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Abstract: This paper presents an efficient algorithm for computing 11%®-power residue symbols in the cyclo-
tomic field Q(¢11), where {31 is a primitive 11 root of unity. It extends an earlier algorithm due to Caranay
and Scheidler (Int. J. Number Theory, 2010) for the 7-power residue symbol. The new algorithm finds appli-
cations in the implementation of certain cryptographic schemes.
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1 Introduction

Quadratic and higher-order residuosity is a useful tool that finds applications in several cryptographic con-
structions. Examples include [6, 13, 14, 19] for encryption schemes and [1, 2, 12] for authentication schemes
and digital signatures. A central operation therein is the evaluation of a residue symbol of the form [ﬂ with-

out factoring the modulus A in the cyclotomic field Q({y), where ( is a primitive p™ root of unity.

For the case p = 2, it is well known that the Jacobi symbol can be computed by combining Euclid’s al-
gorithm with quadratic reciprocity and the complementary laws for —1 and 2; see e.g. [10, Chapter 1]. This
eliminates the necessity to factor the modulus. In a nutshell, the computation of the Jacobi symbol (%) pro-

ceeds by repeatedly performing 3 steps: (i) reduce a modulo n so that the result (in absolute value) is srrialler
than n/2, (ii) extract the sign and the powers of 2 for which the symbol is calculated explicitly with the com-
plementary laws, and (iii) apply the reciprocity law resulting in the ‘numerator’ and ‘denominator’ of the
symbol being flipped. Eventually, the numerator of the symbol becomes +1 and the algorithm terminates
with the value of (%) . Under certain conditions, this methodology naturally extends to higher values for p.
The case p = 3 is disczussed in [4, 14, 19], the case p = 4 in [4, 18], the case p = 5 in [14], the case p = 7 in [3],
and the case p = 8 in [10, Chapter 9].

Caranay and Scheidler describe a generic algorithm in [3, Section 7] for computing the p™-power residue
symbol for any prime p < 11, building on Lenstra’s norm-Euclidean algorithm. They also provide a detailed
implementation for the case p = 7. The case p = 11 is difficult. We quote from [3]:

“Even for the case p = 11, for which Euclidean division remains straightforward, the other details of the method get increasingly
complicated. Finding explicit conditions for a cyclotomic integer to be primary becomes more and more technical, as does an
algorithm to find a primary associate. The cyclotomic field generated by an 111" primitive root of unity has four fundamental
units, so complementary laws need to be found for three of them as well as for the ramified prime lying above 11 (or for 11 itself).”

The general case is addressed in a recent algorithm by de Boer and Pagano [5].
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Our contributions

This paper takes up the challenge put forward in [3] and presents the first implementation of the Caranay—
Scheidler algorithm for the 11%"-power residue symbol. The contributions of this paper are three-fold: We
provide explicit conditions for primary algebraic integers in Z[{;1]; we devise an efficient algorithm for finding
a primary associate; and we give explicit complementary laws for a set of four fundamental units and for the
special prime 1 - {11.

Organization

The rest of this paper is organized as follows. In Section 2, we review some basic definitions and known results
on cyclotomic fields. Section 3 particularizes to the 11™ cyclotomic field. We establish and prove an efficient
criterion for primary cyclotomic integers. We also define a set of four fundamental units and give explicit
formulas to find their index. Section 4 is the core of the paper. We present the ingredients and develop the
companion algorithms for the computation of the eleventh power residue symbol.

2 Higher-Order Power Residue Symbols

Throughout this section, p < 13 denotes an odd rational prime.

2.1 Basic definitions and notation

Fix { == {p = e2™/P 3 primitive p™ root of unity and let w = 1 - {. The number field Q({) defines the p"
cyclotomic field. The ring of integers of Q({) is Z[{] and is norm-Euclidean [9, 11] (in particular, it is a unique
factorization domain). Since {, {?, ..., {?"! form an integral basis for Q({), any element & € Z[{] can be
expressed as a = Z;’:‘ll a; (j with a;j € Z. The norm and trace of @ € Z[{] are the rational integers respectively
given by N(a) = Hij ox(a) and T(a) = Ei;i or(a), where oy: { — ¢ k. The group of units of Z[{]is the direct
product of (x{) and a free abelian group & of rank r = (p — 3)/2. The generators of & are called fundamental
units and will be denoted by 71, ..., 7r. Two elements a and f are called associates if they differ only by a
unit factor. We write a ~ S.

We follow the approach of Kummer. A central notion is that of primary elements (see [7, p. 158]) in Z[({].
Definition 2.1. An element a € Z[{] is said to be primary whenever it satisfies
a#0 (modw), a=B (mod w?), aa = B> (mod p)
for some B € Z.

