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Abstract: Rice is the main staple food after wheat for
more than half of the world’s population in Asia. Apart
from carbohydrate source, rice is gaining significant
interest in terms of functional foods owing to the presence
of aromatic compounds that impart health benefits by
lowering glycemic index and rich availability of dietary
fibers. The demand for aromatic rice especially basmati
rice is expanding in local and global markets as aroma is
considered as the best quality and desirable trait among
consumers. There are more than 500 volatile aromatic com-
pounds (VACs) vouched for excellent aroma and flavor in
cooked aromatic rice due to the presence of aromatic hydro-
carbons, aldehydes, phenols, alcohols, ketones, and esters.
The predominant VAC contributing to aroma is 2 acetyl-1-
pyrroline, which is commonly found in aerial parts of the

crop and deposits during seed maturation. So far, litera-
ture has been focused on reporting about aromatic com-
pounds in rice but its extraction, characterization, and
quantification using analytical techniques are limited.
Hence, in the present review, extraction, characterization,
and application of aromatic compound have been eluci-
dated. These VACs can give a new way to food processing
and beverage industry as bioflavor and bioaroma com-
pounds that enhance value addition of beverages, food,
and fermented products such as gluten-free rice breads.
Furthermore, owing to their nutritional values these VACs
can be used in biofortification that ultimately addresses the
food nutrition security.

Keywords: VACs, 2-AP, biofortification, Oryza sativa, nutra-
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1 Introduction

Rice is the main staple food commodity after wheat and
maize in many parts of the Asian countries, which is more
than 90% global rice consumption rate [1]. Being an
important energy and nutrient source in the form of car-
bohydrate, rice is additionally known for its excellent
sweet aroma. Among the various rice types, aromatic
rice received wider popularity in Asia and maximum
acceptance in the East Asia, European countries, and
USA [2–4]. Aromatic rice cultivars have secured the prime
position in Indian and global market [5]. Its characteristics
such as pleasant, sweet aroma and superior grain quality
(chemical and physical properties) are the reasons for con-
sumer preference, higher market value, and export rev-
enues [6–8]. The standard market price can improve the
socioeconomic condition of farmers in developing countries
such as India and Pakistan, which are involved in growing
quality aromatic rice. There are a number of locally adapted
small tomedium size quality aromatic rice cultivars in Asian
countries with mild to strong flavor and fragrance [9–12]
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due to the presence of volatile aromatic compounds (VACs).
These VACs were synthesized by different biochemical and
metabolic pathways [5,13,14].

In the literature, more than 500 aromatic compounds
have been reported and identified till date [15] in Asian aro-
matic rice such as hydrocarbons, aldehydes, ketones, alco-
hols, heterocyclic compounds, phenols, esters, and other
miscellaneous [5,16]. The principal compound for its sweet
fragrance is 2-acetyl-1-pyrroline (2-AP) heterocyclic chemical
compound [17–19], which has close association with aro-
matic rice particularly Basmati and Jasmine rice varieties
from India and Thailand [20–23]. The 2-AP produces unique
“nutty-popcorn” aroma [5] and has shown the maximum
flavor dilution factor among cultivated Asian rice varieties
after quantification [24,25]. Previous studies suggested
that there is a difference in the occurrence and quantity
of VACs contents concerning rice cultivars [12,26].

Different methods are available for extraction, character-
ization, and quantification of VACs. Traditionally purge and
trap [26], steam distillation (SD) using the Likens and Nick-
erson apparatus, solvent extraction (SE)method, SD coupled
with SE, and simultaneous distillation extraction (SDE)
method [18,21,26–28] were used for the extraction of VACs
from aromatic rice. Moreover, the main drawback of these
methods is non-automate and time-consuming processes
starting from sample preparation to final step for analysis
as it depends on various organic solvents that affect the
aroma quantity and quality. Liyanaarachchi et al. [12] iden-
tified different groups of VACs by performing SD and SE
extraction protocol and suggested that SE is a more effi-
cient method for the extraction of aromatic compounds
because it requires relatively lesser sample size and time.

