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Abstract: Counterfeit medicines pose a major threat to 
public health worldwide. These pharmaceuticals are 
mostly manufactured without respecting Good Manufac-
turing Practices. Moreover, they are not subjected to any 
form of quality control, and therefore their safety, efficacy, 
and quality cannot be guaranteed. Extensive research on 
counterfeit medicines has already been performed and 
published in literature. This review aims at providing an 
updated overview of the use of fingerprints and subse-
quent multivariate (chemometrical) data analysis in the 
field of counterfeit medicine detection. Fingerprinting 
could be a useful tool in the analysis of counterfeit medi-
cines because it generates a holistic view of a sample, 
rather than focusing on specific and predefined charac-
teristics, such as identification and quantification of pre-
sent active pharmaceutical ingredients. This review first 
provides an introduction into the counterfeiting prob-
lem. Next, the concept of fingerprinting and the basic 
principles of chemometrics are explained, followed by a 
description of the successful application of fingerprints in 
the field of Pharmacognosy. The last part of this review 
provides an overview describing the use of fingerprints in 
counterfeit medicine research.

Keywords: chemometrics; counterfeit medicines; 
fingerprints.

Introduction

Counterfeit medicines pose a major threat to public 
health worldwide (World Health Organization [WHO] 
2005, International Medical Products Anti-Counterfeiting 
Taskforce [IMPACT] 2008). Not only developing countries 
are subjected to the distribution of counterfeit medicines, 
but industrialized countries such as European countries, 
the United States, and Japan are exposed to pharmaceuti-
cal forgery as well (European Alliance for Access to Safe 
Medicines [EAASM] 2008). These counterfeited medi-
cines are mostly manufactured by uncontrolled or street 
laboratories without respecting Good Manufacturing 
Practices (Sacre et  al. 2011a). They are not subjected to 
any form of quality control (Jackson et  al. 2012, Decon-
inck et  al. 2014a), and therefore their safety, efficacy, 
and quality cannot be guaranteed (EAASM 2008, Höllein 
et  al. 2016). The consequences of the use of counterfeit 
medicines may vary from therapeutic failure to the occur-
rence of serious adverse events and even death (Gautam 
et al. 2009).

The WHO defines a counterfeit medicine as “one which 
is deliberately and fraudulently mislabeled with respect to 
identity and/or source. Counterfeiting can apply to both 
branded and generic products, and counterfeit products 
may include products with the correct ingredients or with 
the wrong ingredients, without active ingredients, with 
insufficient active ingredients, or with fake packaging” 
(WHO 2005). Counterfeit products copy the brand name, 
and their appearance also resembles that of a genuine 
product (Vredenbregt et al. 2006, Deconinck et al. 2013c). 
Furthermore, contents of counterfeit medicines are highly 
unreliable because their source is unknown; they can 
range from inactive and useless formulations to harmful 
and toxic products (IMPACT 2008). Health risks might 
be due to the presence of incorrect active pharmaceuti-
cal ingredients (APIs), the absence of API, an incorrect 
dosage, the presence of high concentrations of potential 
toxic secondary components, and fake packaging or doc-
umentation (EAASM 2008). However, the definition by 
the WHO does not apply to the majority of illegal drugs 
encountered in industrialized countries because most 
of them do not copy the brand name and packaging of 
genuine medicines (Sacre et al. 2010). Moreover, despite 
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the reached consensus on this definition, several coun-
tries apply different definitions in their respective laws, 
thereby impeding both international cooperation and 
implementation of procedures to tackle the trade in coun-
terfeit medicines (WHO 2005). Therefore, the WHO pro-
posed some modifications, resulting in the use of the term 
“substandard/spurious/falsely labeled/falsified/counter-
feit” medicines (WHO 2016b). Spurious, falsely labeled, 
falsified, and counterfeit medicines are recognized to be 
substandard, but not all substandard medicines are nec-
essarily spurious, falsely labeled, falsified, or counterfeit. 
Substandard medicines (or out-of-specification products) 
constitute a particular group of illegal medicines. They are 
defined by the WHO as “a genuine medicine produced by 
manufacturers authorized by the national medical regu-
latory authority which does not meet the quality specifi-
cations set for them by national standards”. This means 
that these kinds of medicines are produced in a legal way 
by the marketing authorization holder, but they should 
be destroyed because of failure to meet the set quality 
requirements. However, these batches sometimes do 
become available on the market because of unscrupulous 
people getting hold of these rejected batches (Wertheimer 
and Norris 2009, Deconinck et  al. 2013c, WHO 2016a). 
Another variant of substandard medicines is drug diver-
sion, i.e. expired genuine medicines that are repacked and 
sold (Wertheimer and Norris 2009, Degardin et  al. 2014, 
Höllein et al. 2016).

Besides counterfeit and substandard medicines, other 
groups of frequently encountered illegal pharmaceuti-
cals are imitation products and adulterations. Imitations 
do not copy the brand name or the packaging, but they 
do claim the presence of a certain API. Most of them are 
manufactured in Asian countries because these countries 
do not recognize the European and American patent laws. 
As a consequence, these products are produced legally in 
these countries but imported illegally in Europe and the 
United States (Vredenbregt et al. 2006, Sacre et al. 2010, 
Deconinck et al. 2013c). Adulterations are herbal products 
or dietary supplements that contain undeclared synthetic 
APIs; these APIs are added to increase the efficacy of these 
products (Rebiere et al. 2012, Justa Neves and Caldas 2015). 
These adulterated products represent a major hazard to 
public health because consumers are not aware of the 
presence of synthetic APIs because of fraudulent labeling 
with regard to the ingredients. This could lead to unex-
pected side effects or interactions with other medication a 
patient could be taking (Deconinck et al. 2013c).

As already mentioned, medicine counterfeiting is a 
global threat to public health (Degardin et al. 2014). Unfor-
tunately, assessing the true extent of pharmaceutical 

counterfeiting is particularly difficult because of its illicit 
and clandestine nature (EAASM 2008, Höllein et al. 2016). 
Moreover, the size of the problem differs from region to 
region. The WHO estimates that approximately 1% of 
the total medicine market of industrialized countries is 
covered by counterfeit medicines. The extension of the 
Internet certainly contributes to the increasing threat 
posed by these pharmaceuticals in these developed areas. 
Research has shown that approximately 50% of all medi-
cines, purchased online from websites that cover up their 
true identity, are forged (IMPACT 2008, Deconinck et al. 
2012c, Delepierre et al. 2012). Online buying of medicines 
is sometimes preferred because it is quicker, purchases 
can be made anonymously, and prices are often thought 
to be lower compared with official pharmacies (Degar-
din et al. 2014). In countries of the former Soviet Union, 
approximately 20% of the medicine market would be 
covered by forged pharmaceuticals. On average, 30% of 
the medicines sold in African countries and parts of Asia 
and Latin America is suspected to be counterfeit, with 
percentages differing from 15% to 60% depending on the 
region (IMPACT 2008, Delepierre et al. 2012). Moreover, the 
types of medicines that are most commonly counterfeited 
also differ from region to region (IMPACT 2008). Counter-
feiters mainly target expensive and high-consumption 
medicines (Deisingh 2005). In industrialized countries, 
the primary targets for counterfeiting are commonly 
called “life style drugs” and comprise phosphodiesterase 
type 5 inhibitors for the treatment of erectile dysfunction, 
slimming products, anabolic hormones, products for the 
treatment of hair loss, and even narcotics (Deconinck 
et  al. 2013a,c, Degardin et  al. 2014). Furthermore, coun-
terfeiters are also targeting other types of medicines such 
as expensive cancer treatments and antiviral pharma-
ceuticals (Degardin et al. 2014). In developing countries, 
life-saving medicines, such as antibiotics and medicines 
for the treatment of tuberculosis, malaria, and HIV/aids 
are mostly counterfeited (Deconinck et  al. 2013c, Degar-
din et al. 2014, Höllein et al. 2016). This represents a major 
threat to public health; treating diseases associated with 
high untreated mortality rates, e.g. malaria, tuberculo-
sis, aids, and meningitis, with counterfeit or substandard 
medicines increases morbidity and mortality substan-
tially. Moreover, the use of substandard/counterfeit anti-
biotics (which often contain subtherapeutic dosages of 
API or which do not release the API correctly) increases 
the risk of developing microbial resistance, which could 
even undermine the efficacy of genuine antibiotics 
(Caudron et al. 2008, Gautam et al. 2009, Wertheimer and 
Norris 2009, Deconinck et  al. 2013c, 2014a, Hajjou et  al. 
2015). In general, the increasing prevalence of counterfeit 
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medicines jeopardizes patients’ safety, and patients might 
start to severely distrust health care systems, health care 
professionals, the pharmaceutical industry, and drug reg-
ulatory authorities (Deconinck et  al. 2013c, Hajjou et  al. 
2015).

The global character of this particular problem sug-
gests that the production of counterfeit medicines has 
become a structured criminal industry consisting of man-
ufacturers, wholesalers, distributors, and local sellers 
(Degardin et  al. 2014). This globally organized indus-
try is the result of several factors that contribute to the 
problem of medicine counterfeiting. Since this problem 
is affecting countries worldwide, a global harmonized 
legal framework is necessary which provides a univer-
sally accepted definition of counterfeit medicines and 
pharmaceutical crime. Unfortunately, as already stated 
previously, most member states of the WHO have their 
own understanding of a counterfeit medicine, making 
international cooperation very difficult (WHO 2005). A 
second contributing factor, which mostly affects develop-
ing countries, is the lack of effective regulatory systems 
and market control. Developing countries lack the means, 
e.g. restricted laboratory capacities, weak analytical infra-
structure, insufficiently trained personnel, etc. to assess 
the quality, efficacy, and safety of medicines, thereby 
paving the way for counterfeit medicines (Wertheimer 
and Norris 2009, Deconinck et  al. 2013c, Höllein et  al. 
2016). In addition, corruption is abundant in these areas, 
which facilitates the spread of fake pharmaceuticals even 
more (Wertheimer and Norris 2009, Degardin et al. 2014). 
Developing countries are also confronted with a demand 
for medicines which exceeds the supply. In these circum-
stances, unscrupulous people try to make a profit out of 
these situations by distributing counterfeit medicines 
(EAASM 2008, Wertheimer and Norris 2009). In addition, 
genuine medicines are expensive and often unaffordable 
for the population, which forces patients to seek cheaper 
alternatives on the street (EAASM 2008, Wertheimer and 
Norris 2009, Degardin et al. 2014). A very important factor 
that encourages trade in counterfeit medicines are the 
huge profits that are made; counterfeit medicines are sold 
at relatively high prices, while production costs are kept to 
a minimum. Counterfeiters are also less likely to be caught, 
unlike drug traffickers, because of weak legislation and 
enforcement. Moreover, penalties for pharmaceutical 
counterfeiting are less severe, making the counterfeiting 
of medicines financially rewarding and largely risk free 
(Delepierre et  al. 2012, Deconinck et  al. 2013c, Degardin 
et al. 2014). The WHO has estimated in 2010 that approxi-
mately 75 billion USD was spent worldwide on counterfeit 
medicines (WHO 2010); a survey conducted by Pfizer in 

the same year estimated that European citizens purchased 
medicines from illegal sources for a total amount of 10.5 
billion EUR (World Courier 2014).