Lemma 2.2 ([3, Lemma 2.6]). Every element a € Z[{] with a#0 (mod w) has a primary associate a* of the
form

*

a =" - nf'a whereO<eg,e1,...,er<p-1.

Moreover, a is unigue up to its sign.

2.2 Kummer’s reciprocity law

Let a, m € Z[{] with 7 prime, 7 + w, and 7 { a. The p™-power residue symbol [%} is then defined to be the
p

pM-root of unity ¢! such that
a®D-D/p = ¢t (mod 71) .
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This exponent i (with 0 < i < p — 1) is called the index of a w.r.t. 7 and is noted ind,(a). If 7 divides a then
[%L - 0.
Analogously to the Legendre symbol, the p™-power residue symbol generalizes: For any a, A € Z[{] with
A non-unit and gcd(A, w) ~ 1, writing A = H]. n,-ef for primes 71 in Z[{], the generalized pth-power residue
. €
symbol Hp is defined as [%L =1 L%L .
Kummer [7] stated the reciprocity law in 1850 (see also [15, Art. 54]). It is restricted to so-called “regular”
primes,! which include odd primes p < 13. Although initially formulated for primary primes in Z[{], the

reciprocity law readily extends to all primary elements; see [3, Corollary 3.4].

Theorem 2.3 (Kummer’s Reciprocity Law). Let a and A be two primary elements in Z[{]. Then [ﬂ = H .
P

p a

2.3 Complementary laws

The special prime w and its conjugates are excluded from Kummer’s reciprocity law. Moreover, it does not
apply to units other than +1 as they are not primary. For these elements, the p™-power residue symbol is
determined through complementary laws, also stated by Kummer [7, 8] (see also [15, Art. 55]). The comple-
mentary laws rely on the logarithmic differential quotients given by

_ d"In(F(e"))

An(a) dvn

v=0

for any a = Zf:ll a; ¢ e z[¢] with T(a) # 0 and where F(X) = Z].:’Oz ijj € Z[X] whose coefficients are
bo = -ap-1 and bj = aj - a,_1 for 1 < j < p - 2. Notice that a = F({).

Theorem 2.4 (Complementary Laws). Let i be a primary prime in Z[{]. Then,

1. inda(p) = 22 (mod p);
2. for any unit € € Z[{]",

indn(e) = A1(e) ML+ " A5i(e) 4, 2i(m)  (mod p)
-1

wherer =(p -3)/2.

For completeness, we give the complementary laws for +1 and ¢. Alternatively, they can be obtained directly
from the definition of the p™-power residue symbol. The next corollary is a straightforward extension to com-
posite moduli.

Corollary 2.5 ([3, Corollary 3.6]). Let A € Z[{] such that w { A. Then h—l} =1and E] = NG mod p
4 4

3 TheCasep =11

This section presents results for the special case p = 11. We henceforth assume that { := {37 is a primitive
11 root of unity.

1 An odd prime p is said to be regular if it does not divide the class number of Q({p).
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3.1 Primary elements

Definition 2.1 explicitly characterizes primary elements. The next proposition specializes it for prime p = 11
in order to have a simple criterion involving only rational integers.

It is useful to introduce some notation. For a = Zl 1 4; {0 € Z[(], we define the rational integers A (a) =

Z a]]k for 0 < k < 9. Also, when Ap(a)#0 (mod 11), we define a;(a) = A (“) mod 11, for 1 < j < 9. Notice
that Ao(a) = -T(a).

Proposition 3.1. Let a = Z].lfl a; {0 e Z[{) and Ay = A(a). Then a is primary if and only if the following
conditions hold:

1 Ao # 0 (mod 11); 4. ApAg + A% =0 (mod 11);
2. A1 =0 (mod 11),‘ 5. A3A5 —A()Ag =0 (mod 11)
3. A, =A, =0 (mod 11);

Proof. Let w = 1 - {. From Definition 2.1, a is primary if and only if « # 0 (mod w), a = B (mod w?), and
aa = B* (mod 11) for some rational integer B. We have Zil:ol a; = Z] 1a;(1 - w) = Z] 1a;(1 - jw) =
Ao - A1 w (mod w?). As a result, the condition a # 0 (mod w) is equivalent to Ay # 0 (mod w), and the
condition a = B (mod w?) with B = Ay € Z is equivalent to A; w = 0 (mod w?) <= A; = 0 (mod w).
We observe that rational integers are congruent modulo w if and only if they are congruent modulo p (in this
case 11). We therefore have Ag #£ 0 (mod w) <= Ap# 0 (mod 11)and A; = 0 (mod w) < A; =0
(mod 11).