To overcome the issues faced by conventional methods,
recently, analytical techniques such as solid-phase micro-
extraction (SPME) with the advantage of gas chromato-
graphy (GC) coupled with mass spectrometry (GC-MS)
[29], flame ionization detector (GC-FID), nitrogen phos-
phorus detection (GC-NPD) [30,31], olfactory (GC-O),
pulsed flame photometric detector (GC-PFPD) [32], head-
space solid-phase micro extraction (HS-SPME) coupled
with GC-MS [33–35], and nuclear magnetic resonance
(NMR) [36] were adopted for rapid and efficient identifica-
tion, extraction, characterization, and quantification of
VACs [24]. Turbo Matrix Headspace Trap coupled with
GC-NPD and GC-MS analytical techniques is used for the
quantification of VACs from aromatic rice with the main
focus on 2-AP [27]. A simple extraction protocol for aro-
matic compound is the GC-MS approach [37]. Investigation
on VACs had gained much attention of different groups of
researchers [25,38,39], but very few studies have focused
on extraction, characterization, quantification [15], and

application of aromatic compounds. In the present review,
we briefly discuss the aforementioned analytical techni-
ques for better understanding of aromatic compounds.

In the global market, prime role is played by aromatic
rice such as basmati and brown rice. This aromatic rice
has lesser glycemic index compared to white plain rice,
whichmeans slow release of energy that maintains the blood
sugar level stable, thereby it can be utilized in diabetic diet
[40]. The studies on aromatic rice such as Kalanamak (black
rice) and brown rice show nutraceutical effects on human
health in the formof richer source of dietaryfibers, phenolics,
antioxidant property, proteins, vitamins, and minerals such
as Fe and Zn [41–43]. The ayurvedic medicinal property of
aromatic red rice includes higher polyphenols, anthocyanins,
and antioxidant property [44]. This aromatic rice can be
further improved to develop biofortified rice rich in Fe and
Zn to achieve food security and zero hunger [45]. The bypro-
duct of rice can be processed by value addition in terms of
rice cake and rice bread (gluten free) are preferred more by
northern India, and fermented products such as idli and dosa
are preferred more by southern India, and Khanom jeen a
type of noodles has gained more attention in Korea [5].

The VACs can be preferentially used by beverage
industry to add aroma in the beverages such as rice wine,
which is preferred by the major part of China as traditional
alcohol drink. In germinated brown rice (GBR), higher
quantity of vitamins and gamma aminobutyric acid (GABA)
is present [46]. This GABA helps in the reduction of hyper-
tension as well as neurotransmitter inhibitor in the central
nervous system [47]. So, the research can dig into more
nutraceutical potential to develop GABA aromatic rice
[48]. The consumption of GABA rice for a longer period
of time can be useful in reduction of hypertension, pre-
venting high blood pressure and cardiovascular diseases
[49]. The medicinal and nutrigenomic importance of
brown rice is due to the presence of phytochemicals, bioac-
tive compounds, and antioxidants that function as anti-dia-
betic, anti-cholesterol, and cardio-vascular remission agents
[40]. By looking into the importance of GBR in nutritional
and health benefits, the quality of GBR has been improved
using autoclave facility to maintain taste, aroma, grain tex-
ture, and physiological ingredients [50]. There are reports on
genetic and molecular markers linked to 2-AP and other
volatile compounds related to BADH2 gene. This information
can be harnessed to develop biofortified rice. The truthful
studies are needed to know the enzymatic biochemical
synthesis pathway in the field condition (flowering and grain
maturity) [51], post harvesting, and during storage to develop
the better quality of biofortified aromatic rice [5,52,53] and
utilization of these aromatic compounds to improve the
value addition of product in food processing industry.
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2 VACs in Asiatic rice cultivars and
their aromatic properties

Conventionally, rice varieties are classified into two groups
based on aroma as aromatic and non-aromatic [54]. Across
the globe, rice consumers are known to have a strong
affinity for aromatic varieties with huge demand in the
current market for their specific aroma properties, besides
their appearance and taste. Both aromatic and non-aro-
matic rice varieties possess various typical volatile com-
pounds released from the grain, often termed as VACs [55]
that impart aroma to the rice. Even though majority of
VACs identified in both types of rice are similar, their rela-
tive proportion varies significantly between aromatic and
non-aromatic cultivars [56]. Although constant efforts were
made to investigate the key compounds responsible for
aroma in rice, neither a single compound nor a group of
compounds were identified so far, to be responsible for the
complete rice aroma.