Nevertheless, despite all challenges that have to be 
faced to tackle the forgery of medicines, several interna-
tional initiatives were launched. Fourteen major com-
panies founded the Pharmaceutical Security Institute 
in 2002, which aims to collect data to identify the true 
extent of pharmaceutical counterfeiting and to provide 
assistance in the coordination of international investiga-
tions (Pharmaceutical Security Institute 2015). The WHO 
also launched an initiative, i.e. the IMPACT. Its task is to 
build coordinated networks between countries with the 
aim of putting an end to the production, trading, and 
selling of counterfeit medicines worldwide (WHO 2006). 
The EAASM, founded in 2007, is a pan-European initiative 
committed to the patient’s safety by ensuring access to 
safe and legitimate medicines and promoting the elimi-
nation of counterfeit and substandard medicines (EAASM 
2015). In 2008, Interpol coordinated the first Pangea 
operation, which is an annual international initiative 
intending to cease the online sale of counterfeit pharma-
ceuticals and to raise awareness of the dangers of buying 
medicines online (Interpol 2015). The European Parlia-
ment and the Council of Europe published the Falsified 
Medicines Directive (Directive 2011/62/EU) on July 1, 2011. 
This directive aims at improving the protection of public 
health using harmonized measures to ensure the safety 
of medicines and the strict control of medicine trade. 
These newly defined measures include obligatory safety 
features on the packaging of medicines, a common EU 
logo to identify legal online pharmacies, more stringent 
inspections of API producers, and rigorous requirements 
of record keeping by wholesale distributors (Directive 
2011/62/EU of the European Parliament and of the Council 
2011). On October 28, 2011, Europe casted its Medicrime 
convention. This convention is unique because it is the 
first binding international agreement on the criminaliza-
tion of production and distribution of counterfeit medi-
cines and similar crimes that threat public health. It has 
three major aims: (1) to impose penalties for offences 
described in the convention, (2) to protect victims, and (3) 
to promote national and international cooperation. This 
convention is not limited to European countries only but 
can be signed and ratified by any state worldwide. Up till 
now, the convention has been signed by 26 countries; in 
six of these countries, the convention already entered into 
force (Council of Europe 2014). The European Directorate 
for Quality of Medicines launched the “Track and Trace” 
project, which aims to implement a system of drug trace-
ability. This project tries to involve all manufacturers of 
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raw materials active in one or more of the member states 
(European  Directorate for the Quality of Medicines and 
HealthCare [EDQM] 2011).

Extensive research on counterfeit medicines has 
already been performed, resulting in the publication of 
several reviews. Some of these reviews focus on a specific 
technique such as nuclear magnetic resonance (NMR) 
(Holzgrabe and Malet-Martino 2011) or liquid chroma-
tography (LC) (Deconinck et al. 2013c), others on specific 
groups of counterfeited medicines (Venhuis and de Kaste 
2012), or they provide a more general overview of the 
counterfeiting problem along with the different analytical 
techniques that could be applied (Deisingh 2005, Martino 
et al. 2010, Höllein et al. 2016). This review aims at pro-
viding an updated overview of the use of fingerprints and 
subsequent data analysis by means of chemometrics in 
the field of counterfeit medicine research. Fingerprints, 
and chemometric analysis, could provide a useful tool 
in the analysis of counterfeit medicines because it gener-
ates a holistic view of a sample rather than focusing on 
specific and predefined characteristics, such as identifi-
cation and quantification of present APIs. In addition to 
the present APIs, the fingerprint approach takes second-
ary substances, such as excipients and impurities, into 
consideration as well, which are considered to be equally 
important compared with the APIs. Consequently, the fin-
gerprinting method can generate additional information 
that could aid competent regulatory authorities in their 
decision making and in protecting public health.

Fingerprints and their analysis 
using chemometrics

Fingerprints

In recent years, samples are increasingly being character-
ized by their chemical fingerprints. This approach is com-
monly referred to as non-targeted analysis (Daszykowski 
and Walczak 2011). A fingerprint can be defined as a char-
acteristic profile that visualizes the chemical composition 
of the considered sample. Its aim is to construct a specific 
pattern of recognition, which will be entirely evaluated 
during data analysis (Alaerts et al. 2010a, Deconinck et al. 
2013b,c, Goodarzi et al. 2013, Donno et al. 2015). Indeed, 
a non-targeted strategy assumes that unique information 
about the chemical composition of samples is captured 
and subsequently used for comparative analysis. The 
non-targeted analysis of samples benefits from several 

advantages, as opposed to targeted analysis. It generates 
a comprehensive view of the composition of a sample in 
contrast to targeted analysis, which describes a sample by 
a limited number of carefully selected and quantified com-
pounds. The latter approach therefore assumes prelimi-
nary knowledge about the samples being studied, which 
is in reality often not the case when analyzing complex 
samples. Furthermore, it also requires the use of chemical 
standards. When using the non-targeted strategy, no pre-
liminary knowledge about the samples is required, and 
depending on the aim of the data analysis, no chemical 
standards are needed (Daszykowski and Walczak 2011).

Fingerprints can be acquired by spectroscopic, chro-
matographic, or electrophoretic techniques (Alaerts et al. 
2010a, Deconinck et al. 2013b,c). Chromatographic finger-
prints are the most informative type of fingerprints. Since 
information concerning the composition of a sample is 
spread over time, information on present individual com-
pounds can be extracted from the fingerprint. However, 
mobile phase changes, aging of analytical columns, and 
instrumental instability complicate the chemometrical 
analysis of the acquired fingerprints (Alaerts et al. 2010a,  
Deconinck et  al. 2013b, Yang et  al. 2013). Spectroscopic 
fingerprints are widely used for the identification of bulk 
materials (Deconinck et al. 2013c). Both the European and 
the United States Pharmacopoeia make use of infrared 
(IR) spectra to compare fingerprint regions of the spectra 
obtained from samples with reference spectra (EDQM 
2015, United States Pharmacopoeial Convention 2015). 
These kinds of fingerprints are influenced by all com-
pounds present in the samples because samples are ana-
lyzed in a whole without the spread of information over 
time (Deconinck et al. 2013c). Depending on the aim of the 
study, this can either be an advantage or a disadvantage.

No matter which analytical technique is used to 
acquire fingerprints, vast amounts of data are generated 
from which it is difficult to extract meaningful informa-
tion. However, chemometrics or multivariate data han-
dling provides the necessary tools to manage and analyze 
the data (Deconinck et al. 2013c).

Chemometrics

Chemometrics can be used for exploratory, classification 
(i.e. pattern recognition), and multivariate regression 
purposes (Alaerts et al. 2010a, Tistaert et al. 2011b). Che-
mometric analysis of fingerprints usually consists of three 
important parts: (1) data pretreatment, (2) unsupervised 
analysis, and (3) supervised analysis (Alaerts et al. 2010a, 
Tistaert et al. 2011b). To enable multivariate analysis of the 
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acquired fingerprints, all fingerprints are represented in a 
m × n data matrix X (Figure 1). Each fingerprint constitutes 
a single row in data matrix X; consequently, m equals the 
number of acquired fingerprints. The number of columns is 
designated by n. Each column contains the signal intensity 
for a given measuring point (most often called variable), 
e.g. when acquiring chromatographic fingerprints, the 
considered variables are the time points, and each column 
represents the registered detector signal for one particular 
time point. For spectroscopic fingerprints, the variables 
are the included wavelengths, and each column represents 
the detector signal at that particular wavelength (Alaerts 
et al. 2010a, Tistaert et al. 2011b, Goodarzi et al. 2013).

Data preprocessing

Prior to unsupervised and supervised data analysis, an 
appropriate pretreatment of the data needs to be per-
formed to remove experimental variation and to improve 
the quality of the data set (Tistaert et  al. 2011b). When 
recording chromatographic fingerprints, shifts in retention 
time can occur because of column aging, mobile phase 
changes, and instability of the chromatographic system. As 
a result, the recorded fingerprints often need to be aligned. 
Several techniques are developed for this purpose, such 
as correlation optimized warping (COW) (Vest Nielsen 
et al. 1998, Pravdova et al. 2002, Tomasi et al. 2004, van 
Nederkassel et  al. 2006a), parametric time warping 
(Eilers 2004, van Nederkassel et al. 2006a), dynamic time 
warping (Pravdova et al. 2002, Tomasi et al. 2004), semi
parametric time warping (van Nederkassel et al. 2006a,b), 
target peak alignment (van Nederkassel et al. 2006b), and 
fuzzy warping (Walczak and Wu 2005). Among these align-
ment techniques, COW is most often used and proved to 
be most effective (Daszykowski et al. 2010, Tistaert et al. 
2011b). However, it should also be noted that COW is a 
time-consuming technique and lacks ease of use since two 
input parameters need to be optimized by a trial-and-error 
approach (Tistaert et al. 2011b).

In addition to peak alignment, other data pretreat-
ment techniques might be required, such as normalization, 
column centering, and paretoscaling. These latter preproc-
essing methods aim to minimize the unwanted variability 
and to maximize the observed information, i.e. the differ-
ences between the samples (Alaerts et al. 2010a, Tistaert 
et al. 2011b). Normalization is a preprocessing technique 
that scales each column to a constant total by dividing each 
particular column by a value that represents the general 
intensity of the column. When applying column center-
ing, the column mean is subtracted from each value in a 
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Figure 1: Schematic representation of how fingerprints are organ-
ized in a data matrix suitable for multivariate data analysis.

particular column. This basic preprocessing method is an 
essential part of several multivariate analysis techniques 
such as principal component analysis (PCA). Paretoscal-
ing constitutes a subtraction of the column mean from 
each variable followed by a division by the square root of 
the column standard deviation (Alaerts et al. 2010a). Data 
preprocessing needs to be performed with the necessary 
caution because it will largely influence the results that 
will be acquired during the following steps of the chemo-
metric data analysis (Tistaert et al. 2011b).