It remains to look at the third condition, a@ = Ay> (mod 11). Using matrix notation and defining the
Vandermonde matrix

1 1 1 1
1 2 22 ... 2
v=| . . ) . (mod 11),
1 10 10%> ... 10°
we can express (Ao, ..., Aq) as (Ao, ..., A9) = (ay, ..., aio) V. In turn, we can write a = Z)}:ol aj(1- wy =

(a1,...,a10) (1-w,...,(1- a))lo)T = (Ao,...,A) V' (1-w),...,(1 —a))lo)T (mod 11). Similarly, we
can write @ = Z} | aj (“ = Z) @i (1-w)'T = (Ao, ..., A) VT (1-w)',. .., (1—cu))T. Hence, noting
that w'® ~ 11, the product aa (mod 11) can be put after a little algebra in the form of a degree-9 polynomial
in w:
aq = Ay’ (AoAr - Ar?) w” + (AoAy — A%) WP + (AoAy - 4A1 A5 + 3A7) W' 1)

+ (=AoAs +2A0A4 + A” +3A145 - 5A7) w0’ + (4AoAs + AoAy — 4AoAg — 4AL° - 4A1 A3 + 2A1 As

+345° - 5A2A4 - 4AF7) "

+ (4A0As - 2A0A4 — AoAg - 4AT" —3A145 - 54145 + 5477 — 4AA, - AT) W'

+ (=54044 - AoAg - 4AoAg — 2A1A3 - 5A1As — A1A;

—4A7 - 44244 - 2AyA6 - A + 4A3As + 3A,%) w?

+ (440A2 + 5A0As4 ~ 3A0As — 5AoAg — A1 + 241 A3 — 4A1As

—4A1A7 + 4AY - AyAy + 3A2A¢ - 3457 + 54545 + AL) W’

(mod 11) .

For conciseness, we write C; the rational coefficient of ’ in the right hand side of Eq. (1): a& = A02+Z?=2 Cjo/
(mod 11). The condition a@ = Ay’ (mod 11) can be thus rewritten as Z].9=2 Cj& = 0 (mod 11). Further,
since w | 11for2 <j <9, weget C;w? = 0 (mod w?) <« C, =0 (mod w) «— C, = 0 (mod 11),
Cw?+C30° =C30° =0 (mod w*) < C3 =0 (mod w) < C3 =0 (mod 11), and soon: C;, = 0
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(mod 11), ..., C9 = 0 (mod 11). Now, assuming Ay # 0 (mod 11) and A; = 0 (mod 11) in Eq. (1), the
congruences C, = C3 = C4 = ++- = Co = 0 (mod 11) yield A, = A4 = AoAg + As* = —AgAg + A3A5 =0
(mod 11). This completes the proof. O

3.2 Fundamental units

For p = 11, the fundamental_units() function from SageMath [16] provides the set {v1, U;, U3, U4} of fun-
damental units, with vy = {+ 1, v, =+ 1, v3 =2+ {+ 1,04 = {0+ (.

Every unit can be rendered real by multiplying it by some power of {. Another set of fundamental units
is so given by {11, 12, 13, N4} With 1 = {° v1, 12 = {1002, 3 = {1 v3, and n4 = ¢? v4. Observe that

=0+, m=¢+{t, N3 =+ (), =0+,

and n; = 0_1(n;) for 1 <i < 4, where 0_1: { — {"1. We will use this set {11, 12, 173, N4} of fundamental units
in later computations.

Remark 3.2. Suppose a € Z[{] is real (i.e., a = @). Then 24;(a) = A1(2a) = A1(a + @) = 0 (mod 11) —
A1(a) = 0 (mod 11). Since the units 11, ..., n, are real, it follows that A1(n1) = A1(n2) = A1(n3) =
Al(m,) =0 (mod 11)

We now apply Theorem 2.4 to find the index of the fundamental units r;, 1 < i < 4, and of special prime w.

Proposition 3.3. Let 7 be a primary prime in Z[{]. Then

indx(n1) = as(m) + 3a5(n) + 4a; () + 4ag(m)as () + 3as(m) (mod 11),
indx(n2) = 3a3(m) + 5a5(7) - 2a;() + 5a¢(m)asz(m) + ag(mr) (mod 11),
indz(n3) = 2as(nm) - 2a5(n) + 3a7(m) — 4ag(mas(m) - 3a9(m) (mod 11),
indz(n4) = 4as(m) + 4as(nm) + 3a;(n) + ag(mas(m) - 2a9(m) (mod 11),
and
ind;(w) = 5a¢(m)as () - 2a¢(mas(m) — A (1) - 5 % -5 (mod 11)

Aq(m)
mod 121
where Aq(r1) = 2% ———

Proof. Let € Z[{] be a primary prime. Recalling that A;(n;) = 0 (mod 11) for 1 <i < 4, we have A;(n;) =0
(mod 11); see Appendix A. Applied to n;, the general formula for computing the index w.r.t. a primary prime
(cf. Theorem 2.4) becomes indx(1;) = A2(n;)Aq(m) + Ay (n;) A7 () + Ag(ni)As () + Ag(n;)As(m) (mod 11). An
application of the formulas given in Appendix A yields