Aroma is a very complex sensation that could be
described as typically pleasant smell arising from plant
parts (such as leaves, stem, root, fruits, and grains) or
cooking of plant’s parts [31]. It is a mixture of volatile
compounds with low molecular weight (<300) and high
vapor pressure. These compounds can freely cross cellular
membranes and can be released into the surrounding
environment owing to their peculiar physical properties
[57]. The complete group of volatile chemicals generated
from plants comprises thousands of inorganic and organic
compounds that originate from major pathways of sec-
ondary metabolic activities [58]. There are three significant
pathways involved in the biosynthesis of main aroma com-
ponents in plants that include shikimic acid pathway,
degradation of lipids for the formation of short-chain alco-
hols and aldehydes, and terpenoid pathway [59]. These
aroma molecules perform a wide range of activities in
plants that could act as semio-chemicals (messengers for
communication), pheromones; activation of defense responses
[60]; and involved in plant–animal interactions [61,62]
and plant reproduction [63].

With respect to rice, so far researchers identified
more than 500 volatile compounds [15] to potentially
contribute to the perception of rice aroma, depending
on their concentrations and sensory thresholds. This
delineates the fact that diversity in the chemical composi-
tion of different VACs could be responsible for imparting
varietal differences in rice aroma. Nevertheless, among the
identified huge number of volatile chemicals, only a small
number have been reported to be responsible for the
aroma in cooked rice [64]. Initially, 2AP was identified to

be the key constituent of aroma in cooked rice [17], which
was supported by the findings of previous studies [65,66].
Although the compound is present in all types of rice cul-
tivars, fragrant cultivars had this particular VAC in signif-
icantly higher concentrations [18]. Later many researchers
reported that besides 2-AP other volatile compounds may
also contribute to varietal differences in aroma [67–69].
They include a series of compounds such as aldehydes,
alcohols, ketones, phenols, hydrocarbons, organic acids,
pyrazines, pyridines, esters, and other compounds [70–73].

3 VACs in different variants of rice

3.1 Raw and cooked rice

Volatile compounds produced in different types of rice,
viz., raw, cooked, scented, specialty types, and the key
contributors of aroma, demonstrated tremendous varia-
tion between different research groups, due to differences
in method of isolation and the type of rice analyzed. Raw
rice is considered to have mild or weak aroma in compar-
ison to cooked rice and major contributors for aroma in
raw brown rice include hydrocarbons [67]. In raw rice,
73 compounds comprising alcohols, aldehydes, alkyl aro-
matics, furans, ketones, terpenes, and naphthalenes were
identified [74]. Besides these, 2-AP had been found as
the major aroma contributor of raw rice [75,76]. There
were (>100) volatiles extracted from rice grain samples of
aromatic and non-aromatic varieties using a dynamic
HS-SPME system coupled to a two-dimensional gas chro-
matography (GC × GC) [77]. Few compounds such as
1,3-octadiene, 1-octen-3-yl acetate, isomenthol, estragole,
and trans-anethole were noticed in rice samples for the first
time and the study reported eight key volatile compounds, i.e.,
pentanal, hexanal, 2-pentyl-furan, 2,4-nonadienal, pyridine,
1-octen-3-ol, and (E)-2-octenal, to be accountable for the dis-
similarity between aromatic and non-aromatic rice varieties.

Since aroma of cooked rice is influenced by multitude
of factors, VACs of cooked rice necessarily differ from the
VACs of raw or uncooked rice [78–80]. Raw rice pre-
served for more than 1 year often produce stale flavor
due to the accumulation of VACs such as hexanal, alde-
hydes, and various alcohols [81–85], whereas during
cooking it produces off-flavors due to the free fatty acid
(FA) synthesis and oxidation of lipids generating several
carbonyl compounds [81]. Aisaka [86] reported C346 car-
bonyls in stored rice to be tenfold higher than that of
fresh rice. Besides this, it was reported that stored rice
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after cooking generated only 45% of volatiles in compar-
ison to cooked fresh rice that had 3–5-fold higher volatile
compounds. Attempts made to regulate the stale flavor of
stored rice through addition of amino acids L-lysine
hydrochloride and L-cysteine during cooking could effec-
tively inactivate the activity of carbonyl groups resulting
in reduction of off-flavor [86,87].