Unsupervised data analysis

The second step in the chemometric data analysis con-
sists of an exploratory analysis, using unsupervised 
techniques. Unsupervised methods only use the infor-
mation present in data matrix X or, put differently, they 
make use of the acquired fingerprints as their sole source 
of information (Massart et al. 1997, Alaerts et al. 2010a, 
Tistaert et al. 2011b, Goodarzi et al. 2013). This concept 

a × n Data matrix

b × n Data matrix

c × n Data matrix

d × n Data matrix

Cluster 1

Cluster 2

Cluster 3

Outliers

Exploratory data
analysis

m × n Data matrix X

a, b, c = No. of objects per cluster
d = No. of outliers
a + b + c + d = m

Figure 2: Visualization of the exploratory data analysis principle.
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is visualized in Figure 2. Exploratory data analysis aims 
at revealing differences among the investigated samples 
and to identify the signals that contribute most to the 
observed differences (Daszykowski and Walczak 2011). 
Such an approach could be used to explore whether an 
underlying clustering of samples or outliers is present 
(Alaerts et al. 2010a, Tistaert et al. 2011b, Goodarzi et al. 
2013). Commonly applied techniques are PCA, projection 
pursuit (PP) (which are both projection techniques), and 
cluster analysis (which is a clustering technique). Clus-
tering and projection techniques have both proven their 
usefulness for the exploratory analysis of fingerprints.

Projection methods
Projection techniques have the valuable feature of visu-
alizing high-dimensional data by projecting them into 
a low-dimensional space using only a few latent vari-
ables. Thereby, they help to summarize the data structure 
(Daszykowski and Walczak 2011).

Principal component analysis
PCA is a variable reduction technique that allows to 
visualize the information contained in the fingerprints 
(i.e. m × n data matrix X) by projecting the original high-
dimensional variables into a low-dimensional space. 
This low-dimensional space is defined by new orthogo-
nal latent variables, which are commonly referred to as 
principal components (PCs). These PCs are linear com-
binations of the original variables; they are defined in 
a way to describe the variance present in data matrix 
X. The first constructed PC explains the highest vari-
ance in the data; the second one explains the highest 
residual variance remaining after the construction of the 
first PC. The same principle is repeated for the third PC 
around the plane, defined by the first and second PCs. 
PCA results in two matrices: a score matrix and a loading 
matrix. All m objects (i.e. samples) are projected on these 
newly defined PCs; these projections are called scores. 
They can be visualized using a score plot, thereby pro-
viding information about the (dis)similarities among the 
objects. The loadings represent a measure for the weight 
of each original variable, which indicates that variables 
with higher loadings contribute more to the construction 
of a given PC. A loading plot can have its usefulness in 
exploring which individual variables are responsible for 
the present inter-sample variances. This information can 
often be linked to certain signals or chemical components 
in the fingerprints (Massart et al. 1997, Daszykowski et al. 
2003, Daszykowski 2007, Daszykowski and Walczak 2011, 
Goodarzi et al. 2013).

Projection pursuit
PP will project high-dimensional data into a low-
dimensional space as well. This low-dimensional space is 
defined by a few latent variables, which are called PP fea-
tures. The concept of PP is to find several directions in the 
data space that will lead to “interesting” low-dimensional 
projections revealing useful information about the data 
structure (e.g. to reveal the presence of sample grouping 
or outliers). This is achieved by maximizing a projection 
index (PI), which describes the inhomogeneity of the data. 
One of the most popular PIs is entropy. Other PIs used in 
literature are yenyukov’s index and kurtosis. By testing 
different PIs, different aspects of the data structure can be 
explored (Daszykowski et al. 2003, 2005, Stanimirova et al. 
2005, Daszykowski 2007). Since the definition of the latent 
variables differs for PCA and PP, PP could be complemen-
tary to PCA in revealing the data structure. Consequently, 
PP could visualize groups of samples that could not be 
observed by PCA and vice versa (Deconinck et al. 2012c).

Clustering techniques
Clustering techniques represent a second important tool 
in the exploratory analysis of data. The different cluster-
ing methods are generally divided in two subgroups: hier-
archical and non-hierarchical clustering (Alaerts et  al. 
2010a, Tistaert et al. 2011b).

Non-hierarchical clustering
Non-hierarchical methods, also called partitioning methods, 
divide the objects (i.e. samples) into several mutually exclu-
sive groups in a way that objects assigned to one group are 
more similar to one another than to objects assigned to other 
groups. This acquisition of mutually exclusive groups is the 
result of maximizing a certain similarity measure over the 
considered groups. The most popular similarity measure 
used is the variance criterion, which is formulated as follows 
(Drab and Daszykowski 2014):

2

1 k

k

i k
k i c

E x c
= ∈

= −∑∑ � �

where xi represents the ith object, ck is the coordinate of the 
kth cluster center, and k is the number of cluster centers.

The partitioning of objects is obtained by defining 
several cluster centers k (e.g. randomly). For each object, the 
nearest cluster center is identified to which it is subsequently 
assigned. Next, for each cluster separately, the new center 
coordinates are estimated, i.e. the mean of the coordinates 
of the objects belonging to the considered cluster is calcu-
lated. Afterwards, the membership of all objects is verified, 
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thereby taking into account the actual cluster centers that 
were calculated in the previous step. If necessary, the 
objects have to be reassigned to another cluster. These latter 
two steps are repeated until all objects are finally assigned 
to the correct cluster (Drab and Daszykowski 2014).

Hierarchical clustering
Hierarchical methods are the most often applied clustering 
techniques (Alaerts et al. 2010a). Hierarchical clustering 
analysis (HCA) can best be described as a technique that 
identifies homogeneous subgroups in a way that objects 
belonging to the same group/cluster are more similar to 
one another than to objects from other clusters (Almeida 
et al. 2007). It attempts to reveal the data structure, which 
is displayed in the form of a tree (i.e. a so-called dendro-
gram). The construction of this dendrogram is an iterative 
and multi-step procedure using either an agglomerative or 
a divisive approach (Figure 3). The agglomerative strategy 
consists of a sequential merging of objects; the divisive 
method sequentially splits clusters until they all contain a 
single object. However, the former is most applied in liter-
ature. The agglomerative approach starts with each object 
in a separate cluster. During each consecutive step, the two 
most similar samples and/or clusters are combined to form 
larger clusters, thereby taking a certain similarity measure 
into account. This sequential merging continues until all 
objects are part of one large cluster. This entails that if m 
objects are present in the data set, then m−1 merging steps 
have to be performed. The resulting dendrogram shows 
the established hierarchy of sample similarities. A series 

of clustered samples is listed along the horizontal axis; 
the vertical axis provides information about the similarity 
among the considered samples. Samples that are grouped 
in the lowest branches of the dendrogram are the most 
similar (Vandeginste et  al. 1998, Van Gyseghem et  al. 
2006, Almeida et al. 2007, Daszykowski and Walczak 2011, 
Tistaert et al. 2011b, Drab and Daszykowski 2014).

An agglomerative HCA is characterized by two para-
meters: (1) the similarity measure and (2) the linkage 
technique. To quantify the similarity, several distance 
measures can be selected, e.g. Euclidean distance, 
Mahalanobis distance, and Standardized Euclidean dis-
tance. The linkage techniques are used to decide which 
objects or clusters should be joined. The most popular 
linkage techniques are single linkage, complete linkage, 
average linkage, Ward’s algorithm, and centroid linkage.

Single linkage
The single linkage is often called the nearest neighbour; 
two clusters are merged when the calculated distance 
between an object from one cluster and an object from the 
other cluster is the smallest one, or

Single linkage: min ,i i ia b−� �

where ai and bi are all objects in clusters a and b.

Complete linkage
Complete linkage is often called the furthest neighbour. 
This linkage technique takes into consideration the largest 
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Figure 3: Representation of a dendrogram acquired by HCA.
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distances calculated between objects from one cluster and 
objects from the other; the two clusters to be joined are 
characterized by the “smallest” largest distance, or

−Complete linkage: max ,i i ia b ��

where ai and bi are all objects in clusters a and b.

Average linkage
A third often used linkage technique is the average linkage, 
which defines the distance between two clusters as an 
average of the single linkage and the complete linkage dis-
tances. The two clusters exhibiting the “smallest” average 
distance are subsequently merged:

Average linkage: mean ,i i ia b−� �

where ai and bi are all objects in clusters a and b.

Ward’s algorithm
Ward’s algorithm is based on the inner squared distance 
of clusters, meaning that two clusters are merged for 
which the lowest increase in total within-group error sums 
of squares is observed:

2
Ward’s algorit ,hm: a b

a b
a b

m m
c c

m m
−

+
��

where ca and cb are the centers of clusters a and b, and ma 
and mb are the number of objects in both clusters.

Centroid linkage
The fifth linkage technique, i.e. centroid linkage, is based 
on the distance between the cluster centers:

Centroid linkage: ,a bc c− ��

where ca and cb are the centers of clusters a and b.
The outcome of an HCA can be very different depend-

ing on the data distribution and the selected similarity 
measure and linkage technique. For exploratory purposes, 
a data set can be studied by using different combinations 
of similarity measures and linkage techniques and by com-
paring the resulting classifications. It should, however, be 
kept in mind that the interpretation of the resulting den-
drograms is rather intuitive (Vandeginste et al. 1998, Smo-
linski et al. 2002, Daszykowski and Walczak 2011, Goodarzi 
et al. 2013, Drab and Daszykowski 2014).

Supervised data analysis

Supervised techniques are featured by the use of addi-
tional information on the samples. Besides the information 

present in the measured fingerprints (i.e. data matrix X), 
a response vector y is used containing the supplemen-
tary information (Massart et al. 1997, Alaerts et al. 2010a, 
Tistaert et al. 2011b). Supervised data analysis is used for 
multivariate regression and classification/discrimination 
purposes; the concept of the latter is shown in Figure 4. 
The main difference between both approaches is the defi-
nition of the m × 1 response vector y (m equals the number 
of acquired fingerprints). When solving a classification 
problem, the response vector y is categorical, meaning 
that y represents the classes of the samples (e.g. genuine 
versus counterfeit or different origins of plants). In case 
of multivariate regression, the information contained in 
y is continuous, i.e. an activity of the samples expressed 
as a value and determined using a reference method (e.g. 
antioxidant capacity of samples). Supervised techniques 
make use of a training or calibration set, consisting of 
samples for which the classes or response values are 
known a priori, to construct the classification or calibra-
tion model (Alaerts et al. 2010a).