‘ Ary(mi) mod 11 A4(n;) mod 11 Ag(n;) mod 11 Ag(n;) mod 11

i=1 3 4 3 1
i= 1 9 5 3
i =3 8 3 9 2
i= 9 3 4 4

Further, 7 being primary and thus Ay(r) # 0 (mod 11) and a,(11) = a,(7) = a4(m) = ag(n) + as(M)? = 0
(mod 11), those formulas also yield, modulo 11,

As(m) =as(m), As(n)=as(n), A;(m)=az(n),
Ag(m) = ~a3(n)’ + 4ag(m)as(n) + ag(m) = 5a¢(m)as(m) +ag(n) .

Plugging all these quantities in the above expression for ind»(n;) gives the desired result.

For w, since w'® ~ 11, there exists a unit € such that e w!® = 11. This holds for € = H}:Ol 11"—_({) =

-{®n1*n?ns? na?. As a result, owing to the multiplicative nature of the power residue symbol, we have
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indz(w) = indx(e) - ind7(11) (mod 11) where indz(¢) = inds(-1) + 6indx({) + 4indx(n1) + 2indx(n;) +
2indz(n3) - 2indA(n4) =0+ 6 % + 6a3(mm) + 10as5 () + a7 () + 5a¢(m)as () + ag(7r) (mod 11) from Corol-
lary 2.5 and using the previously obtained expressions for ind;(#;). The result now follows by plugging the
value for ind,(11) = A%i”) (mod 11); see Eq. (A2) in Appendix A. O

4 Computation of the Eleventh Power Residue Symbol

4.1 Obtaining primary associates

We need to investigate the multiplicative properties of the A;’s. Namely, given a, 8 € Z[{], how to relate
Aj(ap) to Ar(a) and As(B)? We also need to express a;(a") as a function of aj(a).

Proposition 4.1. Let a, B € Z[{]. Then, for0 < k <9,

k

Aap) =Y (’]‘) Aj@Aj(B) (mod 11) .

j=0

Proof. Using (! = 1, the product of a = Zjl=01 a;j{’ and g = Zjlfl b; {J satisfies aff = 372, ¢, ¢* = cr1+c12 { +

Z]-iz(cj +Cjr11) ¢ + €10 ¢*°, where ¢, = 3 puncs ambn. Hence, we get
1<m,n<10

Ax(aB) = Alern) + Ax(c12 ¢+ Z?:Z(Cj +¢jia1) ¢ + €10 ¢°)
=Ailci) +co + 21-9:2((:,- +Cjr11) J* + €10 10
= Ai(c11) + Zzzﬁzlo c, ¢ (mod 11) .
Furthermore, A;(c11) = Ag(c11(- Z}:Ol (j)) = —611(21-1:01 jk) (mod 11). So, for k = 0, we get Ao(c11) = c11

(mod 11) and thus Ag(af) = >°,_s.50 €¢ (mod 11). For k = 1, we get Ay(c11) = 0 (mod 11), which leads to
Ar(af) = rca20Co k= > 5etea0 €t ¢% (mod 11). Therefore, in all cases, we have
0411 =

Ar@P) = 35 per0 o X = 2255520(21;"";,’,;;{0 mbn) (¢

=3 SN ambn(m + )

= Somy Soady ambn (o5 () mink)

= Z11'<=0 (I;) Z:n0=1 :121 ambn m/ n*7

=350 (5) (Tay amm!) (330 bnn*T)

= (5)4)@Ak5(B)  (mod 11),
which completes the proof. 0
Corollary 4.2. Let a € Z[{] and let n € N. Then

Ap(d") = Ag(@)"  (mod 11)

and, provided that Ag(a) £ 0 (mod 11), for1 <k <9,

k
ai(a") = Z <Z> hy(a) (mod 11)
=1

where
ai(@) fort=1
hiel@ = 9 e :
> (]) hije-1(@)aj(@) for2<t<k
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Proof. This is a direct application of Proposition 4.1. O

Proposition 4.3. Letn; =+ {2,y =+ 3 = (A +{+ ¢, andny = 3 + {3 Let also a € Z[{]
with Ap(a) #0 (mod 11) and A;1(a) = 0 (mod 11). If rational integers O < ey, e, e3, e, < 10 verify

S, ax(n) e =-ax(@ (mod 11)

Soiq (a4(ni) - 332(n3)?) e; = —a4(@) + 3a3(@)?  (mod 11)

S (ag(m) - 4as(npax(n;) - 3a2(n)%) e; = - ag(a) + 4as(@ar(a) — az(a)? +3a(a)® (mod 11) (2

Sy (as(ni) + 5a6(n)a2(n;) - 2a4(7) + 2a4(n)ax(n;)* - 3a2(n))*) €; = —as(@) - 5ag(@az(a)
+as(a)as(a) + 2a4()? — 2a4(@)as(a)? + as(a)?az(a) + 3a;(a)* (mod 11)

then a" = n1°1 n,°2 13 N8 @ is a primary associate of a.

