.Π[π]K . Then,AdvnAEΠ[π]K (A)
is upper bounded by(︀σ

r
)︀
+ 2
(︀qp
r
)︀

2r(r−1)
+ σ

2

2n + 3qp
2k

+ r(qd + σd) + 2σeqp + qpqc + qd(σe + qp) + 2rqp2c+s + qd2τ .

Proof. We follow the strategy of the nAE proof of Beetle [25]. The queries byA and their corresponding answers
are collected in a transcript τ = (τe , τd , τp). In that transcript, the encryption construction queries are stored
as tuples τe = {(N i , Ai ,Mi , Ci , T i)}, for 1 ≤ i ≤ qe, the decryption construction queries are stored as tuples
τd = {(N i , Ai ,Mi , Ci , T i)}, for 1 ≤ i ≤ qd, and primitive queries are stored as tuples τp = {(Qi , Ri)}, where
π(Qi) = Ri, for 1 ≤ i ≤ qp.

Sampling.
We define the ideal oracle to consist of an on-line and an off-line phase. In the on-line phase, the ideal oracle
samples the responses (Ci , T i) uniformly at random from the bit strings of expected lengths for encryption
queries. For decryption queries, it always outputs⊥. For forward primitive queries Qi, it forwards the result of
π(Qi) to A; for backward primitive queries Ri, it forwards the result of π−1(Ri).

In the off-line phase, the ideal oracle samples the internal chaining values V ij � {0, 1}c and U ij � {0, 1}r

uniformly at random for all construction queries in encryption direction. It derives the analogous internal
chaining values V ij , for 1 ≤ j ≤ k for all construction queries in decryption direction (N i , Ai , Ci , T i) that share
N i , Ai = N i

′
, Ai

′
, and for which Ci1 = Ci

′

1 , . . . , Cik = C
i′
k holds for some i′-th construction query, where i ≠ i′.

Moreover, for construction queries whose plaintext or ciphertext length is not a multiple of r bits, the oracle
samples exactly the missing bits Cim uniformly independently at random that are not fixed from previous
queries, at most at most r − |Cimi | bits at a time. The so-sampled values for the final blocks Cimi are stored also
in the transcript. Moreover, the random key K is revealed to A after the off-line phase.

Bad Events.
We define the following bad events. If any of them occurs, the adversary aborts, and we define that it wins in
this case.

– bad1: Multi-collision on the rate X in encryption construction queries. For some w ≥ r, ∃ indices (i1, j1),
(i2, j2), . . . , (iw , jw) with i1, i2, . . ., iw ∈ [1..qe], and j1 ∈ [1..ai1], j2 ∈ [1..ai2], etc., s. t. Xi1j1 = X

i2
j2 = . . . =

Xiwjw .
– bad2: Collision of permutation inputs in encryption construction queries: ∃ indices (i, j) ≠ (i′, j′) with
i, i′ ∈ [1..qe], j ∈ [1..mi], and j′ ∈ [1..mi′] s. t.

(︁
Xij ‖ Y

i
j

)︁
=
(︁
Xi

′

j′ ‖ Y
i′
j′
)︁
.

– bad3: Collision of permutation outputs in encryption construction queries: ∃ indices (i, j) ≠ (i′, j′) with
i, i′ ∈ [1..qe], j ∈ [1..mi], and j′ ∈ [1..mi′] s. t.

(︁
U ij ‖V

i
j

)︁
=
(︁
U i

′

j′ ‖V
i′
j′
)︁
.

– bad4: Collision of permutation inputs between a construction and a primitive query: ∃ indices (i, j, i′)
with i ∈ [1..qe], j ∈ [1..mi], and i′ ∈ [1..qp] s. t.

(︁
Xij ‖ Y

i
j

)︁
= Qi

′
.

– bad5: Collision of permutation outputs between a construction and a primitive query: ∃ indices (i, j, i′)
with i ∈ [1..qe], j ∈ [1..mi], and i′ ∈ [1..qp] s. t.

(︁
U ij ‖V

i
j

)︁
= Ri

′
.

– bad6: Initial-state collision with a primitive query: ∃ indices (i, i′) with i ∈ [1..qe] and i′ ∈ [1..qp] s. t.(︁
Xi0 ‖ Y i0

)︁
= Qi

′
.

Oribatida v1.3 | 319

– bad7: Multi-collision in the rate of w outputs of forward primitive queries: for some w ≥ r, ∃ i1, i2, . . .,
iw ∈ [1..qp] s. t.msbr(Ri1) = msbr(Ri2) = · · · = msbr(Riw).

– bad8: Multi-collision in the rate of w outputs of backward primitive queries: for some w ≥ r, ∃ i1, i2, . . .,
iw ∈ [1..qp] s. t.msbr(Qi1) = msbr(Qi2) = · · · = msbr(Qiw).

We define that the adversary is provided with all internal chaining values V ij and U ij after its interaction, but
before it outputs its decision bit, which only strengthens the adversary. We define the set of bad transcripts
BadT, to contain exactly those attainable transcripts τ for which at least one of the bad events occurred. It
holds that Pr[Θideal ∈ BadT] ≤

∑︀8
i=1 Pr[badi]. The probability of bad transcripts in the ideal world is treated in

the proof of Lemma 2. The ratio of good transcripts is bounded in Lemma 3. Our bound in Theorem 1 follows
from them and the fundamental Lemma of the H-coefficient Technique [54], using w = r in the bounds.

Lemma 2. Let w ≥ r be a positive integer. It holds that

Pr[Θideal ∈ BadT] ≤
(︀σ
w
)︀
+ 2
(︀qp
w
)︀

2r(w−1)
+ σ

2

2n + 3qp
2k

+ 2σeqp + qpqc + 2w · qp
2c+s .

Proof. In the following, we upper bound the probabilities of the individual bad events.

bad1: Multi-collision on X in encryption construction queries.
In the ideal world, the ciphertext blocks are sampled independently and uniformly at random from the strings
of expected length. The internal values Xij can be computed by A once it is given the transcript including the
internal chaining values V ij . It must hold that Xij ← Cij−ai ⊕s lsbs(V

i
ρ(i,j−ai)). The random sampling of C implies

that the probability of the values Xij to take any specific r-bit value is 1/2r. Note that in the case of a padded
ciphertext block, each padded bit of Cimi is also sampled once randomly and given in the transcript. Hence,
the probability for Xiai+mi to take any r-bit value is also 2−r in the ideal world. For fixed indices (i1, j1), (i2, j2),
. . . , (iw , jw), it holds that

Pr
[︁
Xi1j1 = X

i2
j2 = . . . = X

iw
jw

]︁
≤ 2−r(w−1) .

Over all queries and blocks of τe, it follows that

Pr [bad1] ≤
(︀σ
w
)︀

2r(w−1)
.

bad2: Collision of two permutation inputs in encryption construction queries.
Here, we consider

Pr
[︁(︁
Xij ‖ Y

i
j

)︁
=
(︁
Xi

′

j′ ‖ Y
i′
j′
)︁]︁

.

All ciphertext blocks and the internal chaining values V iρ(i,j−ai), j > a
i are sampled independently anduniformly

at random. Moreover, padded bits of ciphertexts are sampled also independently and uniformly at random.
Though, we have to consider two cases;

– j = 0 ∧ j′ = 0: since Xi0 and Xi
′

0 contain nonces, and since we assume A to be nonce-respecting, the
probability for a collision is zero in this case.

– j > 0: In this case, Y ij = V ij ⊕ const, where const ∈ {dN , dA , dE} is a public constant. Moreover, Xij
is derived from Cij; so, both Xij and Y ij are chosen independently and uniformly at random, and the
probability for a collision in this case is at most 2−n.

Therefore, for fixed indices (i, j) ≠ (i′, j′), the probability is

Pr
[︁(︁
Xij ‖ Y

i
j

)︁
=
(︁
Xi

′

j′ ‖ Y
i′
j′
)︁]︁
≤ 2−n .

320 | A. Bhattacharjee et al.

Over all combinations of indices, it follows that

Pr [bad2] ≤
(︀σ
2
)︀

2n .

bad3: Collision of two permutation outputs in encryption construction queries.
This case is analogous to bad2. The permutation outputs V ij are sampled randomly. In all cases, it holds that

Pr
[︁(︁
U ij ‖V

i
j

)︁
=
(︁
U i

′

j′ ‖V
i′
j′
)︁]︁
≤ 2−n .

Over all combinations of indices, it follows that

Pr [bad3] ≤
(︀σ
2
)︀

2n .

bad4: Collision of permutation inputs between a construction and a primitive query.
Again, we consider Xij ← Cij−ai ⊕s lsbs(V

i
ρ(i,j−ai)) and Y

i
j ← V ij ⊕ const, where const is a public constant. The

values Cij−ai and V
i
ρ(i,j−ai) are sampled randomly, the values (Xij ‖ Y ij) take any value with probability at most

2−n.

1. Assume, the primitive query was asked before the construction query. If the construction query was in
encryption direction, the collision probability for fixed queries is at most 2−n, for qp · qc combinations.

2. If the primitive query was asked after an encryption query, then, the latter one produced a tag. If the
primitive query starts at any other block, A can see r − s bits. Hence, the probability is at most 2−(c+s)

for qp · σe combinations. If the primitive query starts from the tag, the adversary sees c + s unmasked
bits. Assuming bad1, there are at most w equal tags over all encryption queries. So, the probability for a
collision is 2−(n−τ), for at most w · qp combinations.

Over all combinations of indices, it follows that

Pr
[︁
bad4|bad1

]︁
≤ max

(︁σe · qp
2n , σe · qp2c+s

)︁
+ w · qp2c+s ≤ σe · qp2c+s + w · qp2c+s .

bad5: Collision of permutation outputs between an encryption construction query and a primitive query.
Again, U ij+ai can be derived from Mi

j ⊕ C
i
j ⊕s lsbs(V iρ(i,j)) and the values C

i
j and V iρ(i,j) are sampled randomly.

So, the values U ij+ai ‖V
i
j+ai take any value with probability at most 2−n. If the primitive query starts at any

other block, A can see r − s bits. Hence, the probability is at most 2−(c+s) for qp · σe combinations. Following a
similar argument as for bounding bad4 and excluding bad1, we obtain over all combinations of indices that

Pr
[︁
bad5|bad1

]︁
≤ σ · qp2c+s + w · qp2c+s .

bad6: Initial-state collision with a primitive query.
Here, we know that the key is chosen uniformly at random. We distinguish between collisions depending on
whether the primitive query was a forward query or a backward query.

1. If the primitive query was a forward query, it must hit the correct value of K ⊕d dN . So, the probability is
at most qp/2k to collide with encryption construction queries. Considering also decryption queries, a
nonce can repeat but change dN . Since there exist at most three distinct values for dN , the probability is
at most 3qp/2k to collide.

2. If the primitive query was in backward direction, its response must hit any initial state of a construction
query. If the construction query was asked before the primitive, A sees at best r − s bits of C1. Then, the
probability is at most qc · qp/2c+s.

Oribatida v1.3 | 321

3. If the primitive query was asked before the construction query, A can use the nonce part of the primitive
query’s result as a nonce. Though, a collision needs the key part to be correct, which holds with
probability at most 3qp/2k.

Over all possible options, we obtain

Pr [bad6] ≤
3qp
2k

+ qc · qp2c+s .

bad7: Multi-collision in the rate of w outputs of forward primitive queries.
Since π is chosen randomly from the set of all permutations, the outputs are chosen randomly from a set of
size 2n − (i − 1) for the i-th primitive query. So, the probability for w distinct queries to collide in their rate is at
most 1/2r(w−1) as for bad7 in the nAE proof. Over all queries, the probability is upper bounded by

Pr [bad7] ≤
(︀qp
w
)︀

2r(w−1)
.

bad8: Multi-collision in the rate of w outputs of backward primitive queries.
Following a similar argumentation as for bad7, we obtain

Pr [bad8] ≤
(︀qp
w
)︀

2r(w−1)
.

Our bound in Lemma 2 follows from summing up all probabilities.