Yajima et al. [127] identified 100 volatile compounds
consisting of hydrocarbons and alcohols (13 each), alde-
hydes (16), ketones and acids (14 each), esters (8), pyr-
azines (6), phenols (5), pyridines (3) along with eight
other compounds, and revealed 92 compounds among
them to be responsible for flavor of cooked rice. Buttery
et al. [26] identified nine compounds to be the key con-
tributors for aroma in cooked rice viz. 2-AP, (E,E)-2,4-
decadienal, (E)-2-decenal, (E)-2-nonenal, decanal, non-
anal, octanal, 4-vinylguaiacol, and 4-vinylphenol based
on odor threshold values. Besides these compounds a
study reported aldehydes, phenols, nitrogen (N2), and
sulfur (S)-based VACs to be major contributors for the
flavor of brown rice during cooking [25]. Fukuda et al.
[68] characterized rice varieties differing for amylose con-
tent and identified the functional relationship between
amylose and volatile emission in rice. Glutinous varieties
(without amylose) exhibited a distinct flavor due to high
concentration of unsaturated aldehydes and these vola-
tiles were termed as glutinous-rich volatiles [68]. How-
ever, among these glutinous volatiles, indole displayed
negative correlation with amylose content. Other vola-
tiles that differed in the cooked rice with varying amylose
content comprised ketones, alcohols, heterocyclic vola-
tiles, FAs, fatty esters, and phenolic volatiles. Volatile
profile of GBR varieties belonging to different rice eco-
types viz., indica and japonica revealed significant differ-
ences not only in the relative abundance of VACs (alde-
hydes and alkanes) but also some of the volatiles were
specific to the ecotypes. Among the identified 35 VACs,
2-pentyl-furan, hexanal, and pentanal were in higher
proportion as compared to other volatile chemicals. In
addition to this, the study reported slight differences
between aroma profile of polished and brown rice [88].
These research findings highlight that aroma of cooked
rice relies on pre- and post-harvest conditions that include
drying, milling, and storage apart from genetic factors.
Concurrent to this, it was reported from many studies
that concentration of principal aromatic volatile com-
pound 2-AP is also highly influenced by milling, wherein
higher content is observed in cooked rice as compared to
brown rice but the compound is reported to notably
degrade during storage [75,88]. In the similar manner,
Deng et al. [89] reported significant improvement in the

key aroma components (aldehydes, alcohols, and ketones)
of cooked Japonica rice (Wuchang) and Jasmine rice (Com-
plete Wheel) through high hydrostatic-pressure (HHP)
processing and suggested HHP processing as an alterna-
tive for improving flavor of cooked rice.

In addition to this, it was reported that VACs released
after cooking are different from those released in the field
at flowering time implying the synthesis of VACs to be
dependent on various developmental stages of plants
[79,90]. Rice plant growth consists of different phases com-
prising vegetative, reproductive, grain filling, and maturity,
wherein synthesis and availability of various metabolites
including volatile compounds are highly variable. Hinge
et al. [79] screened accumulation pattern of 14 volatiles
including 2-AP at various developmental stages in scented
and non-scented rice varieties and reported accumulation
of maximum volatiles during seedling stage that decreased
gradually during reproductive and maturity stages. Among
the 14 volatiles identified, 10 were accumulated in high
concentrations in scented as compared to non-scented vari-
eties. The study also reported accumulation of 2-AP to be
highest in mature grains followed by booting stage. This
clearly epitomizes the involvement of multitude of factors
in accumulation of various volatiles during synthesis, accu-
mulation, and degradation processes [91,92].