Proof. Write € = €1 &, £3 &4 and &; = . Hence, a” = € a is an associate of a. It is worth noting that ¢ is real
and thus A;(¢) = a1(€) = 0 (mod 11). Proposition 3.1 lists the conditions for a" being primary. From Propo-
sition 4.1 and Corollary 4.2 (see also Appendix A), we get Ag(e) = Hf;l Ao(g) = Hf;l Ap(my)¢ (mod 11).
Therefore, since Ag(n7;) # 0 (mod 11), it follows that Ag(a”) = Ag(€)Ao(a) # 0 (mod 11). Further, since
Aq(a) = A1(g) = 0 (mod 11), we also have A;(a”) = Ap(e)A1(a) + A1(€)Ap(a) = 0 (mod 11).

Likewise, again from Proposition 4.1 and Corollary 4.2, we find after a little algebra a, () = Zf‘;l a(g) =
Zf‘zl a,(1;) e; (mod 11). Consequently, since a* = ¢, the condition A,(a") = 0 (mod 11) translates into
Ay(@") = Ao(€)A(a) + Ax(e)Ao(@) = 0 (mod 11) = a(e) = 28 = 424 = —a,(a) (mod 11), that is
Zf‘:l a(n;) e; = —az(a) (mod 11).

The calculation for a,(g) is more involved and technical. An application of Proposition 4.1 and Corol-
lary 4.2 yields as(¢) = 21{;1 (as(n) e; + 3a:(n))* eile; — 1)) + 62111(2]‘.‘:”1 ax(n;)a2(n;) eje;) (mod 11).
In turn, as 2?21 ax(ni)e; = -az(a) (mod 11), we therefore obtain a,(e) = 2?21(34(711') - 332('11')2) e; +
3(38, ax () e,-)2 = [2h (as(ni) - 332(m1)?) e;] + 3ax(@)? (mod 11). The condition A4(a”) = 0 (mod 11)
so leads to a,(a) + 6ax(e)ax(a) + as(e) = 0 (mod 11) <« a,(e) = -as(a) + 6a>(a)? (mod 11), that is
St (as(n) - 332(m:)?) e; = —as(@) + 3ax(@)? (mod 11).

The two remaining relations are proved similarly as a respective consequence of Ag(a")A¢(a)+A3(a”)? =
0 (mod 11)and A5(a")As(a")-Ag(a")Ag(a’) = 0 (mod 11). Notice that a3(g) = as(e) = a;(€) = 0 (mod 11).

O

From Lemma 2.2, applied to the case p = 11, we know that every a € Z[{] with a # 0 (mod w) has a primary
associate of the form

o =00 s s e

where O < eg, e1, 2, €3, e4 < 10 and a” is unique up to the sign. First, we observe that the sign does not affect
the fact of being primary. Indeed, from Proposition 3.1, it is easily seen that if a" is primary then so is —a”.
Second, as shown in the proof of Proposition 3.1, we observe that the condition a # 0 (mod w) is equivalent
to Ap(a) £0 (mod 11).

Applying Proposition 4.3 demands that a satisfies Ag(a) £ 0 (mod 11) and A;(a) = 0 (mod 11). It turns
out that if Ag(a) £0 (mod 11) then

a = 0Wq

satisfies Ag(a’) = Ao({1@)Ag(a) = Ag(a) £0 (mod 11)and A1(a’) = Ao({* @)A1 (a) + A1 ({1 @) Ap(a) =
A1(a) - a;(@)Ao(a@) = 0 (mod 11). Note that Ap({) = A1({) = 1.

Putting all together, we therefore obtain an efficient way to compute a primary associate of an element a €
Z[{] with Ag(a) # 0 (mod 11). This is depicted in Algorithm 1. With matrix notation, letting (w1, w, w3, wy)
denote the right-hand side of (2) (i.e., w; = —a,(a), etc) and replacing the a;(n;)’s by their respective values,
the system of equations (2) can be rewritten as

(e1,e2,e3,e,) M= (wy, wy, w3, wy) (mod 11)
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and so
(e1, €2, €3, e4) = (Wi, wa, w3, w, )M (mod 11)

24 1 -3
where M1 = ("‘ 35 ’1> (mod 11).