Lemma 3. Let τ ∈ GoodT. Then

Pr[Θreal = τ]
Pr[Θideal = τ]

≤ 1 −
(︂
qd
2τ +

qd(qp + σe)
2c+s + (σd + qd) · w

2c+s

)︂
.

Proof. It remains to lower bound the ratio of real and ideal probability of obtaining a good transcript τ. Let
τ = (τe , τd , τp) be an attainable transcript, where τd = ⊥all contains only ⊥ for all responses. Since all
ciphertext-block outputs and all internal chaining values in encryption queries are sampled independently
and uniformly at random, their probability is 1/2 per bit. We define σdistinct for the number of distinct calls to
the permutation over all encryption and decryption queries. In the ideal world, it holds that

Pr [Θideal = τ] = Pr [K] · Pr [τe ∧ τp ∧ τd]

= Pr [K] · Pr
[︀
τe] · Pr[τp] · Pr[τd

]︀
= 1
2k
· 1
(2n)σdistinct ·

1
(2n)qp

· 1

since the outputs from encryption queries are sampled uniformly at random; so, the encryption and decryption
transcripts τe and τd are independent from τp.

In the real world, the probabilities for choosing K as key and π as permutation are equal to those of the
ideal world. We can separate the probability into

Pr [Θreal = τ] = Pr [K] · Pr [τe ∧ τp ∧ τd] =
1
2k
· Pr [τe , τd|τp] · Pr [τp]

since the encryption and the decryption transcript depend on the choice of the permutation π. Let⊤i denote
that the i-th decryption query was a valid forgery. We can upper bound

Pr [τe , τd|τp] · Pr [τp] ≤ Pr [τe|τp] · Pr [τp] −
(︃ qd∑︁
i=1

Pr [τe ∧ ⊤i|τp] · Pr [τp]

)︃

= Pr [τe|τp] · Pr [τp] − Pr [τe|τp] · Pr [τp] ·
(︃ qd∑︁
i=1

Pr [⊤i|τe|τp] · Pr [τp]

)︃

322 | A. Bhattacharjee et al.

= (Pr [τe|τp] · Pr [τp]) · (1 − ϵ) , (1)

where we define

ϵ def=
qd∑︁
i=1

ϵi and ϵi
def= Pr [⊤i|τe|τp] · Pr [τp] .

The probability of primitive queries is given by the fraction of all permutations π that would produce τp, which
is

Pr[τp] =
1

(2n)qp
,

as in the ideal world. The ciphertext blocks Cij from encryption queries as well as the chaining values V ij are
results from the permutation π and hence, depend on the permutation. Since τ is a good transcript, there
are no undesired collisions, e.g., between primitive and construction queries. Hence, all internally computed
values (U ij ‖V ij) – note that U ij can be derived from Cij−ai ⊕s lsbs(V

i
ρ(i,j−ai))⊕M

i
j−ai by the adversary – are results

of fresh values or predefined in decryption queries from the result of previous encryption queries. Then, the
probabilities for the outputs of π in construction queries are given by 1/

(︀
2n
)︀
σdistinct

. It is not difficult to see that
for positive σdistinct, the ratio of the interpolation probabilities from Equation (1) can be bounded by

(Pr [τe|τp|Θreal] · Pr [τp|Θreal])
(Pr [τe|Θideal])

=
1

(2n)σdistinct
1

(2n)σdistinct
= (2n)σdistinct
(2n)σdistinct

≥ 1 .

It remains to upper bound ϵ. For this purpose, we upper bound the values ϵi for transcripts that contain
forgeries. Since τ is a good transcript, we assume that bad events do not hold. Hence, either⊤i does not hold,
which yields ϵi = 0; in the opposite case, we have to consider a few mutually exclusive cases in the following.
We assume that there exists a decryption query (N i , Ai , Ci , T i) s. t. T i is valid. In all cases, the tag can simply be
guessed correctly if the block (Xiai+mi ‖ Y iai+mi) is fresh. Then, the probability for the tag to be correct is 2−τ. So,
we can concentrate on the cases where it is non-fresh in the following. Prior, we define (Xi1 , Xi2 , . . . , Xiw+1) as
a w-chain if there exist (Yi1 , Yi2 , . . . , Yiw+1) s. t. the following chain has been obtained from primitive queries:

π
(︀
Xi1 ‖ Yi1

)︀
=
(︀
Ui2 ‖Vi2

)︀
=
(︀
Ui2 ‖ Yi2

)︀
,

π
(︀
Xi2 ‖ Yi2

)︀
=
(︀
Ui3 ‖Vi3

)︀
=
(︀
Ui3 ‖ Yi3

)︀
,

...
π
(︀
Xiw ‖ Yiw

)︀
=
(︀
Uiw+1 ‖Viw+1

)︀
=
(︀
Uiw+1 ‖ Yiw+1

)︀
.

The cases are:

– Case (A): N i is fresh; so, there is no earlier construction query i′ ≠ i s. t. N i = N i
′
.

– Case (B): N i is old, but (N i , Ai) is fresh, i.e., there exists no earlier construction query i′ ≠ i with
(N i , Ai) = (N i

′
, Ai

′
).

– Case (C): (N i , Ai) is old, but (N i , Ai , Ci) is fresh, i.e., there exists no earlier construction query i′ ≠ i with
(N i , Ai , Ci) = (N i

′
, Ai

′
, Ci

′
), and no w-chain of primitive queries is hit.

– Case (D): (N i , Ai , Ci) is old; (N i , Ai , Ci) a prefix of another construction query.
– Case (E): (N i , Ai) is old and there exists a w-chain of primitive queries that is hit.

Clearly, the cases cover all possible options. We assume that no previous bad events occur, in particular, no
w-multi-collisions or collisions with the primitive queries occurred.

Case (A).
We excluded bad6 in this case. The probability that (N i ‖ K) ⊕d dN hits any block (Xi

′

j ‖ Y
i′
j) from another

construction query so that the final block is old is at most

Pr
[︁(︁(︁

N i ‖ K
)︁
⊕d dN

)︁
=
(︁
Xi

′

j ‖ Y
i′
j

)︁]︁
≤ σe
2c+s .

Oribatida v1.3 | 323

Case (B).
Let p ≤ ai + mi denote the length of the longest common prefix of the i-th query with all other queries. In
Case (B), the probability that any block (Xij ‖ Y ij) with j ≥ p + 1 matches the permutation input of any other
encryption-query block or primitive query can be upper bounded by

Pr
[︁(︁
Xij ‖ Y

i
j

)︁
=
(︁
Xi

′

j′ ‖ Y
i′
j′
)︁]︁
≤ σe
2c+s +

qp
2c+s .

Case (C).
A similar argument as for Case (B) can be applied in Case (C). The probability that there exists i′ ≠ i, s. t. for
some block indices, it holds that (j, j′): (Xij ‖ Y ij) = (Xi

′

j′ ‖ Y
i′
j′) is at most 1/2c+s. So, it holds that

Pr
[︁(︁
Xij ‖ Y

i
j

)︁
=
(︁
Xi

′

j′ ‖ Y
i′
j′
)︁]︁
≤ σe
2c+s +

qp
2c+s .

Case (D).
This case needs that (Xiai+mi+1 ‖ Y

i
ai+mi+1) matches the permutation input of any other encryption-query block

or primitive query. The probability can be upper bounded by

Pr
[︁(︁
Xij ‖ Y

i
j

)︁
=
(︁
Xi

′

j′ ‖ Y
i′
j′
)︁]︁
≤ σe
2c+s +

qp
2c+s .

Case (E).
Assume that (Xip+1 ‖ Y ip+1) hits a w-chain of primitive queries. Under the assumption that no other bad events
occurred, the probability is at most

Pr
[︃(︁
Xip+1 ‖ Y ip+1

)︁ ⃒⃒⃒⃒⃒
8⋀︁
i=1

badi

]︃
≤ (m

i + 1) · w
2c+s .

Over all decryption queries, we obtain

ϵ ≤
qd∑︁
i=1

(︂
1
2τ +

σe
2c+s +

qp
2c+s +

(mi + 1) · w
2c+s

)︂
≤ qd2τ +

qd(qp + σe)
2c+s + (σd + qd) · w

2c+s .

Our claim in Lemma 3 follows.

7 Int-RUP Analysis
We use the same notations as in Section 6 but add some. Let qd and σd be the number of decryption queries
and blocks over decryption queries, respectively, and qv and σv the analogs for verification queries. We replace
π � Perm(B), assume K � K, and denote Π[π]K for Oribatida with π and K.

Theorem 2 (Int-RUP Security of Oribatida). Let A be a nonce-respecting adversary w.r.t. Π[π]K . Then

AdvInt-RUPΠ[π]K (A) ≤ σ
2
e

2n + 4σeσd + 4σqp + qcqp + qp + r(σd + qd) + 3rqp
2c+s

+
q2d +

(︀qd+qv
2
)︀

2c +
(︀qe
r
)︀

2τ(r−1)
+ 3qp

2k
+
2
(︀qp
r
)︀

2r(r−1)
+ 2qv

2τ .

Proof. The Int-RUP analysis of Oribatida follows a similar strategy as our nAE analysis. However, this time,
the adversary has access to three oracles for encryption, decryption and verification. Moreover, the encryption
and decryption oracles are the same in both the real and the ideal world. Both worlds differ only in the

324 | A. Bhattacharjee et al.

verification oracle. To alleviate the task, we replace the oracles for encryption and decryption ̃︀E[π]K, ̃︀D[π]K
with a pair of consistent pseudo-random oracles $̃︀E[π] and $̃︀D[π] (we define our intent of consistency for
encryption and decryption in a moment). The advantage between both settings can be upper bounded by
∆A1

(︁̃︀E[π]K , ̃︀D[π]K , ̃︀V[π]K , π±; $̃︀E, $̃︀D,⊥, π±
)︁
. Note that the oracles $̃︀E and $̃︀D differ from the independent

random oracles in the stronger RUPAE notion. In the RUPAE notion, they sample independently from each
other without considering common prefixes between queries, which would be impossible to achieve for an
on-line AE scheme. Again, we consider the H-coefficient approach. So, we define several bad events and bad
as well good transcripts. If any of the bad events occurs, the adversary aborts and is defined to win. Next,
we consider the probability of forgeries under those idealized oracles. So, we can exclude the previous bad
events and study the probability of forgeries. Finally, we study the ratio of interpolation probabilities for good
transcripts.

Sampling Consistently in the On-line Phase.
This on-line phase contains much from the off-line phase of the nAE analysis. We define the ideal encryption
oracle as in the nAE proof: it samples the responses (Ci , T i) uniformly at random from all bit strings of
expected lengths for encryption queries. The ideal decryption oracle, however, must sample plaintext outputs
consistently. For this purpose, the ideal encryption oracle has to sample also the internal chaining values
V ij � {0, 1}c and U ij � {0, 1}r uniformly at random for all construction queries already in the on-line phase.
It stores the values of Cij, V ij , and U ij also internally, but does not release U ij and V ij in this phase.

On each input (N i , Ai , Ci , T i), the ideal decryption oracle looks up the length of the longest common prefix
of the query p ← LCPN

i ,Ai (Ci ,Q) with all previous queries Q. For all blocks in the common prefix 1 ≤ j ≤ p, it
uses the same outputsMi

j that have been fixed from previous queries. Since the oracle has sampled V ip+1 for the
(p+1)-th block, it can deduce all bits not fixed from previous query outputs. Assume, i ≠ i′, (N i , Ai) = (N i

′
, Ai

′
),

and p = LCPN
i ,Ai (Ci , Ci

′
) where p < mi ,mi′ . Then, Cip+1 = Cip+1 ⊕ ∆ is the block directly after the common

prefix. Sampling V ij and deriving U ij ensures consistent sampling, i.e., Mi
p+1 = Mi′

p+1 ⊕ ∆ for all such queries
with non-empty common prefix.