Multivariate regression
Multivariate regression models are used to model a prop-
erty of interest, e.g. antioxidant or cytotoxic activity of 
samples, in function of the measured fingerprints. After 
the selection of a calibration set, a regression model is 
constructed, which is subsequently used to predict the 
property of interest for new objects (Alaerts et al. 2010a, 
Tistaert et al. 2011b). Techniques applied for this purpose 
are, among others, multiple linear regression (MLR) and 
partial least squares (PLS).

MLR produces a linear model that describes a quan-
titative property (indicated by the response vector y) by 
means of independent variables (data matrix X). However, 
the application of MLR requires that the number of objects 
m (i.e. fingerprints) is larger than the number of variables 
n. This condition is often not met when analyzing finger-
prints. Therefore, a variant of MLR was developed, i.e. step-
wise MLR, which includes a stepwise selection procedure 

m × n Data matrix X
m × 1

Response
vector y

Supervised data
analysis

Class 1

Class 2

Class 3

e × n Data matrix

f × n Data matrix

g × n Data matrix

e, f, g = No. of objects per class
e + f + g = m

Figure 4: Visualization of the supervised data analysis principle for 
classification purposes.
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to decide on which variables should be included in the 
regression model (Massart et al. 1997, Caetano et al. 2005).

PLS is a regression technique that models the 
response vector y by means of latent variables (so-called 
PLS factors), which are defined in a way to maximize the 
covariance between data matrix X and y. On the basis of 
these latent variables, a vector of PLS regression coef-
ficients can be computed relating the fingerprints of the 
objects to the dependent y values. This vector of regres-
sion coefficients can subsequently be used to predict y for 
unknown objects (Vandeginste et al. 1998, Chemometrics 
in Food Chemistry 2013). PLS was originally developed for 
regression purposes. However, depending on the formula-
tion of response vector y, it can also be used for discrimi-
nation purposes; this technique (explained more in detail 
further on) is then commonly referred to as partial least 
squares-discriminant analysis (PLS-DA). Several variants 
of this regression method have been developed and used 
in literature such as orthogonal projection to latent struc-
tures (O-PLS). O-PLS not only defines PLS factors repre-
senting the maximum covariance between X and y but 
also removes data from the X matrix which is not corre-
lated to y (Vandeginste et al. 1998, Trygg and Wold 2002). 
Uninformative variable elimination-partial least squares 
(UVE-PLS) is a variant of the classic PLS algorithm as well. 
It aims to remove variables that are not more informative 
for modeling than noise, i.e. the so-called uninformative 
variables, in addition to the construction of PLS factors 
(Centner et al. 1996). Partial robust M-regression (PRM) is 
a robust variant of PLS, which diminishes possible nega-
tive influences of the objects on the regression coefficients 
(Serneels et al. 2005, Daszykowski et al. 2007).

Such techniques are often used for modeling in 
the field of Pharmacognosy, as shown in later sections. 
However, in the field of fingerprint analysis of counterfeit 
medicines, only classification and discrimination tech-
niques are applied. Therefore, an in-depth description of 
regression techniques is beyond the scope of this review. 
Multivariate classification and discrimination techniques, 
on the other hand, will be described more in detail in the 
next sections.

Classification and discrimination
The aim of classification and discrimination (often 
referred to as pattern recognition) is to classify samples 
in classes, predefined in the response vector y, based on 
the acquired fingerprints. On the basis of a training set 
with a priori known classification, a classification model 
is constructed which is subsequently validated by an 
independent test set. This test set consists of additional 

objects with known classification and is used to validate 
the predictive ability of the constructed model (Tistaert 
et  al. 2011b). The main difference between classifica-
tion and discrimination techniques lies in the means to 
classify samples. Classification methods result in “soft” 
classification rules allowing samples to be assigned to 
one class, to multiple classes, or to any class; discrimi-
nation techniques construct “hard” classification rules, 
indicating that a sample will always be allocated to only 
one class (Vandeginste et al. 1998, Chemometrics in Food 
Chemistry 2013).

Supervised data analysis in the field of counterfeit 
medicine fingerprinting mostly consists of the use of 
pattern recognition techniques; modeling techniques 
are applied to predict the nature of the analyzed samples 
based on their fingerprints (e.g. genuine versus counter-
feit) (Deconinck et  al. 2013c). Therefore, the most com-
monly applied techniques will be briefly described. More 
detailed information on the considered techniques can be 
found in the corresponding references.

Soft independent modeling of class analogy
Soft independent modeling of class analogy (SIMCA) is a 
classification technique that models each class of objects 
separately by defining the optimal number of PCs (which 
are derived from PCA) required to describe each class indi-
vidually by usage of a cross-validation procedure. Next, 
classification rules are constructed by taking two critical 
values into account: (1) the Euclidean distance towards 
the SIMCA model and (2) the Mahalanobis distance cal-
culated in the space of scores. These two critical values 
determine a restricted space around the included objects. 
The position of a new object is calculated using the scores 
and loadings of the created PCA models. If the object 
is situated within the restricted space, defined by the 
Euclidean and Mahalanobis distances, then the object is 
assigned to that particular class. SIMCA is a soft classifi-
cation method, meaning that an object can be assigned to 
one or more existing classes or to any (Vandeginste et al. 
1998, Practical Guide to Chemometrics 2006, Deconinck 
et al. 2012c, Chemometrics in Food Chemistry 2013).

Classification and regression tree analysis
The classification and regression tree (CART) analysis is a 
supervised non-parametric discrimination technique that 
can be used to solve both classification and regression 
problems, depending on the definition of the response 
vector y. A classification tree is produced, which is used 
to solve classification problems, if y is categorical. When 
y is continuous, a regression tree is created, which can be 
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used to solve regression problems (see the Section Super-
vised data analysis) (Deconinck et al. 2005, 2006).

A CART analysis consists of three steps. The first step 
is the creation of the maximum tree, starting at the tree 
root containing all objects, using a binary split procedure. 
In each step of this splitting procedure, a mother group is 
split in two daughter groups, based on one variable and its 
split value. The most appropriate variable and split value, 
i.e. the variable and the split value resulting in the highest 
decrease in impurity between the mother and the daugh-
ter groups, are selected using an algorithm that consid-
ers all possible variables and split values. This impurity 
can be defined by different split criteria such as the Gini, 
Twoing, and Deviance indexes. The splitting procedure is 
repeated until the maximum tree is created, i.e. the tree in 
which each end node (leaf) contains one object or a prede-
fined number of objects or homogeneous groups (Decon-
inck et al. 2005, 2006, 2012b).

This maximal tree shows overfitting because of over-
growing. Therefore, it is pruned in the second step by 
cutting terminal branches. As a result, several smaller 
and less complex trees are derived from the maximal tree 
(Deconinck et al. 2005, 2006, 2012b).

The final step consists of selecting the optimal tree, 
based on the evaluation of the predictive error by means 
of a cross-validation procedure (Deconinck et  al. 2005, 
2006, 2012b). CART has the advantage of a clear visualiza-
tion and a straightforward interpretation of the acquired 
model because it results in a manifest set of decision rules 
(Ronowicz et al. 2013).

Two variants of the classic CART methodology were 
developed. One variant is actually an unsupervised 
method because no response vector y is included during 
the data analysis. This method is called auto-associative 
multivariate regression trees (AAMRT) and uses the 
explanatory variables as response variables as well. When 
the response vector y consists of more variables (i.e. more 
than one response variable per sample), the second CART 
variant can be used; this is an extended version of CART 
and is called multivariate regression trees. More detailed 
information on both variants is provided by Breiman et al. 
(1984), Questier et al. (2005), and Smyth et al. (2006).

k-Nearest neighbours
k-Nearest neighbours (k-NN), a discrimination technique, 
constructs a classification model by calculating the Euclid-
ean distance between an unknown object and each of the 
objects of the training set. This signifies that if the training 
set includes m samples, then m distances are calculated. 
Subsequently, the k nearest objects to the unknown object 

are selected and a majority rule is applied; the unknown 
object is assigned to the class to which the majority of 
the k neighbouring objects of the training set belong. The 
number of nearest neighbours (k) to be included in the con-
struction of a classification model has to be determined by 
optimization. Several k-NN models are built using different 
values for k. The best model is selected based on a cross-
validation procedure (Vandeginste et  al. 1998, Wehrens 
2011, Chemometrics in Food Chemistry 2013).

Partial least squares-discriminant analysis
PLS-DA aims to differentiate between groups of objects of 
which the group membership is indicated by a response 
vector y containing categorical variables. A PLS-DA model 
is acquired by constructing so-called PLS factors, which are 
linear combinations of the original variables. These varia-
bles are constructed in a way that they represent maximum 
covariance between the original variables and the response 
variable y. To obtain the best performing PLS-DA model, 
its complexity, i.e. the number of PLS factors, is optimized 
using a cross-validation procedure (Wold et al. 2001, Barker 
and Rayens 2003, Daszykowski et al. 2008, Chemometrics 
in Food Chemistry 2013, Deconinck et al. 2014b).

Other techniques
Besides the described classification and discrimination 
techniques, other supervised methods aiming at clas-
sifying samples are also occasionally encountered in lit-
erature. Linear discriminant analysis (LDA) and quadratic 
discriminant analysis (QDA) both define several discrimi-
nant functions to reduce the number of variables. These 
discriminant functions are combinations of the original 
variables; they are defined in a way to separate the classes 
of the objects as optimally as possible. In case of LDA, the 
discriminant functions are linear; when applying QDA, 
the functions are quadratic (Wu et al. 1996, Vandeginste 
et al. 1998). Canonical discriminant analysis (CDA) creates 
a new vector space that maximizes the distances between 
the present classes, thereby generating a better separation 
of the classes compared with the original data space (Ber-
trand et al. 1990, Petrakis et al. 2008).