Algorithm 1: Computing a” and its representation
Input: a € Z[{] with Ag(a) £0 (mod 11)
Output: primary(a) = @ and repr(a) = (eo, €1, €2, €3, e4) with a” = { 11°" 5% n5* N, a primary

eg + —a1(a) (mod 11)

a+ oa

wy + —-az(a) (mod 11)

ws + —az(@) + 3a2(a)? (mod 11)

w; — —ag(a) + 4as(a)az(a) - as(a)? + 3ax(a)® (mod 11)

wy + —ag(@) - 5ag(a)ax(a) + as(a)as(a) + 2a4(a)? -
2a4(@)as(@)? + as(a)?az(a) + 3a(a)* (mod 11)

e < —2wi - 4wy + 5w3 - 3w, (mod 11)

e + 4wy + 3w, — 5w3 + 2w, (mod 11)

€3 <— Wqp + 5w, - 3W3 - 3w, (mod 11)

e4 + 3wy —wy + 4ws + w, (mod 11)

(X* . rhel '2282 rl3€3 )]484(1

return [a”, (eg, €1, €3, €3, €4)]

4.2 Norm-Euclidean division

The last ingredient for our algorithm is a norm-Euclidean division. For p = 11, the ring Z[{] is known to be
norm-Euclidean, i.e., for all a, A € Z[{], there exists some p € Z[{] such that p = a (mod A) and N(p) <
N(A). In [11], Lenstra provides an efficient algorithm for approximating an algebraic number y € Q({) by an
algebraic integer ( € Z[(] satisfying N(y - 1) < 1. See also [14, Algorithm 5.1] or [3, Algorithm 7.1]. Therefore, if

10 .
welety = 7 = %ﬁ"m € Q({), we obtain € Z[{] such that N(y - ¢) < 1, and thus p := a — (A verifies p = «

(mod A) and N(p) = N(A) N(x - ©) < N(A). We write p = euclid_div(a, A).

4.3 Our algorithm

The main result is the hendecic reciprocity law.

Theorem 4.4 (Hendecic Reciprocity). Let a and A be two primary elements in Z|[{]. Then
3, - [
A 11 4 11

+1 ¢ N@)-1
— =1, [_} = i,
|:Ai|11 A 11 (

[(5%‘5} = (B W3as(Drhar (D4 (a3 (W+3a5(A)
A 11 ’

[G,\(_l} _ (Bag(A)+5a5(}l)—237(}l)+536(/1)a3(/1)+a9(/1) ,
11
[(’1(1;(@2)} _ CZa;(A)—Za;(/I)+3a7(A)—Aaﬁ(/\)ag(/\)—3ag(/1) )

11

Moreover,
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[(3+(’3] _ (4a3(A)+435(/1)+3a7(A)+a6(/1)ag(/1)—2a9(/1)
/1 11 ’

and, letting A;(A) = A:0/Ao() mod 121

[1;(} = {53Was(N-2a6Was()-A(N)-5 M5
A 11 ’

Proof. The first statement is Theorem 2.3 for p = 11. The second statement for units +1 and ¢ is Corollary 2.5
for p = 11; note that w 1 A because A is primary.

The last statements are proved in Proposition 3.3 for a primary prime A. We need to show that Propo-
sition 3.3 remains valid for any primary element A ¢ Z[{]. Actually, it is sufficient to consider the case of
A being of the form A = mym, for two primary primes mr; and m1,. If 71; and 71, are primary then Propo-
sition 3.1 tells that a;(m;) = a,(m;) = as(m;) = ag(m;) + a3(m;)?> = 0 (mod 11), i € {1,2}. Combined
with Proposition 4.1, we so obtain for j € {3, 5,7}, aj(my ;) = aj(711) + a;(7r2) (mod 11). We also obtain
ag(m11m2)as(my 1my) = ag(my)as(my) +ag(m2)as(mm2) + 3a6(7m1)as(712) + 3a6(m2)as (1) (mod 11) and ag(m11 m2) =
ao(1m1) + ag(mmy) — 4ag(my)as(mmy) — 4ag(m;)as () (mod 11). It is now easily checked, for n; = {° + (>, that
a3(my mp) + 3as(my m3) + 4a7(my m2) + 4ag(my m2)as (7 m2) + 3a9(mmy 13) = indy, (1) + indyg, (1) = indg, 7, (11)
(mod 11) where the values of indx, (171) and indx, (171) are given by Proposition 3.3; and similarly for the other
fundamental units 7, = ¢+ {1, n3 = {11+ { + ¢?), and n4 = { + { . The proof for w = 1 - { essentially
follows the same lines using a refinement of Proposition 4.1 for A;(¢f) mod 121. O

Theorem 4.4 gives rise to an efficient algorithm for computing the 11™-power residue symbol [ﬂ . It requires

a and A to be co-prime and T(A) # 0 (mod 11) (as otherwise the symbol is not defined). As alreminder, w
stands for the special prime 1 - {andn; = {° +{ >, o = {+ {3 = XA+ ¢+ {3,y = 3+ 73 are
fundamental units.