Starting from the (p + 2)-th block, the ideal decryption oracle samples the responses Mi
j � {0, 1}r,

V ij � {0, 1}c, and U ij � {0, 1}r uniformly and independently at random from the bit strings of expected
lengths, for p + 2 ≤ j ≤ ai + mi. Note that queries whose ciphertext lengths are not multiples of r bits are
answered consistently since the oracle samples V ij , and all bits fixed from previous queries are used. For
verification queries, the ideal verification oracle always outputs⊥. For forward primitive queries Qi, the ideal
oracle forwards π(Qi); for backward primitive queries Ri, it returns π−1(Ri).

Off-line phase.
Here, the ideal oracle releases the internal chaining values (U ij , V ij), after the considered adversary made all
queries, but before outputting the decision bit. The ideal oracle also reveals a random key K � K then.

Bad Events.
Whenever we consider a non-trivial collision between blocks or chaining values at block indices j, j′ of two
messages, we assume that at least one of them exceeds the longest common prefix.

– bad1: Non-trivial collision of permutation inputs in construction queries: ∃ (i, j) ≠ (i′, j′) with i, i′ ∈
[1..qc], j ∈ [1..mi], and j′ ∈ [1..mi′] s.t. (Xij ‖ Y ij) = (Xi

′

j′ ‖ Y
i′
j′).

– bad2: Non-trivial collision of permutation outputs in construction queries: ∃ (i, j) ≠ (i′, j′) with i, i′ ∈
[1..qc], j ∈ [1..mi], and j′ ∈ [1..mi′] s.t. (U ij ‖V ij) = (U i

′

j′ ‖V
i′
j′).

– bad3: Multi-collision betweenw tags. For somew ≥ r, there exist i1, i2, . . . , iw with i1, i2, . . ., iw ∈ [1..qe],
s.t. T i1 = T i2 = . . . = T iw .

Oribatida v1.3 | 325

– bad4: Non-trivial collision of permutation inputs between construction and primitive query: ∃ (i, j, i′)
with i ∈ [1..qc], j ∈ [1..mi], and i′ ∈ [1..qp] s.t. (Xij ‖ Y ij) = Qi

′
.

– bad5: Non-trivial collision of permutation outputs between construction and primitive query: ∃ i ∈
[1..qc], j ∈ [1..ai + mi] and i′ ∈ [1..qp] s.t. (U ij ‖V ij) = Ri

′
.

– bad6: Initial-state collision with a primitive query: ∃ i ∈ [1..qc] and i′ ∈ [1..qp] s.t. (Xi0 ‖ Y i0) = Qi
′
.

– bad7: Multi-collision in the rate of w outputs of forward primitive queries: for some w ≥ r, ∃ i1, i2, . . .,
iw ∈ [1..qp] s.t.msbr(Ri1) = · · · = msbr(Riw).

– bad8: Multi-collision in the rate of w outputs of backward primitive queries: for some w ≥ r, ∃ i1, i2, . . .,
iw ∈ [1..qp] s.t.msbr(Qi1) = · · · = msbr(Qiw).

– bad9: Forgery in decryption queries if all blocks are old: There exists some i ∈ [1..qd] s.t. for all blocks
0 ≤ j ≤ ai+mi, there exist indices i′, j′with i′ ∈ [1..qc], j′ ∈ [1..mi′] or i′ ∈ [1..qp] s.t. (Xij ‖ Y ij) = (Xi

′

j′ ‖ Y
i′
j′)

or (Xij ‖ Y ij) = Qi
′
and the tag is valid:msbτ

(︁
π
(︁
Xiai+mi ‖ Y iai+mi

)︁)︁
= T i .

We define BadT to contain exactly the attainable transcripts τ for which at least one bad events occurred.
All other attainable transcripts are in GoodT. Then Pr[Θideal ∈ BadT] ≤

∑︀9
i=1 Pr[badi]. The probability of bad

transcripts in the ideal world is treated in the proof of Lemma 4. The ratio of obtaining a good transcript
is bounded in Lemma 5. Our bound in Theorem 1 follows from those and the fundamental Lemma of the
H-coefficient Technique [54]. We apply w = r in the bound of Lemma 4.

Lemma 4. Let w ≥ r be a positive integer. It holds that

Pr[Θideal ∈ BadT] ≤
σ2e
2n + 3σeσd + 3σqp + qcqp + qp + w(σd + qd) + 3wqp

2c+s

+
q2d +

(︀qd+qv
2
)︀

2c +
(︀qe
w
)︀

2τ(w−1)
+ 3qp

2k
+

2
(︀qp
w
)︀

2r(w − 1) +
qv
2τ .

Proof. In the following, we upper bound the probabilities of the individual bad events. For most of them, we
differentiate between encryption and decryption queries.

bad1: Collision of two permutation inputs in construction queries.
1. Among encryption queries only: Here, it holds that

Pr
[︁(︁
Xij ‖ Y

i
j

)︁
=
(︁
Xi

′

j′ ‖ Y
i′
j′
)︁]︁
≤ 2−n .

Since there exist
(︀σe
2
)︀
block combinations, we obtain

(︀σe
2
)︀
/2n.

2. Dec-then-Enc: If we consider an encryption query block to collidewith a block fromaprevious decryption
query, the probability is at most 2−(c+s) since A can see r − s bits that it can use as the nonce. We have
qeσd combinations of such blocks. For the remaining σeσd blocks, the probability is 2−n.

3. Among decryption queries only: w.l.o.g., we consider the first such collision. If Amodifies the nonce in
the later following query, the bound is the same as for encryption-only queries. So, we assume in the
remainder of that the later query is a decryption query. Let j − 1 be the first modified block and assume
it is in the message-processing part. If the block indices differ j ≠ j′, the probability is 2−(c+s). Otherwise,
assume j = j′ and Ai = Ai

′
. Then, the permutation output (U i

′

j ‖V
i′
j) is sampled randomly in the ideal

world. If A leaves Cij−ai = C
i′
j−ai , it automatically holds that

Xij = Cij−ai ⊕ lsbs
(︁
V iρ(i,j−ai)

)︁
= Xi

′

j = Cij−ai ⊕ lsbs
(︁
V iρ(i,j−ai)

)︁
.

So, Xij = Xi
′

j . With probability 2−c, it also holds for the capacity V ij+1 = V i
′

j+1 and thus Y ij+1 = Y i
′

j+1. Note
that this approach holds only for the first differing block, for which which yields a term of

(︀qd
2
)︀
/2c. If

the collision does not hold, the masks beginning for the (j + 2)-th block will differ and the probability
decreases to 2−(c+s), which produces a term of

(︀σd
2
)︀
/2c+s.

326 | A. Bhattacharjee et al.

4. Enc-then-Dec: It remains to consider collisions between an encryption query, followed by a decryption
query. If the block indices j ≠ j′ differ, the probability is again 2−(c+s), for at most σe · σd combinations.
Otherwise, if j = j′, A can apply the strategy above for a collision. Then, the probability is 2−c; though,
the qd queries can collide at most with one encryption query each since we consider the first collision,
producing a term of qd/2c.

Over all cases, we obtain

Pr [bad1] ≤
(︀σe
2
)︀

2n + max
(︁qeσd
2c+s + σeσd2c+s + qd2c

)︁
+
(︀σd
2
)︀

2c+s +
(︀qd
2
)︀

2c ≤
(︀σe
2
)︀

2n + σeσd2c+s +
(︀qd
2
)︀

2c .

bad2: Collision of two permutation outputs in encryption construction queries.
This case is analogous to bad1. Over all combinations of indices, it follows that

Pr [bad2] ≤
(︀σe
2
)︀

2n + σeσd2c+s +
(︀qd
2
)︀

2c .

bad3: Multi-collision on w tags from encryption queries.
Since the tags are sampled uniformly and independently at random in the ideal world, it holds that

Pr
[︁
T i1j1 = T

i2
j2 = . . . = T

iw
jw

]︁
≤
(︀qe
w
)︀

2τ(w−1)
.

bad4: Collision of permutation inputs between a construction and a primitive query.
Again, we consider Xij ← Cij−ai ⊕s lsbs(V

i
ρ(i,j−ai)) and Y

i
j ← V ij ⊕ const, where const is a public constant. The

values Cij−ai and V
i
ρ(i,j−ai) are sampled randomly, the values (Xij ‖ Y ij) take any value with probability at most

2−n.

1. Assume, the primitive query was asked before the construction query. If the construction query was in
encryption direction, the collision probability for fixed queries is at most 2−n, for qp · qc combinations.

2. Otherwise, if the construction query was a decryption query, A can see r − s bits. Hence, the probability
is at most 2−(c+s), for qp · qc combinations.

3. The same argument can be applied in the case when the primitive query was asked after a decryption
query. Then, the adversary can see r − s unmasked bits of the rate from Cij. Again, the probability is at
most 2−(c+s) and we have qp · qc combinations.

4. If the primitive query was asked after an encryption query, then, the latter produced a tag. If the primitive
query targets any other block, the argument is the same as in Case c). If the primitive query starts from
the tag, the adversary sees τ − s unmasked bits. Assuming bad3, there are at most w equal tags over all
encryption queries. So, the probability for a collision is 2−(c+s), for w · qp combinations.

Over all combinations of indices, it follows that

Pr
[︁
bad4|bad3

]︁
≤ max

(︁σe · qp
2n , σe · qp2c+s

)︁
+ σd · qp2c+s + w · qp2c+s ≤ σ · qp2c+s + w · qp2c+s .

bad5: Collision of permutation outputs between a construction and a primitive query.
Again, U ij+ai can be derived from Mi

j ⊕ C
i
j ⊕s lsbs(V iρ(i,j)); the values C

i
j and V iρ(i,j) are sampled randomly. This

case is similar as bad4. Over all index combinations

Pr
[︁
bad5|bad3

]︁
≤ max

(︁σe · qp
2n , σe · qp2c+s

)︁
+ σd · qp2c+s + w · qp2c+s ≤ σ · qp2c+s + w · qp2c+s .

Oribatida v1.3 | 327

bad6: Initial-state collision with a primitive query.
Here, we distinguish between the cases whether the construction query was asked before or after the primitive
query and whether the primitive query was in forward or backward direction.

1. Assume, the primitive query was asked after the construction query. If the primitive query was a forward
query, it must hit the correct value of K ⊕d dN . This probability is at most qp/2k to collide when consid-
ering encryption construction queries. Considering also decryption queries, a nonce can repeat often;
though, the initial state can take three different values for the same nonce, namely if the decryption
query changes the length of associated data and message, affecting dN . Since there exist at most three
distinct values for dN , the probability to collide is at most 3qp/2k.

2. If the primitive query was in backward direction, its response must hit any initial state of a construction
query. If the construction query was asked before the primitive, A sees at best r − s bits of C1. Then, the
probability is at most qc · qp/2c+s.

3. If the primitive query was asked before the construction query, A can use the nonce part of the primitive
query’s result as the nonce. However, a collision must hit the key part, which holds with probability at
most 3qp/2k.

4. If the primitive query was in backward direction, A sees at best r − s bits of C1. Then, there is at most
one starting state, assuming bad1, which yields qp/2c+s.

Over all possible options, we obtain

Pr
[︁
bad6|bad1

]︁
≤ 3qp

2k
+ max

(︁qc · qp
2c+s , qp2c+s

)︁
≤ 3qp

2k
+ qc · qp2c+s + qp

2c+s .

bad7: Multi-collision in the rate of w outputs of forward primitive queries.
Since π is chosen randomly from the set of all permutations, the outputs are sampled uniformly at random
from a set of size at least 2n − (i − 1) for the i-th query. So, the probability for w distinct queries to collide in
their rate is upper bounded by

2c − 1
2n − 1 ·

2c − 2
2n − 2 · · · · ·

2c − (w − 1)
2n − (w − 1) =

w−1∏︁
i=1

2c − i
2n − i ≤

(︂
2c
2n

)︂w−1
= 2−r(w−1) .

Over all primitive query indices, it holds that

Pr [bad7] ≤
(︀qp
w
)︀

2r(w−1)
.

bad8: Multi-collision in the rate of w outputs of backward primitive queries.
Using a similar argumentation as for bad7, we obtain

Pr [bad8] ≤
(︀qp
w
)︀

2r(w−1)
.

bad9: Forgeries if all blocks are old.
It remains to bound the probability of a successful forgery of a verification query (N i , Ai , Ci , T i) s. t. T i is valid
and where each block is old.