The support vector machine (SVM) method is a 
machine learning technique that attempts to discriminate 
between classes of samples by constructing a separation 
hyperplane. The most optimal separation hyperplane is 
generated by maximizing the margin between the hyper-
plane and the respective sample classes. This method 
has the advantage of solving both linear and nonlinear 
discrimination problems depending on the used type of 
kernel function (Drucker et al. 1999, Belousov et al. 2002).
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Usage of fingerprints in 
Pharmacognosy

The fingerprint strategy has already proven its useful-
ness in the field of Pharmacognosy for several purposes: 
(1) identification of plants, (2) classification of plants and 
differentiation of related species, (3) stability testing, (4) 
quality control, and (5) prediction of pharmacological 
activities or identification of potential active compounds 
(Deconinck et al. 2013b,c, Goodarzi et al. 2013). Pharma-
cognosy is referred to as the research area that investigates 
medicinal substances derived from plant, animal, and 
mineral materials in their natural, crude, or unprepared 
state and explores naturally occurring structure-activity 
relationships (Kinghorn 2001). The ability of the finger-
printing method to generate a comprehensive view of a 
sample’s composition provides a useful means to analyze 
plants because their complex composition is not only 
unknown but also variable because of several factors such 
as cultivating and harvesting conditions and geographic 
area of cultivation (Goodarzi et al. 2013). Chromatographic 
fingerprinting has been accepted by the WHO as an iden-
tification and qualification technique for herbal products 
(Tistaert et al. 2011b, Goodarzi et al. 2013). Since a com-
prehensive review of the use of fingerprints in the field of 
Pharmacognosy is beyond the scope of this publication, 
only a limited number of exemplary studies demonstrat-
ing the usefulness of multivariate analysis of fingerprints 
in this particular research field are described. The use of 
the fingerprinting strategy for the quality control of plants 
has already been extensively reviewed (Liang et al. 2009, 
2010, Alaerts et  al. 2010a, Jiang et  al. 2010, Song et  al. 
2013, Yang et al. 2013).

Alaerts et  al. (2014) made use of high-performance 
liquid chromatography coupled to a photodiode array 
detector (HPLC-PDA) to acquire fingerprints that were 
subsequently used for the distinction, identification, and 
quality control of four different Artemisia species (Artemi-
sia vulgaris, Artemisia absinthium, Artemisia annua, and 
Artemisia capillaris). These four species could be distin-
guished by PCA, and a reliable prediction model could be 
constructed when applying SIMCA. In addition, samples of 
different quality could be distinguished (Alaerts et al. 2014).

Besides identification, herbal fingerprinting has also 
shown its utility in the classification and differentiation 
of related species. PCA, PP, HCA, and similarity analysis 
by means of correlation coefficients were used to analyze 
fingerprints, acquired by HPLC-PDA, which resulted in a 
reliable discrimination between rhizoma Chuanxiong and 
rhizoma Ligustici (Alaerts et al. 2010b). Viaene et al. (2015) 

compared different discriminant and classification tech-
niques to distinguish between two genera (i.e. Mallotus 
and Phyllanthus) on the one hand and six species (Mal-
lotus apelta, Mallotus paniculatus, Phyllanthus emblica, 
Phyllanthus reticulatus, Phyllanthus urinaria, and Phyllan-
thus amarus) on the other hand, based on HPLC-UV fin-
gerprints. For the aimed binary classification, LDA, QDA, 
and CART generated good results; for the six-class clas-
sification problem, LDA, QDA, and SIMCA resulted in a 
perfect discrimination (Viaene et  al. 2015). The potential 
use of near-infrared (NIR) spectroscopic fingerprints was 
evaluated to determine the origin of Cryptomeria japonica 
varieties growing in southern Brazil. The use of NIR spec-
troscopy in combination with PCA proved sensitive enough 
to detect minor differences in the chemical composition of 
trees from the same species growing in the same location, 
but with different origins (Nisgoski et al. 2016). Zhou et al. 
(2015) used HPLC-PDA fingerprinting for the purpose of 
authenticity testing. Both raw and roasted seeds of Descu-
rainia sophia were analyzed; PCA and PLS-DA proved to 
be suitable to distinguish between both types of seeds. 
Furthermore, fingerprints were measured from the seeds 
of Plantago depressa because these are often used as an 
adulterant for D. sophia; HCA proved to be capable of dis-
tinguishing seeds from both species (Zhou et al. 2015).

As already mentioned, the quality control of plants 
and herbal products is a very important issue, which is 
often addressed by means of fingerprinting. For instance, 
the quality of green tea samples was investigated based 
on a similarity analysis of chromatographic fingerprint 
profiles by Alaerts et  al. (2012). Different correlation and 
distance measures were tested to evaluate their suitability. 
It was shown that similarity analysis based on correlation 
and congruence coefficients could serve as useful tools 
to identify outlying green tea samples, which possibly do 
not meet applicable quality standards (Alaerts et al. 2012). 
Li et  al. (2013) demonstrated that NIR spectroscopic and 
chromatographic fingerprinting methods are effective and 
helpful for the quality control of Lonicerae japonicae flos. 
The quality control of Ganoderma lucidum was performed 
by means of HPLC-PDA fingerprinting in combination 
with PCA, HCA, SIMCA, and PLS-DA by Chen et al. (2008). 
Gas chromatographic (GC) fingerprints were explored for 
quality control purposes of Scutellaria barbata and its 
discrimination from two common adulterants, i.e. Olden-
landia diffusa and Lobelia chinensis (Pan et al. 2011). The 
combination of chromatographic fingerprinting and multi-
variate analysis by PCA, HCA, and MLR were shown to be 
useful for the quality control of Salvia miltiorrhiza (Zhang 
et al. 2015). A strategy for the quality control of Pericarpium 
citri reticulatae and Pericarpium citri reticulatae viride, 
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based on HPLC-PDA fingerprinting and chemometric anal-
ysis by PCA and PLS-DA, was proposed by Yi et al. (2007).

The use of herbal fingerprinting can also aim at pre-
dicting pharmacological activities or identifying potential 
active compounds. An example of the latter was provided 
by Masoum et al. (2015). Gas chromatography-mass spec-
trometry (GC-MS) fingerprints were analyzed by O-PLS, 
which led to the identification of compounds potentially 
responsible for the antioxidative activity of the essential oil 
of Thyme (Masoum et al. 2015). A vast amount of work has 
been performed on predicting the antioxidant capacity of 
green tea extracts based on chromatographic fingerprints. 
Several multivariate regression techniques have been used 
for this particular purpose, such as PLS and UVE-PLS (van 
Nederkassel et al. 2005), PRM (Daszykowski et al. 2007), 
O-PLS, and stepwise MLR (Dumarey et  al. 2008, 2010). 
Another species that is extensively studied in literature 
within this context is Mallotus. O-PLS was performed on 
a set of chromatographic fingerprints acquired for 17 dif-
ferent Mallotus species, and examination of the regression 
coefficients of the acquired calibration model resulted 
in the detection of several peaks, which are potentially 
responsible for the antioxidant capacity (Tistaert et  al. 
2009). Four of these peaks of interest could subsequently 
be identified using HPLC-MS and turned out to be quer-
citrin, kaempferol-3-0-L-rhamnosyl, and mallonanoside A 
and B (Tistaert et al. 2012b). Tistaert et al. (2011a) used two 
dissimilar chromatographic systems to develop finger-
prints of a set of Mallotus samples. To indicate the poten-
tially antioxidant peaks, a multivariate calibration model 
was constructed by applying O-PLS. It was shown that the 
dissimilar chromatographic systems provided comple-
mentary information. Several compounds coeluting on 
one system were separated on the dissimilar system, and 
the corresponding calibration models revealed additional 
information on the contribution of these compounds 
to the antioxidant activity of the samples (Tistaert et  al. 
2011a). These Mallotus extracts were also evaluated for 
their cytotoxic activity. The antiproliferative activity was 
linked to chromatographic fingerprints and analyzed by 
means of O-PLS. The evaluation of the acquired regression 
coefficients led to the recognition of seven potential cyto-
toxic compounds, two of which were identified as mal-
loapelta A and malloapelta B (Tistaert et  al. 2012a). The 
antioxidant capacity of herbal products containing Ginkgo 
biloba extract was investigated by means of chromato-
graphic fingerprints based on which a calibration model 
was created by usage of the regression trees method. This 
model has been shown to be capable of predicting the 
antioxidant activity of Ginkgo biloba products (Ronow-
icz et al. 2013). Also, Turnera diffusa was explored for its 

antioxidant properties by means of multivariate analysis 
of the acquired HPLC-PDA fingerprints. The antioxidant 
capacity could be predicted based on PLS regression. 
Moreover, peaks, resulting from compounds suspected to 
be responsible for the antioxidant property, could be des-
ignated on the fingerprints by exploring the loading plots 
and variable importance in projection (Lucio-Gutierrez 
et al. 2012). Islam et al. (2012) analyzed chromatographic 
fingerprints of Epimedium koreanum extract by means of 
CDA; the acquired model allows to predict the estrogenic 
activity of the analyzed samples.

Fingerprints in the analysis of 
counterfeit medicines

Many published studies concerning the analysis of coun-
terfeit medicines are based on the identification and 
quantification of the APIs. This approach has the major 
disadvantage that products can be considered relatively 
safe, for they might contain the correct API in the correct 
dosage, while in actual fact potentially toxic second-
ary components can be present, such as impurities and 
residual solvents (Deconinck et  al. 2013c). As shown in 
the previous sections, fingerprints have proven their use-
fulness for the classification of plants. This application 
could provide an interesting strategy for the detection and 
characterization of counterfeit medicines as well because 
it can meet the limitations faced when analyzing only the 
present APIs. Several analytical techniques have been 
tested and, consequently, gained their place in the array 
of techniques available for the detection of counterfeit 
medicines. Both chromatographic and spectroscopic tech-
niques, aiming at acquiring characteristic fingerprints, 
have been developed and described in literature. The next 
sections provide a brief overview of studies using finger-
prints and chemometric analysis in the field of counterfeit 
medicine detection.

Spectroscopic techniques

Spectroscopic techniques are featured by several interest-
ing advantages; they are fast, a minimum or no sample 
preparation is required, some of them are nondestructive, 
and they provide fingerprints of the entire sample matrix. 
The analytical setup of spectroscopic fingerprints is typi-
cally to acquire a characteristic fingerprint from both 
genuine and counterfeit medicines and compare them 
using chemometric approaches (Scafi and Pasquini 2001, 
Deisingh 2005, Deconinck et al. 2013c).
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Near-infrared spectroscopy

Applications in the NIR region are gaining popularity, as 
demonstrated by several reviews (Reich 2005, Luypaert 
et  al. 2007, Roggo et  al. 2007, de Bleye et  al. 2012). NIR 
spectroscopy allows easy analysis of excipients, which 
constitute the bulk of a tablet. It is possible that counterfeit 
medicines contain the correct API in the correct dosage, 
but the excipient composition will seldom be the same as 
the genuine sample. This feature makes NIR very valuable 
for the analysis of counterfeit medicines. Furthermore, 
NIR also allows to explore physical properties of tablets/
capsules (Deisingh 2005). The usefulness of NIR spectros-
copy is demonstrated by several published studies.