Among the several VACs reported, 2-AP is considered
as one of the more pronounced odorants in cooked aro-
matic rice [32,69,93], non-aromatic rice [25,69,80,94], and
black rice [95]. 2-AP is known to have popcorn or butter-like
odor [39] or pandan-like odor describing the plant that has
enormous quantity of this compound [96]. This volatile
has lowest odor thresholds and contain 1-pyrroline ring,
wherein the hydrogen at position 2 is substituted by an
acetyl group containing a methyl ketone group. The pyrro-
line ring makes the compound highly unstable and volatile
[17,19]. Even though the chemical is found in some non-
scented cultivars, its concentration is found to be negligible
or below threshold level (0.0015mg/kg) and cannot be per-
ceived easily [18,21,97]. In aromatic rice genotypes, 2-AP can
be detected in all plant parts except in the roots [39,94].

Othermost commonly reported VACs of cooked rice apart
from 2-AP include hexanal, octanal, indole, (E)-2-nonenal,
4-vinyl-2-methoxyphenol, and (E,E)-2,4-nonadienal. Among
these, (E)-2-nonenal is considered to produce a fatty,
cucumber, beany, tallow, and woody-like aroma [71,98].
(E,E)-2,4-decadienal possess a waxy-like and fatty
aroma [6,76,99], while octanal has citrus-like flavor
and (E,E)-2,4-nonadienal produces nutty, fatty flavor [95].
On the other side, higher concentration of hexanal is
reported to generate rancid and oxidative off-flavor in
cooked rice [28,85].
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3.2 Scented rice

Rice cultivars that possess potential aroma compared to
traditional cultivars are popularly known as aromatic
rice with other names such as scented, pecan, and pop-
corn rice. Many studies conducted on profiling of VACs
in several scented rice varieties summarized 2-AP to
be a principal aroma constituent contributing to aroma
[21,30,39,69,71,100–105]. Nevertheless, extensive studies
conducted by Yajima et al. [106] and Mahatheeranont
et al. [67] on aroma profiling of cooked scented varieties
of rice revealed 114 and more than 140 compounds,
respectively, to be responsible for the full rice aroma.
Furthermore, profiling of aroma components of tradi-
tional rice (Koshihikari) and scented rice (Kaorimi)
revealed higher concentrations of 1-hexanal, 1-hexanol,
4-vinylphenol, and lower amount of indole groups in
the former than in the scented rice [106]. Supporting
this, recently a study reported N-heterocyclic class of
compounds (2-AP, 2-acetyl-1-pyrrole, and indole) as the
major distinguishing volatiles between scented and non-
scented rice varieties [79]. Similarly, Bryant and McClung
[107] reported huge diversity in the volatile composition
of aromatic and non-aromatic rice cultivars besides 2-AP,
using SPME fibers in conjunction with gas chromato-
graphy/mass spectrometer (GC-MS). Nevertheless, Tsuzuki
et al. [108] reported negligible qualitative variation in sulfur-
containing volatile compounds between scented (Shiroi-kichi)
and ordinary (Koganenishiki) rice varieties after cook-
ing. Similarly, Grimm et al. [109] and Widjaja et al. [21]
reported VACs such as (E)-2-decenal, (E,E)-2,4-nonadienal,
and (E,E)-2,4-decadienal from both fragrant and non-fragrant
rice varieties of cooked glutinous or waxy rice. Supporting
this, Yajima et al. [106] identified a compound–pyrrolidine
for the first time, to be responsible for aroma of any type of
cooked rice. Similarly, Sansenya et al. [110] documented
aroma compounds to be more abundant in fragrant than in
non-fragrant rice varieties. These studies support the fact that
not all, but majority VACs noted so far from cooked aromatic
and non-aromatic rice varieties are the same, except for their
relative proportion.

3.3 Speciality rice

Red and black rice are speciality types of rice with red-
dish brown and dark purple pericarp, respectively, due to
the accumulation of anthocyanin pigments. They possess
high nutritional profile as compared to white rice and
contain distinct aroma [111]. In a study conducted to