We consider the same five mutually exclusive cases as in the nAE proof. In all cases, the tag can simply be
guessed correctly if the block (Xa

i+mi
‖ Ya

i+mi
) is fresh. Then, the probability for the tag to be correct is upper

bounded by 2−τ. We adopt the cases and the notions from the nAE proof and assume that no previous bad
events occur, in particular no w-multi-collisions described earlier or collisions with primitive queries.

– Case (A): N i is fresh; so, there is no earlier construction query i′ ≠ i s. t. N i = N i
′
.

– Case (B): N i is old, but (N i , Ai) is fresh, i.e., there exists no earlier construction query i′ ≠ i with
(N i , Ai) = (N i

′
, Ai

′
).

328 | A. Bhattacharjee et al.

– Case (C): (N i , Ai) is old, but (N i , Ai , Ci) is fresh, i.e., there exists no earlier construction query i′ ≠ i with
(N i , Ai , Ci) = (N i

′
, Ai

′
, Ci

′
), and no w-chain of primitive queries is hit.

– Case (D): (N i , Ai , Ci) is old; (N i , Ai , Ci) is a prefix of another construction query.
– Case (E): (N i , Ai) is old and there exists a w-chain of primitive queries that is hit.

Clearly, the cases cover all possible options. We assume that no previous bad events occur, in particular no
w-multi-collisions described earlier or collisions with primitive queries.

Case (A).
We excluded bad4, i.e., collisions of permutation inputs between construction and primitive queries in this
case. The probability that (N i ‖ K)⊕d dN hits any block (Xi

′

j ‖ Y
i′
j) from another construction query so that the

final block is old is at most

Pr
[︁(︁(︁

N i ‖ K
)︁
⊕d dN

)︁
=
(︁
Xi

′

j ‖ Y
i′
j

)︁]︁
≤ σ + qp2c+s .

Cases (B)–(D).
Let p ≤ ai + mi denote the length of the longest common prefix of the i-th query with all other queries. The
probability that any block (Xij ‖ Y ij) with j ≥ p + 1 matches the permutation input of any other query block or
primitive query can be upper bounded analogously as bad1 and bad4:

Pr
[︁(︁
Xij ‖ Y

i
j

)︁
=
(︁
Xi

′

j′ ‖ Y
i′
j′
)︁]︁
≤ σe + qd2c+s + σe · σd2c+s +

(︀qd
2
)︀

2c + σ · qp2c+s + w · qp2c+s .

Over all verification queries, we obtain

Pr
[︃
bad9

⃒⃒⃒⃒
⃒
8⋀︁
i=1

badi

]︃
≤ qv2τ +

σe · σd
2c+s +

(︀qd+qv
2
)︀

2c + σ · qp2c+s + w · qp2c+s + w · (σd + qd)2c+s .

Case (E).
Assume that (Xip+1 ‖ Y ip+1) hits a w-chain of primitive queries. Under the assumption that no other bad events
occurred, the probability is at most

Pr
[︁(︁
Xip+1 ‖ Y ip+1

)︁]︁
≤ (m

i + 1) · w
2c+s .

Over all verification queries, we obtain

Pr
[︃
bad9

⃒⃒⃒⃒
⃒
8⋀︁
i=1

badi

]︃
≤ qv2τ +

σe · σd
2c+s +

(︀qd+qv
2
)︀

2c + σ · qp2c+s + w · qp2n−τ + w · (σd + qd)2c+s .

Our bound in Lemma 4 follows from summing up all probabilities.

Lemma 5. Let τ ∈ GoodT. Then

Pr[Θreal = τ]
Pr[Θideal = τ]

≤ 1 −
(︂
qd
2τ +

σd(σe + qp)
2c+s

)︂
.

Proof. It remains to bound the ratio of the probabilities for obtaining a good transcript τ in the real and the
ideal world, respectively. The bound is similar to that of Lemma 3. The difference to the nAE proof is that the
ideal decryption oracle also generates pseudorandom output blocks Mi

j beyond the longest common prefix.
The nAE transcript also contained the sampled internal values, as does the transcript τ here. Since we assume
that no bad events have occurred, we revisit the following cases for forgeries:

Oribatida v1.3 | 329

– Case (A): The final input to π, (Xiai+mi ‖ Y iai+mi) is fresh, i.e., has not occurred before. Then, the probability
that the authentication tag τi is valid is at most 1/2τ.

– Case (B): The final input to π, (Xiai+mi ‖ Y iai+mi) is old, but there exists some block index j ∈ [1..ai + mi]
s. t. (Xij ‖ Y ij) is fresh. Since the input is old, the probability that the result of any of the next blocks is old
is at most (σ+qp)

2c+s .
– Case (C): There exists no j ∈ [1..ai + mi] s. t. (Xij ‖ Y ij) is fresh. The probability that all of those blocks

are old is at most m
i(σe+qp)
2c+s .

It follows that

ϵi ≤
1
2τ +

σe + qp
2c+s + m

i(σe + qp)
2c+s .

Over all indices i ∈ [1..qd], it follows that

ϵ ≤
qd∑︁
i=1

ϵi ≤
qd
2τ +

σd(σe + qp)
2c+s .

Our claim in Lemma 5 follows.

8 Comparison with Lightweight Int-RUP-secure Schemes
Among the submissions to the NIST lightweight competition [53], ESTATE [27], LAEM [61], LOTUS-AEAD and
LOCUS-AEAD [24] claimed security in the Int-RUP model. Among these modes, ESTATE, LOTUS-AEAD, and
LOCUS-AEAD were elected into the second round. This section compares our proposal to those; Table 4 gives a
summary.

Table 4: Comparison of Oribatida with further Int-RUP-security claiming submissions to the NIST lightweight competition.
n/t = block/tweak length of the primitive, m = #message segments, sec. = security, IF = inverse-free, •/– = feature is
present/absent.

Sizes (bits) Security Features

Construction |N| |K| |T| n t State Rate nAE Int-RUP 1-pass IF

Oribatida-192 (v1.2) [21] 64 128 96 192 0 288 96 89 48 • •
Oribatida-256 (v1.2) [21] 128 128 128 256 0 320 128 121 64 • •
Oribatida v1.3-192 [This work] 64 128 96 192 0 288 96 121 48 • •
Oribatida v1.3-256 [This work] 128 128 128 256 0 320 128 121 64 • •

ESTATE [27] 128 128 128 128 4 260 64 64 64 – •
LOCUS-AEAD [24] 128 128 64 64 4 324 32 64 64 • –
LOTUS-AEAD [24] 128 128 64 64 4 384 32 64 64 • •

8.1 Brief Description

ESTATE follows SIV [57]: the associated data and message are authenticated using a variant of CBC-MAC with a
tweakable block cipher before the tag is used as an initial vector of CBC-like encryption. The intermediate
values are used as keystream and added to the message blocks. LOCUS-AEAD and LOTUS-AEAD employ a
variant of PMAC [23] to process the associated data with the tweakable block cipher. For encryption, LOTUS-
AEAD uses a variant of OTR [50], a two-round, two-branch Feistel structure to process the message in double

330 | A. Bhattacharjee et al.

blocks. LOCUS-AEAD employs an encryption similar to OCB [56] and EME/EME* [38]. Both LOCUS-AEAD and
LOTUS-AEAD employ a single pass over the message for encryption, but two calls to the primitive per message
block. The intermediate values are summed to the associated-data hash and the final message block; the
encrypted sum yields the tag.

8.2 Eflciency

Oribatida processes 96- or 128-bit message blocks per primitive call, whereas the size of themessage processed
in one primitive call is 64 bits for ESTATE and 32 for LOTUS-AEAD and LOCUS-AEAD. Thus, Oribatida offers
higher throughput; moreover, the state size of Oribatida (288 and 320 bits, respectively) is smaller than those
of LOTUS-AEAD (388 bits) and LOCUS-AEAD (324 bits). ESTATE has a state size of 260 bits; all threemust process
the message with two calls to the primitive. LOCUS-AEAD requires the inverse operation of the underlying block
cipher to be available for the decryption. In sum,Oribatida possesses a smaller state size than LOCUS-AEAD and
LOTUS-AEAD, and higher nAE security, as well as a higher rate, compared to its Int-RUP-secure competitors.

8.3 Security

All three competitors are based on tweakable block ciphers, with Int-RUP claims limited by the birthday
bound of the internal primitive. ESTATE inherits Int-RUP security until the birthday bound from SIV, which
has been considered in [7, Sect. 6.2]. While LOCUS-AEAD and LOTUS-AEAD share similarities to OCB and OTR,
they use intermediate checksums as in EME designs in the tag-generation process. Informally, modifying any
message block will result in new pseudorandom internal values and therefore a pseudorandom input to the
tag computation.

9 Discussion of the Updated Variant Oribatida v1.3
This section discusses the update from Oribatida (v1.2) from [21] to Oribatida v1.3 in this work, that addresses
the observation by Rohit and Sarkar [59] in a straight-forward manner. Here, we briefly discuss only the
differences:

1. Oribatida v1.2 released the tag without masking. As a consequence, the adversary has seen the full rate
and had to guess only the n − τ-bit hidden part to be able to invert the encryption process. To succumb
this attack, Oribatida v1.3masks the tag such that the adversary sees τ − s bits if s ≤ τ, which restores
the complexity from q/2n−τ to q/2c+s. Figure 4 illustrates both tag-generation processes for comparison.
The masking of the authentication tag is performed exactly as for ciphertext blocks, which streamlines
this process.

2. Oribatida v1.2 employed two permutations P and P′, where the latter was intended to be a more efficient
variant of the former. In practice, P′ was instantiated with a round-reduced version of P, which was
only used for processing intermediate blocks of associated data. This was fine since an upper bound on
the probability of differentials was sufficient for security and not pseudo-randomness. Oribatida v1.3
unified the process and uses P at every location.

3. Oribatida v1.2 used a different starting value V0 for masking the ciphertexts when the associated data
was empty and V1 otherwise. The reason was simply efficiency since empty associated data did not yield
a value V1. In contrast, Oribatida v1.3 always pads the associated data such that there always exists an
intermediate value V1 that is not used as capacity in the message-processing step. This decision implies
a slightly lower throughput for empty associated data but adds unification.

4. As a result of Aspect (3), Oribatida v1.3 uses slightly different and more domains to properly address
also the additional case when the associated data was empty.

Oribatida v1.3 | 331

Mm

padr

Ua+m

Va+m

Cm

msb|Mm|

s

Va+m−1

lsbs

dE

d

Xa+m

Ya+m
P

T

(a) Oribatida v1.2 [21].

Mm

padr

Ua+m

Va+m

Cm

msb|Mm|

s

Va+m−1

lsbs

dE

d

Xa+m

Ya+m
P

m
sb

τ T

Va+m

lsbτ

(b) Oribatida v1.3.

Figure 4: Tag generation of Oribatida.

0 20 40 60 80 100 120 140 160 180
Data log2(σ)

0

20

40

60

80

100

120

140

T
im

e
lo

g
2
(q
p
)

nAE Oribatida-192-96

nAE Oribatida-256-64

Int-RUP Oribatida-192-96

Int-RUP Oribatida-256-64

NIST security

NIST data limit

(a) Oribatida v1.2 [21].

0 20 40 60 80 100 120 140 160 180
Data log2(σ)

0

20

40

60

80

100

120

140
T

im
e

lo
g

2
(q
p
)

nAE Oribatida-192-96

nAE Oribatida-256-64

Int-RUP Oribatida-192-96

Int-RUP Oribatida-256-64

NIST security

NIST data limit

(b) Oribatida v1.3.

Figure 5: Security of Oribatida using qc = 250.

Among all changes, only Aspect (1) is crucial. All further aspects helped unify the design. The security
effect of the additional tag masking is illustrated in Figure 5 for the maximum number of qc = 250 construction
queries as in the NIST guidelines. One can observe that it salvages the nAE security of the 192-bit version of
Oribatida v1.3. Note that the figure cannot illustrate that many primitive (o�ine) queries to the permutation
are in practice much easier to obtain than construction queries.