Vredenbregt et  al. (2006) made use of NIR spec-
troscopy to analyze genuine, counterfeit and imitation 
samples of Viagra® (Pfizer, New York City, USA). Based on 
PCA analysis and wavelength correlation of the acquired 
spectra, it was possible to check the homogeneity of a 
batch to distinguish counterfeits and imitations from 
genuine Viagra®, to screen for the presence of sildena-
fil citrate, and to detect whether similar samples have 
already been analyzed in the past (Vredenbregt et  al. 
2006). A study testing NIR spectroscopy for its ability to 
discriminate between genuine and counterfeit artesunate 
antimalarial tablets was published by Dowell et al. (2008). 
PLS has been demonstrated to generate a perfect distinc-
tion between genuine and counterfeit samples. Based on 
a PLS regression model, the wavelengths which mostly 
influence the acquired discrimination were identified 
(Dowell et al. 2008). NIR spectroscopy was also tested for 
its discriminating abilities by Storme-Paris et  al. (2010). 
During this study, hard capsules containing fluoxetine 
and tablets containing ciprofloxacin were used as stand-
ard reference. First, several foreign generic products were 
analyzed. The acquired results showed that the foreign 
generics could be distinguished from the standard refer-
ences by SIMCA. Afterwards, several counterfeit and imi-
tation samples were included in the study. PCA turned out 
to be capable of differentiating the genuine samples from 
the counterfeit/imitation ones (Storme-Paris et al. 2010). 
Genuine and counterfeit Viagra® (Pfizer, New York City, 
USA) and Cialis® (Eli Lilly, Indianapolis, USA) tablets were 
analyzed using NIR spectroscopy by the authors’ research 
group (Custers et al. 2016c). In first instance, tablets were 
removed from the blister and measured as a whole. Both 
SIMCA and PLS-DA were capable of making a perfect dis-
tinction between genuine and counterfeit samples for 
both pharmaceuticals based on the acquired NIR spectra. 
Afterwards, all tablets were measured a second time, 
leaving the samples in the blister, thereby keeping the 

blister intact. Even in this analytical setup, perfect models 
differentiating between genuine and counterfeit tablets 
were acquired (Custers et al. 2016c).

Sabin et al. (2013) used NIR chemical imaging (NIR-
CI) for the characterization of tablets containing sildenafil 
citrate derived from various sources. The authors made 
use of multivariate curve resolution-alternating least 
squares (MCR-ALS), which decomposes the hyperspectral 
data, i.e. data matrix X, into the product of a matrix con-
taining the concentration profiles and a matrix consist-
ing of optimized spectra (Tauler 1995, Jaumot et al. 2005, 
Sabin et  al. 2013). They showed that MCR-ALS could be 
successfully applied to distinguish genuine from counter-
feit tablets (Sabin et al. 2013).

A four-stage concept to differentiate between genuine 
and counterfeit antihypertensive products based on 
NIR-CI was developed by Puchert et  al. (2010). The four 
stages comprised (1) visual inspection, (2) PCA analysis 
of the NIR-CI data, (3) classification of samples based 
on PLS, and (4) multivariate linear image signature data 
analysis, which consisted of a summation and unfolding 
of the multidimensional data. This study showed a higher 
variability in the spatial distribution of the API and some 
excipients, thereby allowing a clear distinction between 
genuine and counterfeit samples (Puchert et al. 2010).

Attenuated total reflectance-Fourier transform IR and 
mid-IR spectroscopy

Mid-IR spectroscopy was explored for its discriminat-
ing abilities by our research group (Custers et al. 2016c). 
The coating of all samples, i.e. genuine and counterfeit 
Viagra® (Pfizer, New York City, USA) and Cialis® (Eli Lilly, 
Indianapolis, USA) samples, was accurately scratched 
off the tablets and analyzed using IR spectroscopy in the 
mid-IR region (4000–400 cm−1). Genuine samples could 
be differentiated perfectly from counterfeit samples using 
PLS-DA and SIMCA (Custers et al. 2016c).

To discriminate between authentic and counterfeit 
Viagra® (Pfizer, New York City, USA) and Cialis® (Eli Lilly, 
Indianapolis, USA) samples, Ortiz et al. (2013a) measured 
the respective fingerprints by means of attenuated total 
reflectance-Fourier transform infrared (ATR-FTIR) spectros-
copy. For both data sets, a successful distinction between 
genuine and counterfeit medicines was obtained by using 
PCA. In addition, the similarity match method was applied 
to demonstrate that a mixture of powders from a common 
source might have been used to manufacture counter-
feit tablets from distinct seizures (Ortiz et al. 2013a). ATR-
FTIR was also evaluated for its discriminating abilities 
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by Deconinck et al. (2014c). One of the most encountered 
adulterants when analyzing herbal or dietary supplements 
intended for slimming purposes is sibutramine. Based on 
the ATR-FTIR analysis of these kinds of slimming aids and 
the subsequent analysis of the acquired fingerprints by 
means of k-NN, all adulterated dietary supplements could 
be detected (Deconinck et al. 2014c). Anzanello et al. (2013) 
proposed a method to reduce the number of ATR-FTIR 
wavelengths (variables) in order to ameliorate the classifi-
cation of genuine and counterfeit Viagra® (Pfizer, New York 
City, USA) and Cialis® (Eli Lilly, Indianapolis, USA) samples 
since the high amount of wavelengths might reduce the 
performance of chemometric techniques. First, PCA was 
applied and a variable importance index was included. 
Next, a backwards iterative procedure of variable elimi-
nation was started, which was guided by the importance 
index. After each elimination step, a k-NN model was con-
structed by classifying samples as genuine or counterfeit, 
and the respective classification accuracy was monitored. 
Their results have shown that for both the Viagra® (Pfizer, 
New York City, USA) and the Cialis® (Eli Lilly, Indianapolis, 
USA) data sets, an increase of classification accuracy could 
be obtained when eliminating low-informative wavelengths 
(Anzanello et al. 2013). Our research group also explored the 
usefulness of ATR-FTIR in the field of counterfeit medicines 
detection (Custers et al. 2015). ATR spectra were measured 
for genuine and counterfeit samples of Viagra® (Pfizer, New 
York City, USA) and Cialis® (Eli Lilly, Indianapolis, USA), 
generic Viagra® samples, and several placebo samples, 
which were previously shown to contain no sildenafil or 
tadalafil. SIMCA enabled the construction of a model, 
which discriminated between samples containing only  
(1) sildenafil or (2) tadalafil, (3) both sildenafil and tada-
lafil, and (4) none of both APIs. Furthermore, the SIMCA 
model could be expanded to a seven-class model, addition-
ally discriminating between genuine Viagra® and Cialis® 
and generic products of Viagra® as well (Custers et al. 2015).

Raman spectroscopy

Raman spectroscopy has gained its place in the array of 
techniques used for pharmaceutical analysis (Vankeirs-
bilck et al. 2002). Recently, a systematic study exploring 
the benefits and limitations of Raman spectroscopy com-
bined with chemometric techniques for analyzing phar-
maceutical samples was performed by Neuberger and 
Neusüß (2015). This study was conducted based on a large 
set of model tablets differing in API, excipients, colour dye, 
or coating. It was shown that Raman spectroscopy, com-
bined with chemometric analysis, is a powerful and fast 

tool for characterizing samples suspected to be counter-
feit. The observed suitability of Raman spectroscopy is due 
to the fact that the acquired Raman spectra are molecular 
fingerprints that are strongly associated with the chemical 
composition of the samples. Therefore, samples with dif-
fering coatings or excipients and varying amounts of API 
can easily be distinguished (Neuberger and Neusüß 2015).

de Veij et al. (2008) proposed Raman spectroscopy as 
a fast and reliable method for the detection of counterfeit 
Viagra® (Pfizer, New York City, USA) tablets. Raman spectra 
were measured from genuine and counterfeit samples and 
subsequently analyzed using PCA and HCA. It could be 
concluded that a combined approach of PCA and HCA with 
Raman spectroscopy allows an automated approach to dis-
criminate between genuine and counterfeit Viagra® tablets 
(de Veij et  al. 2008). Raman microscopy imaging was 
applied on a sample set consisting of genuine, counterfeit, 
and imitation products of Viagra® (Pfizer, New York City, 
USA). The full spectra were used as fingerprints in a chem-
ometric analysis consisting of PCA, k-NN, and SIMCA. Both 
k-NN and SIMCA were able to generate models that per-
fectly described and predicted the genuine/illegal nature 
of all samples (Sacre et al. 2011b). Based on Raman spec-
troscopy, an analytical strategy to detect and classify coun-
terfeit medicines was developed by Degardin et al. (2011). 
The first step of the analytical strategy enables the identifi-
cation of pharmaceutical preparations and the detection of 
their counterfeits based on SVMs and correlation testing. 
In case of detecting a counterfeit, the second step consists 
in its chemical profiling. This second step made use of PCA 
and correlation distance measures to classify samples in 
one of the counterfeit classes, which are defined based 
on the chemical composition of the respective constitu-
ent counterfeits (Degardin et al. 2011). Raman microscopy 
was successfully applied by Kwok and Taylor (2012a) to 
discriminate genuine from counterfeit Cialis® (Eli Lilly, 
Indianapolis, USA) tablets. Multivariate curve resolution 
was used to analyze the acquired spectra and to identify 
the present APIs and excipients. Comparison of the spectra 
acquired for genuine and counterfeit samples revealed both 
similarities and dissimilarities regarding the identity of the 
excipients, the quantity of API, and the distribution of the 
components (Kwok and Taylor 2012a). Furthermore, the 
authors used Raman spectroscopy and two-dimensional 
correlation spectroscopy to analyze the packages of both 
genuine and counterfeit Cialis® (Eli Lilly, Indianapolis, 
USA) samples (Kwok and Taylor 2012b). The study focused 
on the white and yellow colour regions from which differ-
ent components could be distinguished. These differences 
in components enable a clear distinction between genuine 
and counterfeit samples (Kwok and Taylor 2012b). Lu et al. 
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(2013) tested a portable Raman spectroscopy system to dis-
tinguish between genuine and counterfeit hypoglycemic 
tablets. The combination of Raman spectroscopy with data 
analysis by means of local straight-line screening (LSLS) 
proved to be a successful high-throughput screening 
approach (Lu et al. 2013). More information about the used 
LSLS methodology can be found in the studies of Lu et al. 
(2007) and Zhu et al. (2009).