Algorithm 2: Computing [ﬂ

11
Input: a, A € Z[{] with gcd(a, A) ~ 1 and T(A) 0 (mod 11)
Output: H

11
X« primary(A)
j«< 0
while N(¥') > 1 do
p « euclid_div(a, A’)
s+ 0
while T(p) = 0 (mod 11) do

S+—s+1

pprw
end
[p*, (eo, €1, €2, 3, e4)] « [primary(p), repr(p)]

/1 p" = §omf it nat p
j <+ j+sxindy(w) - eg xindy({) - e xindy(n1)
- ey xindy (172) - e3 x ind (173) - e4 x ind (174) (mod 11)

a+— ;X «p’

end
return {’

Proposition 4.5. Algorithm 2 is correct.

Proof. Clearly, we have [ﬁ] = [i} = {M .
A 11 K 11 K 11
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Let a(in) and A*(in) (resp. a(out) and A*(out)
the outer while-loop. Define p := euclid_div(a®,

(e n1® n*2 ns® N4 o w ™S and so [ﬂ

) denote the values of a and of A when entering (resp. exiting)
/1*(1")). At the end of the inner while-loop, we have p* =
_ [pﬂ s ind; W)-eoind (-1, erinds (1) and wherein indy (w), ind; ({)
11 11
and indy (n;) are evaluated using Theorem 4.4 and [‘;—] = B—} by hendecic reciprocity. The last step of
11 11
the outer while-loop replaces (a, A') with (X', p*). Since Z[{] is norm-Euclidean, it follows that the norm of

A strictly decreases: N(A*(O"t)) = N(p") = N(o)/ N(w)® < N(p) < N(/l*(in)). It eventually becomes 1 and the
algorithm terminates. O
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A Formulary

In this appendix, we list the general formulas for the logarithmic differential quotients A;(a) and for the quan-
tities a;(a™).

We use Kummer’s notation (cf. Section 2.3) and represent an algebraic integer a = Z]-lfl a; {0 e Z[{] with
T(a) # 0 as a = F({). The following lemma is useful; it relates F’ ®(1) to A (@),

LemmaA.l. Let a = ].1=°1 a;j{’ € ZI{l. Then, letting F® denote the k™ derivative of F, FV(1) = A(a)
(mod 11) for0 < k <9.

Proof. The proof is immediate. From the definition of F, we have F(e") = ng=o b; e"/ where by = —a; and
bj = aj - ajo for 1 < j < 9. Hence, evaluating F(e") at v = 0, we get F(1) = Z]io bj = -aio+ ng=1(aj -dqg) =
Ao(a) — 11ajo = Ao(@) (mod 11). Also, for 1 < k < 9, FO(1) = 21'9=1 j* b; = 21'9=1 jk(a,- —ay) = Aila) -
dio Z}.lfl jk = Ap(a) (mod 11). O

We assume that Ag(a) # 0 (mod 11). From A(a) = % < F'(1) = Ai(a)F(1), we get by induction
FO) = 8| (57) Aj(@) F*(1) and therefore

CF0O1) S (k-1 FD(1)
4@ = 3 _]-:21 i1 )@y (A1)

So, using Lemma A.1 and letting a; := a;(a), we obtain the successive logarithmic differential quotients mod-
ulo 11.

. A1(a) = a; (mod 11)
. Ay(a) = -a% +a, (mod 11)
As(a) = 2a,® - 3a,a1 + a3 (mod 11)
Ay(a) = 5a1* + apa.® - 4asa; — 33> +a, (mod 11)
. As(a) = 2a;° - 5a,ar° - 2a3a;® - 3a,2a; — 5asa; +aza +as (mod 11)
. Agla) = a® - 3a,ar" +aza’ + 5a,°a;> — 3a4a,° — a3a,a; + 5asa; — 3@, — 4asay +as
+ag (mod 11)
7. A;(a) = 5a;,” — axar’ + 4asar’ +a’a; — asar + 5azarar’ — 2asa;’ — 3a,°a; + a4a»a; — 3as°a;

+ 4aga + a3az2 +asap — 2asza, +a; (mod 11)

8. Ag(a) = -2a,® - 3a,a,° + asa,° + ay’a," — 3a4a1" - 2azara;’ + 5asa;’ + 4ay’ar’ — azarar’ + 3asfa’
+ aéalz - 2a3322a1 —-5asara; —asaza; +3aya; — 3a24 + 2a4a22 - a32a2 +5agay — 2a42 —asas
+ag (mod 11)

9. Ag(a) = 5a,° + 5a,a1 +2asar® — 2a,2a;” + 5asar’ — 5aza,ar’ —asaq’ — 5a,a; + azara, — 3as’ar
+ 2a6313 + Ba3a22a12 - 4a5a2a12 - 33334312 - 5a7a12 - 2a24a1 + a4a22a1 + 5a32a2a1
—2agaza; + 3a42a1 - 4asasa; + 2aga; - 333a23 - 3a5322 + aszasa; — 3aya; — 5asay - a33