10 Instantiation of Oribatida
This section specifies the permutation SimP. From a high-level view, SimP is a variant of the domain extender
Ψr by Coron et al. [31]. We define SimP to use a round-reduced variant of the Simon [10] block cipher and its
key schedule through four such steps. We briefly recall Ψr before we describe the details of Simon, provide an
overview of existing cryptanalysis, and close with a discussion of the implications on SimP.

10.1 The Ψr Domain Extender

The Ψr family is a two-branch Feistel-like network that consists of r calls to (pairwise independent) block
ciphers. An illustration of Ψ4 is given at the top of Figure 6. Let BlockCipher(K,B) denote the set of all

332 | A. Bhattacharjee et al.

block ciphers with key space K and block space B. For Ψr, π1, π2, . . . , πr ∈ BlockCipher(Fn2 × Fn2 , Fn2) are
independent block ciphers which use one branch Ri as state input, and the other one, Li, as secret key. Coron
et al. provide statements on the indifferentiability of their constructions.

L0

R0

L4rs

R4rsπ1 π2 π3 π4

Lrs L2rs L3rs

Rrs R2rs R3rs

L0

R0

L4rs

R4rs

φ1 φ2 φ3 φ4

π1 π2 π3 π4

Lrs L2rs L3rs

Rrs R2rs R3rs

Figure 6: Top: The construction Ψ4 [31]. The blocks πi denote block ciphers over Fn2 with key space Fn2. Bottom: High-level view
of the construction Φ4 as a variant of Ψ4. The blocks φi represent the key schedules that produce the subkeys and which are
externalized from the block ciphers πi in Φ4. φi feeds the subkeys to πi and outputs the final subkey Krs to become the next
value Rirs .

Theorem 3 ([31]). Let π1, π2, π3 � BlockCipher(Fn2) be pairwise independent permutations over Fn2. The
three-step construction Ψ3 with an ideal block cipher is (tD , tS , q, ϵ)-indifferentiable from an ideal cipher with
tS = O(qn) and ϵ = 5q2/2n.

Intuitively, it follows that a four-step constructionwith a fourth independent permutation π4 � BlockCipher(K,
Fn2) inherits at least the security of the three-step construction.

10.2 Φr: A Variant of Ψr That Includes The Key Schedule

TheΨr construction has to store the state that is transformed through the block cipher πi’s state transformation,
plus the key of the current step. Internally, the block ciphers πi also have to expand the secret key to subkeys
that add to the total memory requirement. We propose a variant that avoids the need to store the current secret
key input. For this purpose, we define the key-schedule permutation φi : Fn2 → Fn2 that takes an initial key K
as input and outputs the subkeys K0, . . . , Krs for fixed number of rounds rs of πi. An illustration is given at
the bottom of Figure 6. Hereafter, we call the construction Φr when it consists of r steps in total. Note that Φr
omits the final swap of the halves for simplicity and since it does not affect the security.

10.3 Simon

The Simon family of block ciphers [10] belongs to the lightest block ciphers in terms of hardware area and
energy efficiency. Its round function consists of only an XOR, three bit-wise rotations, and a bit-wise AND,
which renders it particularly lightweight and flexible. Moreover, Simon has been analyzed intensively since
its proposal; among others, e.g., [3, 29, 44, 55, 64] studied the security of Simon-96-96 and Simon-128-128.
Considerably more works targeted the smaller-state variants of Simon, which has recently been standardized
as part of ISO/IEC 29167-21:2018 [40]. For concreteness, Simon-96-96 uses a word size w = 48 bits and employs
52 rounds, whereas Simon-128-128 uses w = 64 bits and 68 rounds.

Oribatida v1.3 | 333

10.4 The SimP-n-θ Family of Permutations

SimP is an instantiation of Φ4 that tries to adhere to the standard as close as possible, SimP-192 employs the
round-reduced Simon-96-96 as π and its key schedule as φ. To form a 256-bit permutation, SimP-256 uses
Simon-128-128 with its key schedule. One iteration of the round function of Simon-2w-2w and its key-update
function side by side, as is used in SimP-n, is illustrated in Figure 7. Internally, the state of SimP-n-θ consists
of four w-bit words (Xi0, Xi1, Xi2, Xi3), where the superscript index i indicates the state after Round i. We denote
by rs the number of rounds per step, and index the steps from 1 to θ, and the rounds from 1 to θ · rs. The
plaintext is denoted as (X00, X01, X02, X03); the ciphertext is given as (Xθrs0 , Xθrs1 , Xθrs2 , Xθrs3).

After Round rs, the state halves (Xrs0 , X
rs
1) and (X

rs
2 , X

rs
3) are swapped; similarly, they are swapped also

after Round 2rs , . . . , θrs. One round of the permutation is illustrated in Figure 7. Thus, SimP-192-θ uses
Simon-96-96 and consists of four 48-bit words. SimP-256-θ employs the round function and the key-update
function of Simon-128-128 as a 256-bit permutation. For SimP-256-θ, the state consists of four 64-bit words.

Xi0 Xi1 Xi2 Xi3

Xi+10 Xi+11 Xi+12 Xi+13

Xi1
c ⊕ zi

≫ 3

≫ 4

≪ 1

≪ 8

≪ 2

∧

Figure 7: One iteration of the round function of SimP, which is equivalent to the key-update function (left) and the state-update
function (right) of Simon-2w/2w, where w is the word size.

10.4.1 Round Function

Let w be a positive integer for the word size. for SimP-192, w = 48 bits; for SimP-256, w = 64 bits. Let
f : F2w → F2w and g : F2w → F2w be defined as

f (x) def= (x≪ 8) ∧
(︀
(x≪ 1)⊕ (x≪ 2)

)︀
and

g(x) def= (x≫ 3)⊕ (x≫ 4) .

10.4.2 Key-update Function

Let φj : (F2w)2 → (F2w)2, for 1 ≤ j ≤ θ be key-update functions. Let ℓ = (j − 1) · rs. On input (Xℓ
0, Xℓ

1), it derives
rs keys (Xℓ+i

0 , Xℓ+i
1), for 1 ≤ i ≤ rs, as

Xℓ+i
0 ← Xℓ+i−1

1 ⊕ g(Xℓ+i−1
0)⊕ c ⊕ zℓ+i−1 and Xℓ+i

1 ← Xℓ+i−1
0 ,

for 1 ≤ i ≤ rs. Note that c = 0xff...ffc is a w-bit constant.

10.4.3 State-update Function

We define the state-update function as π : (F2w)rs × (F2w)2 → (F2w)2, where the first input considers the
expanded subkeys. Let ℓ = (j − 1) · rs. It takes rs round keys (Xℓ

0, . . . , Xℓ
rs−1) as key input, as well as (X

ℓ
2, Xℓ

3) as

334 | A. Bhattacharjee et al.

state input, and computes (Xℓ+rs
2 , Xℓ+rs

3) recursively as:

Xℓ+i
2 ← f (Xℓ+i−1

2)⊕ Xℓ+i−1
3 ⊕ Xℓ+i−1

1 and Xℓ+i
3 ← Xℓ+i−1

2 ,

for 1 ≤ i ≤ rs.

10.4.4 Step Function

Let ρj : F42w → F42w denote the step function, for 1 ≤ j ≤ θ. Define Li = (Xi0, Xi1) and Ri = (Xi2, Xi3). The step
transforms (Li , Ri) = (Xi0, Xi1, Xi2, Xi3) into (Xi+rs0 , Xi+rs1 , Xi+rs2 , Xi+rs3) as

(Lrs , Rrs) = (Xi+rs0 , Xi+rs1 , Xi+rs2 , Xi+rs3)

ρj(Xi0, Xi1, Xi2, Xi3)
def= (πj(Xi2, Xi3), φj(Xi0, Xi1)),

for 1 ≤ j < θ. One exception is the final step ρθ, which omits the final swap of the halves:

ρθ(Xi0, Xi1, Xi2, Xi3)
def= (φθ(Xi0, Xi1), πθ(Xi2, Xi3)).

SimP-n-θ takes a plaintext (X00, X01, X02, X03) as input and outputs (Lr , Rr) = (Xr0, Xr1, Xr2, Xr3), with r = θrs as
ciphertext.

10.4.5 Round Constants

The round constants are those of Simon-96-96 and Simon-128-128 [10], respectively. It holds that c =
0xff...ffc, i.e., all w bits except for the least significant two bits are 1. More precisely, for w = 48, it
holds that

c = (1100)2.

For w = 64, it holds that c =

(1100)2.

For both SimP-192 and SimP-256, the constants z = z0z1 . . . z61 are defined as

z = (10101111011100000011010010011000101000010001111110010110110011)2.

The sequence has a period of 62, so zi = zi mod 62, for non-negative integers i. Note that the order of the bits zi
is reversed.

10.4.6 Number of Steps θ

We consider only the choice of θ = 4 everywhere in our proposed construction.

10.4.7 Number of Rounds

SimP-192-4 consists of rs = 26 rounds for each step, and therefore performs r = 4 · rs = 104 rounds in total.
SimP-256-4 consists of rs = 34 rounds for each block, and therefore performs r = 4 · rs = 136 rounds in total.
For simplicity, we also denote SimP-n-4 as SimP-n. The algorithm for SimP-n-θ is given in Algorithm 3.

Oribatida v1.3 | 335

Table 5: Parameters of SimP.

Word size #Steps #Rounds/Step
Variant (w) (θ) (rs)

SimP-192-4 48 4 26
SimP-256-4 64 4 34

Algorithm 3 Specification of the encryption and decryption algorithms of SimP-n-θ.
101: function SimP-n-θ(M)
102: (X00 , X01 , X02 , X03)

w←− M
103: for i ← 1..θ do
104: for j ← 1..rs do
105: ℓ← (i − 1) · rs + j
106: Xℓ0 ← Xℓ−11 ⊕ g(Xℓ−10)⊕ c ⊕ zℓ−1
107: Xℓ1 ← Xℓ−10
108: Xℓ2 ← Xℓ−13 ⊕ f (Xℓ−12)⊕ Xℓ−11
109: Xℓ3 ← Xℓ−12

110: if i ≠ θ then
111: (Xℓ0 , Xℓ1 , Xℓ2 , Xℓ3)← swap(Xℓ0 , Xℓ1 , Xℓ2 , Xℓ3)
112: C ← (Xθrs0 ‖ X

θrs
1 ‖ X

θrs
2 ‖ X

θrs
3)

113: return C

121: function f (X)
122: return ((X≪ 1) ∧ (X≪ 8))
123: ⊕(X≪ 2)

131: function g(X)
132: return (X≫ 3)⊕ (X≫ 4)

141: function swap(X0 , X1 , X2 , X3)
142: return (X2 , X3 , X0 , X1)

10.4.8 The Byte Order in Oribatida

For the sake of clarity, Figure 8 visualizes the byte and word order of the inputs. Let SB denote the
state S in bytes; for more clarity, we further write this ordering in type-writer font. The rate consists of
the first r/8 bytes of the state: SB[0], ..., SB[r/8 - 1]. The capacity represents the last c/8 bytes
SB[r/8], ..., SB[n/8 - 1]. Similarly, the rate of the state consists of the first words of the permutation
input. If the state is interpreted as an n-bit value, the initial Byte 0 contains the most significant eight bits:
SB[0] = (S[n − 1], S[n − 2], . . . , S[n − 8]). On the other side, the least significant eight bits are stored in
Byte SB[n/8 - 1]: SB[n/8 - 1] = (S[7], S[6], . . . , S[0]).

So, the rate is used first as input to the key-update function; the capacity is used as input to the state-update
function.

P

X00

X01

X02

X03

Xθrs0

Xθrs1

Xθrs2

Xθrs3

L0

R0

Lθrs

Rθrs

X
j ‖
Y
j

U
j+1 ‖

V
j+1

0,1,...,
n8
−
1

Byte order

Figure 8: Byte and word orientation of inputs into and outputs from SimP as used in Oribatida.