Nuclear magnetic resonance spectroscopy

NMR spectroscopy is often used in the analysis of coun-
terfeit medicines because of its capability to elucidate 
the structure of unknown molecules such as impurities 
and structural analogues of the APIs (Holzgrabe and 
Malet-Martino 2011). Analogues are the result of minor 
structural modifications of the parent molecule (i.e. an 
approved API). Counterfeiters make use of such analogues 
in an attempt to circumvent legal prosecutions (Poon et al. 
2007). Furthermore, NMR allows to perform trace analysis 
and semiquantitative analyses. When analyzing counter-
feit medicines, mostly 1H and 13C NMR spectroscopy are 
used (Holzgrabe and Malet-Martino 2011). Its use in the 
field of pharmaceutical analysis has been reviewed by 
Holzgrabe and Malet-Martino (2011) and Holzgrabe et al. 
(2005). However, NMR is characterized by some notable 
disadvantages; it requires not only very expensive equip-
ment but also well-trained scientists to operate the equip-
ment and to interpret the data (Deconinck et al. 2013c).

Silvestre et  al. (2009) used quantitative isotopic 13C 
NMR to define site-specific isotopic profiles of aspirin and 
paracetamol. Their study has shown that isotopic profil-
ing can have its merit in detecting counterfeiting and 
patent infringement in the pharmaceutical industry. 13C 
NMR was also used by Bussy et al. (2011) to investigate the 
isotopic fingerprints of different ibuprofen samples. This 
strategy may be used to characterize batch-to-batch pro-
duction, specific manufacturing processes, and the origin 
of raw materials used in the process.

Combination of spectroscopic techniques

An approach that is increasingly becoming popular in the 
analysis of counterfeit medicines is to combine different 
spectroscopic techniques. The combination of different 
spectra can improve the classification and predictive prop-
erties of the respective models compared with those based 
on only one type of spectrum. The combination of multiple 
spectroscopic techniques could be a valuable approach 

in the fight against counterfeit medicines because the 
quality of counterfeit products is rising (Deisingh 2005, 
Deconinck et al. 2013c,  Neuberger and Neusüß 2015). An 
example of such a study is provided by Sacre et al. (2010). 
A set of genuine, counterfeit, and imitation samples of 
both Viagra® (Pfizer, New York City, USA) and Cialis® (Eli 
Lilly, Indianapolis, USA) were analyzed using Raman spec-
troscopy, NIR spectroscopy, and FTIR spectroscopy in the 
mid-IR region. The acquired fingerprints were analyzed 
using PLS-DA. For the Viagra® set, the best discrimination 
between genuine and counterfeit samples was acquired 
when combining the fingerprints from FTIR and NIR spec-
troscopy; the combination of NIR and Raman spectroscopy 
provided the best results for the Cialis® data set. It could 
be concluded that combining spectra from different tech-
niques improved the classification and predictive proper-
ties of the models compared with the models calculated 
based on only one type of spectrum (Sacre et  al. 2010). 
Deconinck et al. (2012b) made use of these data sets as well 
and analyzed them by means of CART. For both the Viagra® 
(Pfizer, New York City, USA) and the Cialis® (Eli  Lilly, 
Indianapolis, USA) sets, each data set, acquired by the 
three spectroscopic techniques, is analyzed multiple times: 
(1) all three data sets individually, (2) all possible pairs of 
the data sets, and (3) all three data sets combined. It was 
not only attempted to differentiate between genuine and 
counterfeit medicines; counterfeit samples were also clas-
sified according to their classification defined by the Dutch 
National Institute for Public Health and the Environment 
(RIVM). The CART models obtained based on FTIR and NIR 
spectroscopic analysis of the Viagra® samples resulted in a 
good classification of the counterfeit samples. Furthermore, 
for both models, a perfect distinction between genuine and 
counterfeit samples was obtained. The combination of all 
three spectroscopic data sets did not result in an ameliora-
tion of the acquired classification models. For the Cialis® 
data set, the best CART model was acquired by combining 
the NIR and the Raman spectra (Deconinck et al. 2012b). 
Li et al. (2014) published an interesting study showing the 
merit of combining multiple spectroscopic techniques as 
well. They demonstrated the usefulness of Raman and 
NIR spectroscopy for the identification of anisodamine 
tablets. Raman spectroscopy proved useful for identifying 
counterfeit tablets using the similarity coefficient method; 
NIR spectroscopy proved capable of differentiating tablets 
originating from different manufacturing plants based on 
a PLS-DA model. Another published study compared NIR 
and Raman spectroscopy as rapid screening methods to 
distinguish genuine from counterfeit Lipitor®  (Pfizer, New 
York City, USA). PLS-DA analysis of the generated profiles 
has shown that both spectroscopic techniques are suitable 
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for the aimed differentiation. Moreover, PLS-DA models 
based on NIR and Raman fingerprints also proved capable 
of distinguishing between counterfeits containing either 
atorvastatin or lovastatin (de Peinder et al. 2008). da Silva 
Fernandes et al. (2012) have shown that combining chemo-
metric analysis of spectra acquired by NIR or fluorescence 
spectroscopy is a powerful means to detect tablets adulter-
ated with glibenclamide in a nondestructive way. SIMCA 
and PLS-DA generated a perfect classification based on the 
NIR data. Unfolded PLS-DA showed a 100% correct dis-
crimination using the fluorescence spectra.

Other spectroscopic techniques are also found in liter-
ature; for instance, the measurement of characteristic fin-
gerprints of counterfeit medicines by X-ray fluorescence 
spectrometry and subsequent analysis by chemometric 
tools is described by Ortiz et  al. (2012). Isotopic ratios, 
acquired by means of isotope-ratio mass spectrometry, 
and subsequent analysis by chemometrics were evaluated 
as a tool for discriminating APIs originating from differ-
ent geographical areas or synthetic processes (Deconinck 
et al. 2008). Rodomonte et al. (2010) made use of color-
imetry to analyze and compare the packaging of genuine 
and counterfeit samples of Viagra® (Pfizer, New York City, 
USA), Cialis® (Eli Lilly, Indianapolis, USA), and Levitra® 
(Bayer, Leverkusen, Germany). A combination of image 
processing and statistical analysis was used by Jung 
et al. (2012) to distinguish between genuine and counter-
feit samples of Viagra® (Pfizer, New York City, USA) and 
Cialis® (Eli Lilly, Indianapolis, USA).

Chromatographic techniques

Chromatographic techniques are often used for coun-
terfeit fingerprinting as well, owing to its widespread 
use and standard availability in nearly all laboratories 
for medicinal control. These techniques generate highly 
informative fingerprints since they spread the information 
about the chemical composition of a sample over time, 
thereby allowing compounds to be individually detected 
and revealing additional information (such as quantita-
tive or structural information) depending on the coupled 
detector (Deconinck et al. 2013c).

Liquid chromatography

LC has certain advantages that make it highly suitable for 
fingerprint analysis. Overall, it is easy to operate, and it 
allows different analytical setups (e.g. reverse-phase chro-
matography, hydrophilic interaction chromatography, 

and ion-exchange chromatography), which enables 
highly different analytes to be analyzed. Furthermore, this 
technique is characterized by high resolution, selectivity, 
and sensitivity (Deconinck et al. 2013c).

Sacre et  al. (2011a) performed a study during which 
impurity fingerprints of genuine, counterfeit, and imitation 
products of Viagra® (Pfizer, New York City, USA) and Cialis® 
(Eli Lilly, Indianapolis, USA) were measured using HPLC-
PDA and analyzed by means of chemometrics (i.e. k-NN and 
SIMCA). It was shown that k-NN results in suitable models 
capable of predicting the genuine or counterfeit nature of 
samples. Chromatographic fingerprints were also recorded 
for a set of genuine and counterfeit Viagra® (Pfizer, New 
York City, USA) and Cialis® (Eli Lilly, Indianapolis, USA) 
samples by Deconinck et al. (2012c). These fingerprints were 
subsequently evaluated for their use in the detection and 
classification of genuine and counterfeit medicines based 
on exploratory and modeling techniques. Besides dif-
ferentiation between genuine and counterfeit medicines, 
this study also focused on differences between classes of 
counterfeit samples as defined by RIVM. PP revealed dif-
ferences between genuine and counterfeit medicines; dif-
ferences among the distinct groups of counterfeit samples 
were disclosed by HCA. SVM and SIMCA resulted for both 
sample sets in the best models that were able to generate 
a perfect discrimination between genuine and counterfeit 
medicines and high correct classification rates for the clas-
sification in the different counterfeit classes (Deconinck 
et al. 2012c). The chemometric treatment of HPLC finger-
prints has also shown its usefulness to link paracetamol-
containing drugs to their synthesis pathway. Paracetamol 
was extracted from the pharmaceutical formulation and 
subsequently analyzed using trace-enrichment HPLC. 
The analysis of the acquired fingerprints by PP, HCA, and 
AAMRT led to the successful distinction between four 
different synthesis pathways. This study shows that the 
chemometric analysis of impurity fingerprints can have 
its merit in the detection of patent infringement (Dumarey 
et al. 2009). Schneider and Wessjohann (2010) made use 
of HPLC-UV and HPLC-MS/MS to obtain impurity profiles 
of Xenical® (Roche, Basel, Switzerland) and two of its 
generic products [Cobese® (Ranbaxy Laboratories Limited,  
New Delhi, India) and Orsoten® (KRKA, Novo Mesto, Slo-
venia)]. Their study has shown that the generic formula-
tions contain higher levels of impurities than the original 
product. Impurity profiles from morphine samples, derived 
from different origins, were measured by Acevska et  al. 
(2015) using the HPLC-PDA method described in the Euro-
pean Pharmacopoeia for the evaluation of “related sub-
stances” and an own developed HPLC-PDA-MS method. 
However, the latter proved to be more suitable because 
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it allows unambiguous identification of the impurities. 
PCA and HCA resulted in distinct clusters of the morphine 
samples according to their origin. Using O-PLS, a discrimi-
nation between the different classes was obtained, thereby 
allowing the identification of the origin of the morphine 
samples and, accordingly, revealing falsifications of these 
products (Acevska et al. 2015). Our research group meas-
ured impurity profiles of genuine and counterfeit samples 
of Viagra® (Pfizer, New York City, USA) and Cialis® (Eli 
Lilly, Indianapolis, USA) and generic products of Viagra® 
by means of HPLC-PDA and HPLC-MS (Custers et  al. 
2016a,b). Both types of fingerprints, i.e. PDA and MS fin-
gerprints, were tested individually and in combination for 
their discriminating properties. For both the Viagra® and 
the Cialis® data set, good diagnostic models were already 
acquired based on the two types of fingerprints separately 
using either k-NN, SIMCA or PLS-DA. However, taking all 
three modeling techniques into account, the combination 
of PDA and MS fingerprints resulted in less classification 
errors between genuine/generic and counterfeit medicines 
compared with the PDA and MS data separately (Custers 
et al. 2016a,b).