analyze the volatiles of red and black rice, 129 volatile
chemicals were extracted from the bran through hydro-
distillation. In red rice bran, compounds such as myristic
acid, nonanal, (E)-beta-ocimene, and 6,10,14-trimethyl-
2-pentadecanone were reported, whereas myristic acid,
nonanal, caproic acid, pentadecanal, and pelargonic acid
were identified as key compounds of black rice bran.
Besides, guaiacol present in higher concentrations was
found to be responsible for aroma characteristic of black
rice. However, both the rice types reported traces or negli-
gible amounts of 2-AP [112]. Yang et al. [91] identified 35 VACs,
wherein higher concentrations of hexanal, 2-pentylfuran,
nonanal, and 2-AP were reported in cooked white rice
and black rice. Major volatiles contrasting between
these rice types comprised 2-AP, p-xylene, indole, and
guaiacol. Based on odor thresholds and olfactometry
studies, it was reported that 2-AP (popcorn like) and
guaiacol (smoky, black rice-like) were the principal odor-
ants for imparting peculiar fragrance to black rice. In a
detailed study conducted to analyze the chemistry of six
distinct rice flavor groups including both scented (bas-
mati, jasmine, two Korean japonica cultivars, black rice)
and non-scented rice variety, 25 volatiles were reported
to be major odorants based on odor intensity [95].
Further based on odor threshold and odor active values
(OAVs), 13 volatiles viz., 2-AP, hexanal, (E)-2-nonenal,
octanal, heptanal, nonanal, 1-octen-3-ol, (E)-2-octenal,
(E,E)-2,4-nonadienal, 2-heptanone, (E,E)-2,4-decadienal,
decanal, and guaiacol were identified to play a decisive
role for imparting aroma differences between different rice
flavor groups. The effects of various degrees of milling
on the volatile profile of raw and cooked black rice were
studied using SPME and GC-MS. Among 101 volatile com-
pounds reported, 44 were absent in raw rice, whereas
20 compounds were specific to cooked black rice, and pro-
ducts of FA oxidation were identified in both raw and
cooked black rice. Furthermore, it was identified that par-
tially milled black rice retained 80% guaiacol preserving
the characteristic smoky flavor and highly preferred for
consumption than completely milled black rice [113].

3.4 Types of aroma in rice

Rice aromas were classified into five distinct groups as
green, fruity/floral, roasted, nutty, and bitter based on
the chemical composition of different VACs [5]. It has
been highlighted from many studies that no single che-
mical was ought to be completely responsible for aroma
in cooked rice, rather a combination of various volatiles

276  Vinita Ramtekey et al.



in fixed proportions is essential for the generation of spe-
cific aroma. Thus, aldehydes, ketones, and certain alco-
hols were found to be accountable for green or woody-
type aroma, whereas volatiles belonging to heptanone,
ketone groups, and 6-methyl-5-hepten-2-one were essen-
tial for the generation of fruity and floral aroma. Simi-
larly, nutty aroma is produced through benzaldehyde
and 2-pentyfuran, while bittery aroma is due to the pre-
sence of benzaldehyde and pyridines [16].

3.5 Synthesis of aroma compounds in rice

As envisaged earlier although a large group of com-
pounds have been recognized from different aromatic
and non-aromatic varieties of rice, determining the rela-
tive role of each volatile compound responsible for the
perception of aroma of rice is a difficult task and remains
unfulfilled [95]. Many compounds in cooked rice have
been estimated and quantified using odor units and
aroma extract dilution analysis [25,26]. These compounds
can be divided into distinct classes based on their origin
as Maillard reaction products, lipid degradation pro-
ducts, and thermally induced products. These gateways
of synthesis are often reported to play a critical role in the
formation of either pleasant or unpleasant flavors in
cooked and processed foods [114].

3.5.1 Acetyl 1-pyrroline

Till date, 2-AP has been considered as the chief volatile
responsible for rice aroma, and initially, L-proline was
identified to be the precursor of 2-AP in rice [115]. But later
contradictions regarding the origin of 2-AP have raised,
and polyamine degradation was identified to be the pro-
minent pathway for 2-AP synthesis in rice. In the polya-
mine degradation pathway, the polyamines are converted
to γ-aminobutyraldehyde (GAB-ald) by obstructing the for-
mation of GABA due to the inactive badh2 enzyme (coded
by osbadh2) leading to the accumulation of GAB-ald. Sub-
sequently, the accumulated GAB-ald reacts with methyl-
glyoxal in a non-enzymatic manner and produces 2-AP
[116]. Since GABA and methylglyoxal are critical for stress
tolerance and their biosynthesis is strictly restricted in
scented rice cultivars, the accumulation of 2-AP often
results in the sacrifice of stress tolerance [117,118]. Conver-
sely, the polyamines are converted into GAB-ald, which
instantly gets converted to GABA by the activity of functional
BADH2 enzyme, ultimately inhibiting 2-AP biosynthesis in