+4agaz +ag (mod 11)

In order to get A11(a) mod 121, we resort on the general relation (A1). We define f; := f;(a) = FW) ang

F(1)
obtain

An(a) = 11(—5 f2f19 - 2f3f18 - f22f17 - 5f4f17 - 4f3f2f16 + f5f16 + 5f23f15 + 4f4f2f15 - f32f15 - 2f6f15 - 2f3f22f14
+ 3f;5f2f14 + 5f4f3f14 + 5f7f14 - f24f13 + 4f4f22f13 - 2f32f2f13 + 4f6f2f13 - 3f5f3f13 + 5f42f13 - 2f8f13
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- 36563617 — 4fs 26,7 + 564656567 — 26,662 = 56562 — ffsfy? + 4fsfyf? — fof? — f,°F; — 3f4F,°F;
+5F26,%F1 + 4fsf2F1 + 5fsf3fofy — f,2fafy + 2fgfafy — 5F4F5%F1 — 2f,f5F; + 2fgfufy — f2f1 — fiofy + 4f56"
+ 4fsf = 264367 + 4627 + 4f3f, + 4fef3fy — 5Fsfufy — 5fofy + 4fsFs> + 5,75 — 4fgfy + 376, + 2f4fs)
+f1q +10f11 (mod 121).

When a is primary, we have Ag(a) # 0 (mod 11) and fy(a) = f(a) = f4(a) = f3(a)fs(a) - fg(a) = O
(mod 11). Fora = Z].lfl a; {/ primary, the previous relation then yields

All(a) = 4f5f32 - 4f8f3 + 2f6f5 + 71:11 mod 121 = 2f6f5 + 71:11 mod 121 = 23635 + % (AZ)
11 11 11
21 mod 121
= 2agas + U 47—— =2a¢as + Ay +5-5a3-as +ay +ag (mod 11)
where Aq1(a) = Z],lzol aij11 and
21% mod 121
Ay =Ag(a) = =5=—r——,

11
noting that A11(a) - A1(a) = 11(-a, - 4a,4 + 2as — 3ag + 3a7 — ag — ap) = 11(5A0(a) - 5A43(a) - As(a) +
Az (@) + Ag(a)) (mod 121).

We now look at the quantities a;(a") for n > 1. We write {7} as a shortcut to j! (7) =n(n-1)...n-j+1)
and again let a; := a;(a). The next formulas expand those given by Corollary 4.2.

1L a;(@") = {7} a; (mod 11)

2. (@) = {}a,+ {5} a;* (mod 11)

3. as(@") = {1} as + {5} 3a1a2 + {5} a° (mod 11)

4. ag(a") = {1} as + {5} (4a1a3 + 3aY) - {5} 5ar%a, + {; } a;* (mod 11)

5. as(a™) = {1} as + {5} (5a1a4 - aza3) - {§} a1(a1a3 - 4a?) - {}} ar’a, + {¢} a° (mod 11)
6. ag(a") = {1} as - {5} (5a1as — 4aa, + as’) + {5} (4as’a, + 5a1aa3 + 4ay°)

- {Ma’(2ara;3 - a%) + {7} 4ar*a, + {7} a;® (mod 11)
7. az(@") = {1} a7 - {5} (4a1a6 + azas - 2aza,) - {3} (a’as + 5a,a,a, — 4a1a3> + 5a,°a;3)

+ {1 ar(2as’a, + a1a2a3 - 53°) + {1} ar’(2a1a3 - 53,7) - {#} ar’ay + {#}ay’ (mod 11)
8. ag(a") = {1} ag - {5} (3a1a7 + 53,84 — azas - 2a2)

- {"} (5a1%a - 3a1a,a5 — 513334 — 85" a4 — 53,3°)

+ {Z}(afa; +2a,°aa, + 5a°as’ + 4ajar’as — 5ay”")

+ {'S’}alz(4alza4 —ajajas +2ay) + {¢} ar*(ajas +a)’) - {3} 5a.°a, + {3} a;® (mod 11)
9. ag(a") = {1} a9 - {3} (2a1as - 3aay + 4azae - 5a,as)

+{%} (3a%a; — a1arag — 2a1a3as — 4aias’ + 4ay’as — 5arasa, + 5as’)

- {1} (4ar’ag + 3ar”aas + 5ar°aza, + 2a1a,°a, — a1a,a3° + 5a°a3)

+{1} ai(5ar°as — 5a°asay + 4a’as — 4ajar’as —ar)t) + {¢} a’(5a%a, — 5a1a,a3 — 535°)

- {%} ar’ (4a1a; - 4a,°) + {1} 3a’a, + {4} a,° (mod 11)
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