Also, ultraperformance liquid chromatography 
(UHPLC) was tested in the field of counterfeit medicine 
fingerprinting. Ortiz et al. (2013b) analyzed both genuine 
and counterfeit samples of Viagra® (Pfizer, New York City, 
USA) and Cialis® (Eli Lilly, Indianapolis, USA) by means 
of UHPLC coupled to MS. Based on PCA and HCA, they 
demonstrated UHPLC-MS to be a valuable tool to differen-
tiate between genuine and counterfeit samples. Moreover, 
samples could also be grouped in five classes depending 
on the API content.

Gas chromatography

Although GC is widely available, its use as a fingerprinting 
method is rather limited. However, GC has proven its use-
fulness for detecting volatile compounds, such as residual 
solvents, in counterfeit medicines (Deconinck et al. 2013c).

The authors’ research group developed and validated 
a headspace GC-MS method to detect and quantify resid-
ual solvents in counterfeit medicines. This method was 
shown to be fast and suitable for routine analysis, and 
only limited sample preparation was required (Decon-
inck et al. 2012a). It was subsequently applied to a set of 
genuine and counterfeit Viagra® (Pfizer, New York City, 
USA) and Cialis® (Eli Lilly, Indianapolis, USA) samples, 
which has shown that all counterfeit samples have higher 
residual solvent content compared with the genuine 
samples. In addition, the presence of toxic residual 

solvents, such as dichloromethane and carbon tetrachlo-
ride, was detected in several counterfeit samples (Decon-
inck et al. 2013a). The chromatograms, acquired for this 
sample set, were subsequently used as fingerprints in a 
chemometrical data analysis aiming at classifying coun-
terfeit samples based on their residual solvent content. 
This study demonstrated that suitable and reliable diag-
nostic models can be obtained based on SIMCA; coun-
terfeit samples containing carbon tetrachloride can be 
distinguished from samples containing only ethanol or 
2-propanol. Therefore, it was shown that GC-MS finger-
prints combined with chemometric analysis can result in 
a suitable prediction model, which gives a prime notion 
of the public health risks counterfeit products might pose 
(Custers et al. 2014).

Combination of spectroscopic and separation 
techniques

Anzanello et  al. (2014) tested several analytical methods 
and chemometric techniques (i.e. PCA, SVM, and k-NN) 
to identify which analytical techniques provide the most 
relevant data to distinguish genuine from counterfeit 
medicines. These techniques were tested on a sample set 
consisting of genuine and counterfeit Viagra® (Pfizer, New 
York City, USA) and Cialis® (Eli Lilly, Indianapolis, USA) 
samples. The included analytical methods were physical 
profiling, X-ray fluorescence, direct infusion electrospray 
ionization mass spectrometry, UHPLC coupled to MS, and 
ATR-FTIR. Based on this analytical setup, the authors 
found UHPLC-MS, physical profiling and ATR-FTIR to 
yield the highest classification accuracy (Anzanello et al. 
2014). A strategy for the classification of counterfeit medi-
cines was proposed by Been et al. (2011). NIR and Raman 
spectroscopy were used to establish a database contain-
ing the spectra of both counterfeit and genuine samples. 
All samples were analyzed by GC-MS and FTIR as well to 
determine the respective chemical profiles. Based on the 
acquired spectra and the chemical profiles, unsupervised 
chemometric techniques were used to identify classes of 
counterfeits which were subsequently used in the super-
vised data analysis. An approach based on distance meas-
ures and receiver operating characteristics curves proved 
to be most successful (Been et al. 2011). Rodionova et al. 
(2010) tested NIR spectroscopy, GC-MS, HPLC-PDA-MS and 
capillary electrophoresis coupled to UV aiming at differen-
tiating between genuine and counterfeit ampoules of dexa-
methasone. The acquired NIR spectra were analyzed using 
PCA and SIMCA, and this combination was shown to be 
valuable to distinguish genuine ampoules from counterfeit 
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ones. Of the tested separation techniques, all methods, but 
GC-MS, revealed differences in impurities, thereby allow-
ing to differentiate between both types of ampoules (Rodi-
onova et al. 2010).

Practical application of counterfeit 
fingerprinting: investigation of 
common sources
Several studies included in the overview of counterfeit 
medicine fingerprinting show a very useful applica-
tion of fingerprinting, i.e. the investigation of potential 
common sources of counterfeit and illegal pharmaceuti-
cals. As already mentioned in the Introduction section, 
medicine counterfeiting is a global problem which is most 
likely fuelled by a structured criminal industry consist-
ing of manufacturers, wholesalers, distributors and local 
sellers (Degardin et al. 2014). As a consequence, there is 
a substantial possibility that among the large amounts of 
seized counterfeit and illegal medicines, several products 
are derived from common sources. Several analytical tech-
niques have already been used to investigate the sources 
of counterfeit medicines. Ortiz et  al. (2013a) showed by 
means of ATR-FTIR that powders from a common source 
might have been used in the manufacturing of counterfeit 
tablets from distinct seizures. 13C NMR was also used to 
explore the origin of raw materials used in the manufac-
turing process of different ibuprofen samples (Bussy et al. 
2011). Another technique, used in this research context, 
was isotope-ratio mass spectrometry, which enabled to 
discriminate APIs originating from different geographi-
cal areas (Deconinck et al. 2008). Dumarey et al. (2009) 
analyzed several paracetamol-containing samples by 
means of trace-enrichment HPLC, which showed that 
the acquired fingerprints reveal information about the 
underlying synthesis pathways. Information of synthesis 
pathways could reveal cases of patent infringement and/
or illegal production of APIs. The same separation tech-
nique, coupled to MS, was used by Acevska et al. (2015) to 
acquire impurity fingerprints of morphine samples, which 
allow the identification of the origin of the considered 
samples and, accordingly, revealing falsifications.

This mode of working with fingerprints provides 
exceptionally interesting information about counterfeit 
and illegal medicines because these kinds of data are 
particularly useful to support competent authorities and 
police/customs services charged with closing down the 
distribution of counterfeit medicines.

Discussion and conclusion

The aim of this review was to provide a general overview 
of the role of fingerprints and their multivariate analy-
sis in the detection of counterfeit medicines. It has been 
shown that the fingerprinting approach is a valuable tool 
for the analysis of counterfeit and illegal pharmaceuticals. 
Both chromatographic and spectroscopic techniques have 
been proven useful for this purpose. Fingerprints allow 
to discriminate genuine medicines from counterfeit ones; 
depending on the used analytical technique, fingerprints 
identify and quantify APIs and other predominant signals. 
Furthermore, they provide a complete image of the product.

Each of these techniques is featured by their respec-
tive advantages and disadvantages. Spectroscopic tech-
niques, for instance, are a “whole sample approach” 
which can be both an advantage and a disadvantage. The 
advantage is that by means of multivariate data analysis, a 
spectrum of a counterfeit medicine can easily be compared 
with that of a genuine, thereby allowing a fast discrimina-
tion between genuine and counterfeit pharmaceuticals. 
The disadvantage of this approach is that when aiming at 
detecting certain compounds, the respective compounds 
need to be present in a considerable amount. Furthermore, 
the matrix of a sample can mask the compound of interest 
or possibly interferes with its detection. However, it should 
be mentioned that when measuring fingerprints, the men-
tioned disadvantage is not very significant because one 
is generally interested in the entire profile and not in the 
presence of specific compounds. When analyzing adulter-
ated samples, the mentioned disadvantage does reduce 
the applicability of spectroscopic techniques because, in 
this particular case, one is interested in the presence and 
quantification of certain compounds. Notwithstanding, 
spectroscopic techniques are fast, some of them are non-
destructive, and no or little sample preparation is required. 
Therefore, spectroscopic techniques remain very useful 
tools in the fingerprint analysis of counterfeit medicines.

The comparison of the different spectroscopic tech-
niques shows that Raman spectroscopy, alone or in com-
bination with other spectroscopic techniques, is a very 
widely applied technique. This can be attributed to the 
fact that Raman is more specific for API and chemical 
content compared with other spectroscopic techniques. 
The information obtained by Raman is due to fundamen-
tal vibrational modes, especially for aromatic compounds. 
Furthermore, Raman is also characterized by high peak 
resolution (Degardin et al. 2011).

Chromatographic techniques have proven useful for 
the fingerprint analysis of counterfeit pharmaceuticals 
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as well. By separating the compounds of a sample, each 
compound can be detected individually, which generates 
highly informative fingerprints. The disadvantages of such 
techniques are that they are destructive and more time con-
suming compared to spectroscopic techniques. However, 
separation techniques are more suitable when one wants 
to identify and quantify certain signals present in the fin-
gerprint. Therefore, it is necessary to previously reflect on 
what information one wants to acquire and select an appro-
priate technique in function of this information needed 
since chromatographic and spectroscopic techniques both 
have their respective advantages and disadvantages.

When analyzing fingerprints, proper data analysis 
is indispensable to extract useful information from the 
acquired data. Chemometrics (multivariate analysis) pro-
vides the means to perform suitable analysis of the large 
amounts of data, which fingerprints very often constitute. 
However, chemometrics include a large variety of tech-
niques for data preprocessing, exploratory pattern recog-
nition and supervised pattern recognition. It is important 
to select appropriate techniques; therefore, a good knowl-
edge of current techniques is necessary.

To conclude, both spectroscopic and chromatographic 
techniques have their merit in the fingerprint analysis 
of counterfeit medicines. However, which technique is 
best used depends on the purpose of the study. If one 
attempts to make a simple distinction between genuine 
and counterfeit medicines, IR spectroscopic techniques 
might suffice. If, however, one wants to obtain additional 
information, such as identification of APIs or structural 
information, one probably opts for the use of separation 
techniques, often coupled to MS or NMR.

Unfortunately, despite all efforts to tackle the distri-
bution of counterfeit medicines and methods described 
in literature to distinguish genuine from counterfeit phar-
maceuticals, the presence of the latter cannot be entirely 
excluded. Therefore, authorities, health practitioners and 
patients should remain vigilant, and patients should be 
discouraged to purchase their medicines from dubious 
sources. As a consequence, the development of efficient 
analytical techniques for the detection and risk evalua-
tion of counterfeit medicines should continue. These tech-
niques play a major role in supporting health authorities 
and in fighting pharmaceutical crime.
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