non-aromatic rice [119]. Alternate pathway for biosynthesis
of 2-AP includes non-enzymatic reaction between methyl-
glyoxal and P5C, an immediate precursor of proline [120].
The synthesis of 2-AP can take place both through enzymatic
(gene dependent) and non-enzymatic (gene independent)
pathways. However, enzymatic pathways of 2-AP synthesis
also intricate with glycolysis and polyamine degradation,
while non-enzymatic pathway produce 2-AP directly.

3.5.2 Maillard reaction products

The Maillard reaction in food produces a wide range of
sensory-active compounds (including color, taste, and
aroma). It involves a chemical reaction between the pri-
mary amino group of an amino acid, peptide, or related
compound with the carbonyl group of a reducing sugar.
The resulting key aroma compounds although produced
in very minute concentrations of 1 µg/kg to 1 mg/kg con-
tribute significantly to the flavor because of their low
odor-perception thresholds. The reaction tends to occur
during storage, and the rate at which reaction progresses
is highly temperature dependent. 2-Phenylethanol and
phenylacetic acid are Strecker degradation products of
the amino acid L-phenylalanine [121,122] that contribute
a rose-like odor [21,25] in scented and non-scented rice.
2-Aminoacetophenone is a degradation product of tryp-
tophan [123] considered to be responsible for producing
naphthalene or floor polish odor in brown rice [124].
Strecker degradation is considered a corollary to the Mail-
lard reaction that involves generation of aldehydes or
ketones through oxidative decarboxylation of α-amino
acids by an oxidation reagent [125,126]. Besides these, a
diverse range of products including formation of nitrogen-
containing heterocyclic compounds and sulfur-containing
heterocyclic compounds are also produced through this
reaction [25,127,128].

3.5.3 Lipid degradation products

Degradation of lipids can occur by both oxidation and
thermal induction processes. During cooking, oxidation
of unsaturated lipid acyl chains acts as a major channel
for volatile production. Lipid oxidation products besides
producing rancid odors are also involved in promoting
various deteriorative reactions by reacting with amino acids,
proteins, and other components [129]. In cooked rice, break-
down of principal unsaturated FAs, oleic, linoleic, and lino-
lenic acids often yields volatile compounds [130]. Hexanal,
pentanol, pentanal, (E)-2-octenal, (E,E)-2,4-decadienal, and

Extraction, characterization, and application of VACs from rice  277



2-pentylfuran are formed from degradation of linoleic acid
[95,131], whereas octanal, heptanal, nonanal, (E)-2-nonenal,
decanal, and 2-heptanone are the breakdown products of
oleic acid. Vanillin, another volatile compound produced
through oxidation of lipids in cooked brown rice cultivars,
produces a pleasant flavor and contributes to the aroma
enhancing consumer preference [25,132]. In contrast, hex-
anal contributes to consumer rejection due to its rancid
odor generated during cooking [28]. Lam and Proctor [14]
reported significant accumulation of this compound in par-
tially milled rice as compared to completely milled, fresh
rice. Furthermore, the concentrations of volatiles such as
(E)-2-nonenal (rancid), octanal (fatty), and hexanal (green)
producing distinct off-flavors have been reported to signifi-
cantly escalate with duration of storage.