Remark 2. Instantiating a scheme proven in an idealized model such as indifferentiability with a symmetric-
key primitive is almost always a heuristic: there simply exist few provably secure instantiations. Using the full
Simon-2w-2w for each step would be an option for a more secure, but considerably less performant scheme.
Concerning SimP, our approach follows the prove-then-prune strategy from AEZ [39]. However, after replacing
each step by at least half of the number of rounds, and always using four steps, our approach is far less
aggressive than it, as outlined above, and seems to provide a sufficient security margin.

336 | A. Bhattacharjee et al.

11 Security of SimP
The number of steps and rounds of SimP was chosen to resist known cryptanalysis techniques. This section
provides a rationale for our choices from the existing works.

11.1 Requirements

Oribatida with a random permutation aims at nAE security of O(rσd/2c+s) and Int-RUP security of O(q2d/2
c)

in the ideal-permutation model. The advantage of those bounds should be much higher than the complexity
to recover or predict the key. An instantiation of P must be free of distinguishing properties that allow us to
distinguish it from a random permutation with non-negligible advantage and << 2n queries. This strengthens
the adversary compared to the use of P in Oribatida. There, it can inject nonce, associated data, or message
blocks only into the rate and can observe ciphertext and tag outputs also only from that part, but masked. Con-
cretely, we require from P the absence of (truncated, higher-order) differential characteristics with probability
≥ 2−n, linear approximations with squared correlation ≥ 2−n, or component functions of degree < n in SimP-4.
Moreover, we require the absence of impossible-differential, zero-correlation, or integral distinguishers in
SimP-4. However, we disregard rebound or other forms of inside-out attacks that are inapplicable in Oribatida,
or splice-and-cut attacks when using SimP as a compression function.

11.2 Existing Cryptanalysis on Simon

Various works analyzed the Simon family of block ciphers since its proposal.

11.2.1 Differential Cryptanalysis

Cryptanalysis that appeared early after the proposal of Simon followed mainly heuristics for differential
cryptanalysis: Abed et al. [3] followed a heuristic branch-and-bound approach that yielded differentials for
up to 30 rounds of Simon-96. Biryukov et al. [22] studied more efficient heuristics, but considered the small
variants with state sizes up to 64 bits. Dinur et al. [33] showed that distinguishers on Simon with k key words
can be extended by at least k rounds. Interestingly, boomerangs seemed to be less a threat to Simon-like
ciphers than pure differentials.

Kölbl et al. [42] redirected the research focus to the search for optimal characteristics. More recently,
Liu et al. [44] employed a variant of Matsui’s algorithm [46] to find optimal differential characteristics. They
found that characteristics with probability higher than 2−96 covered at most 27 rounds. Moreover, they found
at best 31-round differentials with an accumulated probability higher than 2−96, i.e., of probability 2−95.34.
For Simon-128, they showed that optimal differential characteristics covered at most 37 rounds and found
41-round differentials with a cumulative probability of 2−123.74.

11.2.2 Linear Cryptanalysis

Linear cryptanalysis is similarly effective for Simon-like ciphers as its differential counterpart. Alizadeh et al.
[1, 4] reported multi-trail linear distinguishers on all variants of Simon. For Simon-96-96, they proposed a
distinguisher on up to 31 rounds that could be extended by two rounds in a key-recovery attack. Similarly,
they reported a 37-round distinguisher for Simon-128-128 that could be extendable by two rounds. Chen and
Wang [29] proposed improved key-recovery attacks with the help of dynamic key guessing. To the best of our
knowledge, their attacks are the most effective ones for our considered variants in terms of the number of
covered rounds, with up to 37 rounds of Simon-96-96 and up to 49 rounds of Simon-128-128 in theory.

Oribatida v1.3 | 337

Similar as for differentials, Liu et al. studied also optimal linear approximations [45]. They found that
the optimal linear approximations can reach at most 28 rounds for Simon-96, and at most 37 rounds for
Simon-128. Moreover, they determined linear hulls with potential of 2−93.8 for 31 rounds of Simon-96, and
2−123.15 for 41 rounds of Simon-128.

11.2.3 Integral, Impossible-differential, and Zero-correlation Distinguishers

Integral attacks cover at most 22 rounds for Simon-96-96 and 26 rounds of Simon-128-128. Initially, Zhang
et al. [65] found integral distinguishers on up to 21 and 25 rounds for Simon-96 and Simon-128. Their results
were extended by one round each by Xiang et al. [64], and later by Todo and Morii [62]. The latter could show
the absence of integrals for 25-round Simon-96, which was confirmed by Kondo et al. [43].

The maximal number of rounds that impossible-differential and zero-correlation distinguishers can cover
is given by at most twice the length of the maximal diffusion. From the results by Kölbl et al. [42], full diffusion
is achieved by 11 rounds for Simon-96 and 13 rounds for Simon-128-128. So, impossible-differential and
zero-correlation distinguishers can cover at most 22 and 26 rounds in the single-key setting.

11.2.4 Related-key Distinguishers

Kondo et al. [43] searched for iterative key differences in Simon. This allowed them to extend previous results
by four to 15 rounds. For Simon-96-96, the authors found iterative key differentials for up to 20 rounds. It
remains unclear if this yields an impossible differential; in the best case, a key-iterated 20-round distinguisher
could be extended by 2 + 2 + 2 wrapping rounds: two more blank rounds where one key word is not used,
plus two rounds where the key difference can be canceled by the state differences, plus two outermost rounds
since the result of the non-linear function is independent of the key and therefore predictable in Simon. So, an

Table 6: Existing results of best distinguishers and best key-recovery attacks on Simon-96 in the single-key setting. – = not
given; Pr. = probability; Pot. = linear potential; Deg. = degree

Type #Rounds Time Data Pr./Pot./Deg. Ref

Simon-96-96 Distinguishers
Algebraic 14 – 20 CPs – [55]
Integral 22 295 295 CP 95 [64]
Differential 30 – – 92.2 [3]
Differential 31 – – 95.34 [44]
Linear 31 – – 93.8 [45]

Simon-96-96 Key-recovery Attacks
Multiple Linear 33 294.42 294.42 KP 94.42 [2]
Linear Hull 37 288.0 295.2 KP 95.2 [29]

Simon-128-128 Distinguishers
Algebraic 16 – 20 CP – [55]
Integral 26 2126 2126 CP 126 [64]
Linear 37 – – 128 [2]
Differential 41 – – 123.74 [44]
Linear Hull 41 – – 123.15 [45]

Simon-128-128 Key-recovery Attack
Linear Hull 49 2127.6 2127.6 CP 126.6 [29]

338 | A. Bhattacharjee et al.

impossible-differential distinguisher could cover up to 26 rounds. Though, such an upper bound has not been
formulated to an attack on the here-considered versions by Kondo et al.; therefore, it is not contained in the
overview in Table 6.

11.2.5 Algebraic Cryptanalysis

Algebraic attacks are unlikely to be a threat to Simon-like constructions for sufficiently many rounds. Raddum
[55] pointed out that the large number of rounds is necessary. He demonstrated that the equation systems for
up to 14 rounds of Simon-96-96 and up to 16 rounds of Simon-128 can be solved efficiently in a few minutes
on an off-the-shelf laptop. Extensions to considerably more rounds are still unknown.

11.2.6 Meet-in-the-Middle Attacks

Meet-in-the-middle attacks are successful primarily on primitives that do not use parts of the key in sequences
of several rounds. The Simon-2w-2w versions use every key bit in each sequence of two subsequent rounds,
which limits the chances of meet-in-the-middle attacks drastically. Considering 3-subset meet-in-the-middle
attacks, together with an initial structure and partial matching, the length of an attack is limited to roughly
that of twice the full diffusion plus four rounds plus the maximal length of an initial structure plus two rounds
for a splice-and-cut part, which yields 30 rounds as a rough upper bound. It is unlikely that such attacks cover
30 or more rounds on Simon-2w-2w.

11.2.7 Correlated Sequences

An interesting recent direction may be correlated sequences introduced by Rohit and Gong in [58]. Their
technique requires only very few texts and claims to break 27 rounds of Simon-32 and Simeck-32; thus, it might
outperform all previous attacks by at least three rounds. Though, that approach needs further investigation
and has seen application only to Simon-32-64 until now.

11.3 Implications to SimP

Since the key schedule of Simon is fully linear, the two state words that are transformed by the key schedule
allow the prediction of differences, linear and algebraic properties through a full step. In any case, SimP
transforms each input word through at least 2rs rounds of Simon.

11.3.1 Related-key Differential Cryptanalysis

SimP needs cryptanalysis of related-key differential and linear characteristics. Existing methods such as the
exhaustive search in [44] or SAT solvers [42], render such studies difficult due to the large state size since the
known tools cannot scale appropriately. There exist peer-reviewed related-key results on Simon, e.g., by Wang
et al. [63]. For the sake of feasibility, they restricted their search to related-key trails for the small variants, i.e.,
Simon-32, Simon-48, and Simon-64.

We conducted experiments using the SAT-based approach from [42] as well as with the branch-and-bound
approach from [44] to search for optimal differential characteristics on SimP. Though, the related-key analysis
of Simon-like constructions is computationally difficult because of the large state size. We obtained improved
trails for only for up to seven rounds of Simon-96; starting from eight rounds, the best characteristics found
possessed a zero key difference for up to 10 rounds, which suggests that differences in the few key words

Oribatida v1.3 | 339

do not improve the best single-key characteristics. It seems that the probabilities of the existing optimal
differential characteristics and linear trails for Simon-96-96 and Simon-128-128 also hold for SimP-192-1
and SimP-256-1 beyond that point. Table 7 compares the probabilities of optimal single- and related-key
differential characteristics.

Table 7: Probabilities of optimal related-key differential characteristics for round-reduced variants of Simon-96-96 and Simon-
128-128. p denotes the probability; SK = single-key model, RK = related-key model

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#Rounds 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Simon-96-96
− log2(p) (SK) 4 6 8 12 14 18 20 26 30 36 38 44 48 54 56 62 64 66

68 72 74 78 80 86 90 96
− log2(p) (RK) 0 2 4 10 12 18 20 26

Simon-128-128
− log2(p) (SK) 4 6 8 12 14 18 20 26 30 36 38 44 48 54 56 62 64 66

68 72 74 78 80 86 90 96 98 104 108 114 116 122 124 126 128
− log2(p) (RK) 0 2 4 10 12 18 20 26

11.3.2 Differential Distinguishers

Differential distinguishers are not expected to cover more than two steps. For two steps, we can sketch the
high-level idea for a potential distinguisher. Let α0, αrs , β0, βrs ∈ (Fw2)2. Let (α0, 0)→ (β0, αrs) be a differential
through one step of SimP. α0 → αrs is a probability-one differential through rs rounds of the key-update
function φ1, and 0→ β0 the related-key differential through rs rounds of the state-update function π1, keyed
with K and K ⊕ α0, respectively. Assume, p =def Pr[(α0, 0)→ (β0, αrs)] > 2−2w.

In the second step, the difference β0 is transformed to βrs linearly, i.e., Pr[β0 → βrs] = 1. We can assume
that β0 ≠ 0 and (β0, αrs) will be transformed to an output difference (βrs , 0) after the second step with
probability q ≈ 2−2w by approximating π2 by a random permutation and using the Markov assumption and
the random-key hypothesis. In this case, it holds that

Pr
[︂
(α0, 0)

p−→ (β0, αrs)
2−2w−−−→ (βrs , 0)

]︂
= p · 2−2w > 2−4w .

Since π1 is a round-reduced variant of Simonwith 26 or 34 rounds, it is possible to have such trails. This setting
is illustrated in Figure 9. However, an adversary would have to find a manyfold of related-key characteristics.

L0

R0

A1 A2

L2rs

R2rs

φ1 φ2

π1 π2

α0
α0

0

αrs β0

0

βrs
βrs

Figure 9: Setting of a differential attack with the step-reduced instance of SimP

340 | A. Bhattacharjee et al.

11.3.3 Integral and impossible-differential Distinguishers

Integral and impossible-differential distinguishers are possible for up to two steps of SimP in general. We
study an integral distinguisher in the following: Consider a structure of texts (L0i , R0i) that use pairwise distinct
values R0i and leave L0i constant. After the first step, the value R

rs
i is also constant for all texts and all values Lrsi

are pairwise distinct. This property is preserved through the linear key schedule to L2rsi . However, the values
of R2rs are, in general, unknown. Note that there is no word swap after the second step. The third step destroys
that knowledge.

Impossible-differential distinguishers can use a similar strategy, by setting ∆L0 = 0 and testing if ∆L2rs = 0,
which is impossible. Again, note that there is no word swap after the second step.

11.3.4 Cube-like Distinguishers

Cube (and integral) distinguishers exploit that the degree of some output-bit component functions is lower
than the state size. As discussed above, the degree of each bit is at least w after more than 22 rounds for
Simon-96 and more than 26 rounds for Simon-128. SimP transforms each input bit through at least two steps
of Simon, that consist of 26 rounds for Simon-96 and 34 rounds for Simon-128. While two out of four steps
do not increase the degree in the part that is used as the key-update function, each bit is transformed through
full-round Simon-96 or Simon-192. Thus, cube-like and integral distinguishers are not expected to threaten
the security of SimP.

11.3.5 Number of Steps and Rounds of SimP

SimP benefits from the intensive existing cryptanalysis of Simon. The usage of the key-update function of
Simon seems to not promote considerably more effective differential or linear distinguishers compared to the
single-key results on Simon. The usage of the 2w-word key appears not exploitable neither by differentials
and linear characteristics nor by techniques that try to benefit from a larger state, such as meet-in-the-middle
distinguishers. The reason seems to be mainly the diffusion in the key schedule together with the relatively
large number of rounds.

The number of steps and the number of rounds in our employed instantiations of SimP have been chosen
very conservatively, using the number of rounds per step rs as half the number of rounds in Simon. This
choice guarantees that each bit passes at least once through the full-round cipher, and therefore is expected
to possess at least the algebraic degree of the full-round cipher. Moreover, the diffusion properties of Simon
render impossible-differential, zero-correlation, or integral distinguishers implausible.

The design of SimP is very close to the original design of Simon. So, any considerable improvement in the
cryptanalysis on SimP would most likely also be a higher threat on Simon-2w-2w. While such results are not
impossible, the higher number of rounds in SimP provides an additional security margin.

12 FPGA Implementations
This section reports on FPGA implementations of SimP and Oribatida.

12.1 SimP

SimP is lightweight since its transformations are exactly the round function and the key-update function of
Simon-96-96 or Simon-128-128, respectively. Both transformations are based on simple operations such as

Oribatida v1.3 | 341

rotations, XORs, and ANDs that consume only routing resources and bit-wise logical operations. The area in
GEs is approximately that of Simon-96 plus some overhead, which is caused by the need for additional input
to both transformations due to the swapping after rs rounds.

Unprotected implementations of Simon are vulnerable against differential power analysis attacks using
the leakage generated by the transitions in the state register; the Hamming-distance model captures such
leakage.Masking – in particular, Booleanmasking (XORing a randomvalue to the output of the round function)
– is one countermeasure that can be applied to Simon easily. The simple structure of Simon components allows
exploring other countermeasures such as unrolling rounds to achieve higher-order side-channel resistance.

SimP can be implemented in different levels of serialization, from fully serial implementations that update
only a single bit per cycle up to round-based implementations that update the full state in one clock cycle.
Depending on the choice, there is a broad implementation spectrum with a trade-off between throughput and
area.

12.2 Oribatida

Hardware implementations of our proposed instance of Oribatida are relatively straight-forward. It can be
implemented efficiently with little extra cost compared to the duplex sponge. Additional costs result from the
use of a module to generate the constants for the domain separation, which can be held in ROM. In modern
FPGAs, this module takes only four look-up tables (LUTs). For domain separation, only a four-bit XOR is
necessary at the input to the capacity of the permutation. An additional 64-bit register to store a mask and a
64-bit XOR to add the mask to the ciphertext are required.

The use of SimP as its main building block allows us to directly transfer the same strategy of using different
data-path sizes to Oribatida. Thus, the implementer can choose among various trade-offs between throughput,
latency, area, and power consumption.

In terms of side-channel resistance, the same aspects that hold for SimP also hold for Oribatida. Thus,
Oribatida does not introduce additional weaknesses of side channels. Table 8 lists our implementations
results obtained from Xilinx Vivado 2018 optimizing for area. All results represent measurements after the
place-and-route process.

In Table 8, we list two columns for the number of clock cycles and throughput, the former represents
the results for the processing of associated data (with the step-reduced SimP), whereas the latter denotes
the results for processing the message (with the non-reduced SimP). Our results leave still room for further
improvements in the close future.

Table 8: Implementation results for SimP-256 and Oribatida-256-64 encryption/decryption and only encryption on Virtex 7
FPGA. LUTs = lookup tables; Enc. = encryption; Dec. = decryption.

Frequency Throughput
LUTs FF #Slices (MHz) Cycles (Mb/s)

SimP
SimP-256 495 340 148 580.51 137 542.37
SimP-192 383 259 122 581.98 105 532.10

Oribatida-256-64
Enc. and Dec. 940 599 298 554.16 138 514.00
Enc. only 805 595 253 560.71 138 520.08

342 | A. Bhattacharjee et al.

13 Conclusion
This work presented Oribatida, a nonce-based permutation-based AE scheme that masks the ciphertexts from
preceding permutation outputs. As a result, the adversary cannot deduce the masked part of the internal state.
Therefore, Oribatida can achieve O(q2d/2

c) security against forgeries under the release of unverified plaintexts.
Oribatida improves the best known Int-RUP security bound while the permutation can be kept as small as
64 + 128 bits for 121-bit nAE and 48-bit Int-RUP security.

We showed that even recent previous proposals with high AE security guarantees, such as Beetle or SPoC,
succumb to attacks with complexity O(qdqp2c). In contrast, the security bound of Oribatida does not depend
primarily on the number of primitive queries. We showed that our bound is tight with a matching Int-RUP
attack, generalized our masking approach by applying it also to Beetle or the NIST submission SPoC, and
demonstrated its application with similar attacks on their masked variants.

Acknowledgement: We thank Raghvendra Rohit and Sumanta Sarkar for their observation on the NIST
lightweight mailing list [59], as well as the anonymous reviewers of the Journal of Mathematical Cryptology
for the fruitful comments. Eik List was supported by DFG Grant LU 608/9-1.

Absence of Conflict of Interest.
We the authors hereby declare that we have no conflict of interest in connection with evaluated manuscripts.

References
[1] M. A. Abdelraheem, J. Alizadeh, H. AlKhzaimi, M. R. Aref, N. Bagheri, P. Gauravaram, and M. M. Lauridsen. Improved Linear

Cryptanalysis of Round Reduced SIMON. IACR Cryptology ePrint Archive, 2014:681, 2014.
[2] M. A. Abdelraheem, J. Alizadeh, H. A. AlKhzaimi, M. R. Aref, N. Bagheri, and P. Gauravaram. Improved Linear Cryptanalysis of

Reduced-Round SIMON-32 and SIMON-48. In A. Biryukov and V. Goyal, editors, INDOCRYPT, volume 9462 of LNCS, pages
153–179. Springer, 2015.

[3] F. Abed, E. List, S. Lucks, and J. Wenzel. Differential Cryptanalysis of Round-Reduced Simon and Speck. In C. Cid and
C. Rechberger, editors, FSE, volume 8540 of LNCS, pages 525–545. Springer, 2014.

[4] J. Alizadeh, N. Bagheri, P. Gauravaram, A. Kumar, and S. K. Sanadhya. Linear Cryptanalysis of Round Reduced SIMON. IACR
Cryptology ePrint Archive, 2013:663, 2013.

[5] R. AlTawy, G. Gong, M. He, A. Jha, K. Mandal, M. Nandi, and R. Rohit. SpoC: An Authenticated Cipher. Technical report, Feb
24 2019. First-round submission to the NIST Lightweight Cryptography Competition. https://csrc.nist.gov/CSRC/media/
Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf.

[6] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. APE: Authenticated Permutation-Based
Encryption for Lightweight Cryptography. In C. Cid and C. Rechberger, editors, FSE, volume 8540 of LNCS, pages 168–186.
Springer, 2014.

[7] E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. How to Securely Release Unverified Plaintext in
Authenticated Encryption. In P. Sarkar and T. Iwata, editors, ASIACRYPT I, volume 8873 of LNCS, pages 105–125. Springer,
2014.

[8] E. Andreeva, J. Daemen, B. Mennink, and G. V. Assche. Security of Keyed Sponge Constructions Using a Modular Proof
Approach. In G. Leander, editor, FSE, volume 9054 of LNCS, pages 364–384. Springer, 2015.

[9] J. Aumasson, P. Jovanovic, and S. Neves. NORX: Parallel and Scalable AEAD. In M. Kutylowski and J. Vaidya, editors, ESORICS
II, volume 8713 of LNCS, pages 19–36. Springer, 2014.

[10] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

[11] M. Bellare, A. Boldyreva, L. R. Knudsen, and C. Namprempre. Online Ciphers and the Hash-CBC Construction. In J. Kilian,
editor, CRYPTO, volume 2139 of LNCS, pages 292–309. Springer, 2001.

[12] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Eflcient Protocols. In D. E. Denning,
R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS, pages 62–73. ACM, 1993.

[13] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, and R. V. Keer. Farfalle: parallel permutation-based cryptography.
IACR Trans. Symmetric Cryptol., 2017(4):1–38, 2017.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf

Oribatida v1.3 | 343

[14] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the Indifferentiability of the Sponge Construction. In N. P. Smart,
editor, EUROCRYPT, volume 4965 of LNCS, pages 181–197. Springer, 2008.

[15] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Duplexing the Sponge: Single-Pass Authenticated Encryption and Other
Applications. In A. Miri and S. Vaudenay, editors, SAC, volume 7118 of LNCS, pages 320–337. Springer, 2011.

[16] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Permutation-based encryption, authentication and authenticated
encryption. Directions in Authenticated Ciphers, 2012.

[17] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. In ECRYPT hash workshop, volume 2007, 2007.
[18] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the security of the keyed sponge construction. In SHA-3 competition

(round 3), volume 2011, 2011.
[19] G. Bertoni, J. Daemen, M. Peeters, G. van Assche, and R. van Keer. Ketje v2. 2016. Submission to the CAESAR competition

http://competitions.cr.yp.to/caesar-submissions.html.
[20] G. Bertoni, J. Daemen, M. Peeters, G. van Assche, and R. van Keer. Keyak v2. 2016. Submission to the CAESAR competition

http://competitions.cr.yp.to/caesar-submissions.html.
[21] A. Bhattacharjee, E. List, C. M. López, and M. Nandi. The Oribatida Family of Lightweight Authenticated Encryption Schemes

Version v1.2. Technical report, Sep 27 2019. Second-round submission to the NIST Lightweight Cryptography Competi-
tion. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-
spec-round2.pdf.

[22] A. Biryukov, A. Roy, and V. Velichkov. Differential Analysis of Block Ciphers SIMON and SPECK. In C. Cid and C. Rechberger,
editors, FSE, volume 8540 of LNCS, pages 546–570. Springer, 2014.

[23] J. Black and P. Rogaway. A Block-Cipher Mode of Operation for Parallelizable Message Authentication. In L. R. Knudsen,
editor, EUROCRYPT, volume 2332 of LNCS, pages 384–397. Springer, 2002.

[24] A. Chakraborti, N. Datta, A. Jha, C. M. Lopez, M. Nandi, and Y. Sasaki. LOTUS-AEAD and LOCUS-AEAD. Technical report, Feb
26 2019. First-round submission to the NIST Lightweight Cryptography Competition. https://csrc.nist.gov/CSRC/media/
Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf.

[25] A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda. Beetle Family of Lightweight and Secure Authenticated Encryption Ciphers.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018. Updated version at https://eprint.iacr.org/2018/805.

[26] A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda. Beetle Family of Lightweight and Secure Authenticated Encryption Ciphers.
http://eprint.iacr.org/2018/805, 2018.

[27] A. Chakraborti, A. Jha, C. M. Lopez, M. Nandi, and Y. Sasaki. ESTATE. Technical report, Mar 29 2019. First-round submission
to the NIST Lightweight Cryptography Competition. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/spoc-spec.pdf.

[28] D. Chang, M. Dworkin, S. Hong, J. Kelsey, and M. Nandi. A Keyed Sponge Construction with Pseudorandomness in the
Standard Model. In The Third SHA-3 Candidate Conference, volume 3, page 7, March 2012.

[29] H. Chen and X. Wang. Improved Linear Hull Attack on Round-Reduced Simon with Dynamic Key-Guessing Techniques. In
T. Peyrin, editor, FSE, volume 9783 of LNCS, pages 428–449. Springer, 2016.

[30] S. Chen and J. P. Steinberger. Tight Security Bounds for Key-Alternating Ciphers. In P. Q. Nguyen and E. Oswald, editors,
EUROCRYPT, volume 8441 of LNCS, pages 327–350. Springer, 2014. Full version at https://eprint.iacr.org/2013/222.

[31] J. Coron, Y. Dodis, A. Mandal, and Y. Seurin. A Domain Extender for the Ideal Cipher. In D. Micciancio, editor, TCC, volume
5978 of LNCS, pages 273–289. Springer, 2010. Full version at https://eprint.iacr.org/2009/356.

[32] J. Daemen, B. Mennink, and G. V. Assche. Full-State Keyed Duplex with Built-In Multi-user Support. In T. Takagi and T. Peyrin,
editors, ASIACRYPT II, volume 10625 of LNCS, pages 606–637. Springer, 2017.

[33] I. Dinur, O. Dunkelman, M. Gutman, and A. Shamir. Improved Top-Down Techniques in Differential Cryptanalysis. In K. E.
Lauter and F. Rodríguez-Henríquez, editors, LATINCRYPT, volume 9230 of LNCS, pages 139–156. Springer, 2015.

[34] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon v1.2 Submission to the CAESAR Competition. September 15
2016. Submission to the CAESAR competition. http://competitions.cr.yp.to/caesar-submissions.html.

[35] C. Dobraunig and B. Mennink. Security of the Suflx Keyed Sponge. IACR Trans. Symmetric Cryptol., 2019(4):223–248, 2019.
[36] M. Dworkin. FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. Technical report, 2015.
[37] P. Gaži, K. Pietrzak, and S. Tessaro. The Exact PRF Security of Truncation: Tight Bounds for Keyed Sponges and Truncated

CBC. In R. Gennaro and M. Robshaw, editors, CRYPTO I, volume 9215 of LNCS, pages 368–387. Springer, 2015.
[38] S. Halevi. EME*: Extending EME toHandle Arbitrary-LengthMessageswith AssociatedData. In A. Canteaut andK. Viswanathan,

editors, INDOCRYPT, volume 3348 of LNCS, pages 315–327. Springer, 2004.
[39] V. T. Hoang, T. Krovetz, and P. Rogaway. Robust Authenticated-Encryption AEZ and the Problem That It Solves. In E. Oswald

and M. Fischlin, editors, EUROCRYPT (1), volume 9056 of LNCS, pages 15–44. Springer, 2015. Full version at https://eprint.
iacr.org/2014/793.

[40] ISO/IEC. Information technology – Automatic identification and data capture techniques – Part 21: Crypto Suite SIMON
Security Services for Air Interface Communications. https://www.iso.org/standard/70388.html, Oct 2018.

[41] P. Jovanovic, A. Luykx, and B. Mennink. Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes. In P. Sarkar
and T. Iwata, editors, ASIACRYPT I, volume 8873 of LNCS, pages 85–104. Springer, 2014.

[42] S. Kölbl, G. Leander, and T. Tiessen. Observations on the SIMON Block Cipher Family. In R. Gennaro and M. Robshaw, editors,
CRYPTO, volume 9215 of LNCS, pages 161–185. Springer, 2015.

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://eprint.iacr.org/2018/805
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/spoc-spec.pdf
https://eprint.iacr.org/2013/222
https://eprint.iacr.org/2009/356
http://competitions.cr.yp.to/caesar-submissions.html
https://eprint.iacr.org/2014/793
https://eprint.iacr.org/2014/793

344 | A. Bhattacharjee et al.

[43] K. Kondo, Y. Sasaki, Y. Todo, and T. Iwata. On the Design Rationale of SIMON Block Cipher: Integral Attacks and Impossible
Differential Attacks against SIMON Variants. IEICE Transactions, 101-A(1):88–98, 2018.

[44] Z. Liu, Y. Li, and M. Wang. Optimal Differential Trails in SIMON-like Ciphers. IACR Trans. Symmetric Cryptol., 2017(1):358–379,
2017.

[45] Z. Liu, Y. Li, and M. Wang. The Security of SIMON-like Ciphers Against Linear Cryptanalysis. IACR Cryptology ePrint Archive,
2017:576, 2017.

[46] M. Matsui. On Correlation Between the Order of S-boxes and the Strength of DES. In A. D. Santis, editor, EUROCRYPT, volume
950 of LNCS, pages 366–375. Springer, 1994.

[47] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impossibility Results on Reductions, and Applications to the
Random Oracle Methodology. In M. Naor, editor, TCC, volume 2951 of LNCS, pages 21–39. Springer, 2004.

[48] B. Mennink. Key Prediction Security of Keyed Sponges. IACR Trans. Symmetric Cryptol., 2018(4):128–149, 2018.
[49] B. Mennink, R. Reyhanitabar, and D. Vizár. Security of full-state keyed sponge and duplex: Applications to authenticated

encryption. In T. Iwata and J. H. Cheon, editors, ASIACRYPT II, volume 9453 of LNCS, pages 465–489. Springer, 2015.
[50] K. Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions. In P. Q. Nguyen and E. Oswald,

editors, EUROCRYPT, volume 8441 of LNCS, pages 275–292. Springer, 2014. Full version at https://eprint.iacr.org/2013/628.
pdf.

[51] N. Mouha, B. Mennink, A. V. Herrewege, D. Watanabe, B. Preneel, and I. Verbauwhede. Chaskey: An Eflcient MAC Algorithm
for 32-bit Microcontrollers. In A. Joux and A. M. Youssef, editors, SAC, volume 8781 of LNCS, pages 306–323. Springer, 2014.

[52] Y. Naito and K. Yasuda. New Bounds for Keyed Sponges with Extendable Output: Independence Between Capacity and
Message Length. In T. Peyrin, editor, FSE, volume 9783 of LNCS, pages 3–22. Springer, 2016.

[53] NIST. Submission Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization Process.
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-
august2018.pdf, August 27 2018.

[54] J. Patarin. The "Coeflcients H" Technique. In R. M. Avanzi, L. Keliher, and F. Sica, editors, SAC, volume 5381 of LNCS, pages
328–345. Springer, 2008.

[55] H. Raddum. Algebraic Analysis of the Simon Block Cipher Family. In K. E. Lauter and F. Rodríguez-Henríquez, editors,
LATINCRYPT, volume 9230 of LNCS, pages 157–169. Springer, 2015.

[56] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of operation for eflcient authenticated encryption.
In M. K. Reiter and P. Samarati, editors, ACM-CCS, pages 196–205. ACM, 2001.

[57] P. Rogaway and T. Shrimpton. A Provable-Security Treatment of the Key-Wrap Problem. In S. Vaudenay, editor, EUROCRYPT,
volume 4004 of LNCS, pages 373–390. Springer, 2006.

[58] R. Rohit and G. Gong. Correlated Sequence Attack on Reduced-Round Simon-32/64 and Simeck-32/64. IACR Cryptology
ePrint Archive, 2018:699, 2018.

[59] R. Rohit and S. Sarkar. [lwc-forum] ROUND 2 OFFICIAL COMMENT: Oribatida. NIST lwc forum mailing list, 17 September 17:09
2019.

[60] C. E. Shannon. Communication theory of secrecy systems. The Bell system technical journal, 28(4):656–715, 1949.
[61] H. Sui, W. Wu, L. Zhang, and D. Zhang. LAEM (Lightweight Authentication Encryption Mode). Technical report, Mar 25 2019.

First-round submission to the NIST Lightweight Cryptography Competition. https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.pdf.

[62] Y. Todo and M. Morii. Bit-Based Division Property and Application to Simon Family. In T. Peyrin, editor, FSE, volume 9783 of
LNCS, pages 357–377. Springer, 2016.

[63] X. Wang, B. Wu, L. Hou, and D. Lin. Automatic Search for Related-Key Differential Trails in SIMON-like Block Ciphers Based on
MILP. In L. Chen, M. Manulis, and S. Schneider, editors, ISC, volume 11060 of LNCS, pages 116–131. Springer, 2018.

[64] Z. Xiang, W. Zhang, Z. Bao, and D. Lin. Applying MILP Method to Searching Integral Distinguishers Based on Division Property
for 6 Lightweight Block Ciphers. In J. H. Cheon and T. Takagi, editors, ASIACRYPT I, volume 10031 of LNCS, pages 648–678,
2016.

[65] H. Zhang, W. Wu, and Y. Wang. Integral Attack Against Bit-Oriented Block Ciphers. In S. Kwon and A. Yun, editors, ICISC,
volume 9558 of LNCS, pages 102–118. Springer, 2015.

https://eprint.iacr.org/2013/628.pdf
https://eprint.iacr.org/2013/628.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.pdf

	1 Introduction
	1.1 Permutation-based Modes
	1.2 Research Gap
	1.3 Contribution
	1.4 Outline

	2 Preliminaries
	2.1 General Notations
	2.2 Nonce-based Authenticated Encryption
	2.3 H-coefficient Technique

	3 Int-RUP Attacks on Existing AE Schemes
	3.1 Int-RUP Attack on The Duplex Mode
	3.2 Int-RUP Attack on Beetle
	3.3 Int-RUP Attack on SPoC
	3.4 Int-RUP Attack on A Hybrid of Beetle and SPoC
	3.5 Discussion

	4 Specification of Oribatida
	4.1 Initialization
	4.2 Processing Associated Data
	4.3 Encryption
	4.4 Decryption
	4.5 Domain Separation

	5 Int-RUP Attacks on Schemes with Masked Ciphertexts
	5.1 The Generic Int-RUP Attack on Oribatida (Masked Duplex)
	5.2 Int-RUP Attack on The Masked Beetle
	5.3 Int-RUP Attack on The Masked SPoC

	6 nAE Security Analysis
	7 Int-RUP Analysis
	8 Comparison with Lightweight Int-RUP-secure Schemes
	8.1 Brief Description
	8.2 Efficiency
	8.3 Security

	9 Discussion of the Updated Variant Oribatida v1.3
	10 Instantiation of Oribatida
	10.1 The r Domain Extender
	10.2 r: A Variant of r That Includes The Key Schedule
	10.3 Simon
	10.4 The SimP-n- Family of Permutations
	10.4.1 Round Function
	10.4.2 Key-update Function
	10.4.3 State-update Function
	10.4.4 Step Function
	10.4.5 Round Constants
	10.4.6 Number of Steps
	10.4.7 Number of Rounds
	10.4.8 The Byte Order in Oribatida

	11 Security of SimP
	11.1 Requirements
	11.2 Existing Cryptanalysis on Simon
	11.2.1 Differential Cryptanalysis
	11.2.2 Linear Cryptanalysis
	11.2.3 Integral, Impossible-differential, and Zero-correlation Distinguishers
	11.2.4 Related-key Distinguishers
	11.2.5 Algebraic Cryptanalysis
	11.2.6 Meet-in-the-Middle Attacks
	11.2.7 Correlated Sequences

	11.3 Implications to SimP
	11.3.1 Related-key Differential Cryptanalysis
	11.3.2 Differential Distinguishers
	11.3.3 Integral and impossible-differential Distinguishers
	11.3.4 Cube-like Distinguishers
	11.3.5 Number of Steps and Rounds of SimP

	12 FPGA Implementations
	12.1 SimP
	12.2 Oribatida

	13 Conclusion