3.5.4 Thermally induced products

Although Maillard reaction is the major pathway for
synthesis of majority of the thermally induced volatile
compounds, some volatiles such as furanones with plea-
sant, sweet aroma cannot be synthesized through this
chemical reaction [133]. Furanones such as 3-hydroxy-
4,5-dimethyl-2(5H)-furanone and bis-(2-methyl-3-furyl)-
disulfide, the products of thermally derivedflavor compounds,
are known to impart seasoning-like and meaty-like aroma,
respectively, to cooked rice [25]. Besides furanones, other
volatiles produced in cooked rice through a combination
of thermal and enzymatic processes by decarboxylation
of ferulic acid include 2-methoxy-4-vinylphenol, 4-vinyl-
guaiacol, and 4-vinylphenol that produce undesirable
pharmaceutical odor [134]. Among these, 4-vinylguaiacol
is a guaiacol derivative in rice that has an unpleasant,
spicy, nutty, and clove-like odor [14,91,135], while guaiacol
was reported to be a unique odorant in black rice
[95,111,112]. The off-flavor imparted by 4-vinylguaiacol
could be attributed to the undesirable changes in guaiacol
caused by the migratory loss of aroma-active compound
and breakdown of volatiles due to lipid oxidation and
thermal degradation processes [21].

4 Classification of general aromatic
compounds present in Asian
aromatic rice cultivars

The VACs of aromatic rice have been explored by many
researchers using traditional and modern analytical

techniques [25,39,136,137]. It is not a single compound
but a complex of more than 500 VACs [16] responsible
for pleasant, sweet fragrance in aromatic rice, which is
considered a desirable trait by consumers and conse-
quently makes it more preferable than other rice culti-
vars. The aroma produced by most of the VACs have nutty
popcorn-like flavor mainly due to the contribution of
2-AP at a larger concentration as compared to other vola-
tile compounds [16,138]. Studies have been conducted to
distinguish aromatic cultivars based on 2-AP concentra-
tion via biochemical and molecular test [139] but very
limited research has been conducted on differential fra-
grance pattern of another volatile compound in different
aromatic rice. Bryant et al. [71] identified the genetic
variability in VACs in different aromatic and non-aro-
matic rice cultivars in freshly harvested rice, during sto-
rage and post-storage using SPME/GC-MS. They also
suggested that there are some unique volatile com-
pounds restricted to special aromatic cultivars only.
The VACs were used as a key marker to distinguish the
aromatic and non-aromatic rice cultivars by following
HS-SPME coupled with GC × GC-TOFMS [73]. The differ-
ential classification of VACs in Asian aromatic rice culti-
vars was briefly reported by different group of researchers,
which is explained in Table 1.

5 Extraction of aromatic
compounds from Asian aromatic
rice cultivars

Extraction of volatile compounds is a challenging task as
compared to non-volatile compounds. Extraction of VACs
is a prerequisite for their accurate quantification. There
are many extraction methods available. Ideal method is
one which can minimize the chemical modification of
VACs during extraction procedure. A comprehensive review
on extraction and quantification method for VACs is avail-
able [16]. These methods have been briefly described as
follows:
1. Direct extraction: this procedure separates the com-

pounds on the basis of their relative solubility either
in liquid phase or solid phase. SE is the most widely
used method for extracting compound of interest from
plant products. The extraction of natural products pro-
gresses through the following stages: (1) the solvent
penetrates into the solid matrix; (2) the solute dis-
solves in the solvents; (3) the solute is diffused out of
the solid matrix; and (4) the extracted solutes are
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collected [140]. Selection of solvent is a crucial step,
and it depends upon solubility of the desired com-
pound in solvent.

2. Distillation: distillation utilizes boiling point differences
for separation of compound which involves purification
of compound from liquidmixture. Hydrodistillation and
SD are commonly used methods for the extraction of
volatile compounds.

3. Simultaneous SD extraction: it is used for the extraction
of aromatic/volatile compounds which merges vapor
distillation and SE. This method is quick and gives con-
centrated substance even with small solvent volumes.
(a) SE: in this process, a compound is transferred

from one solvent to another due to differences in
solubility between these two solvents.

(b) Headspace (HS) extraction: in this type of extrac-
tion, a volatile material is extracted from a heavier
raw sample. An HS sample is usually extracted
utilizing a vial containing the sample, the solvent,
a matrix modifier, and the HS. Volatile compo-
nents from the complex sample can be extracted
and isolated in the HS of a vial. Once the sample is
transferred followed by sealing of vial, volatile
compounds diffuse into the gas phase until the
HS acquires an equilibrium state. The sample is
then collected from top of the vial, i.e., an HS.
i. Dynamic HS extraction: it is comprised of pur-

ging the HS with a large volume of inert gas which
eventually removes the volatile compounds. Purge
and trap is a known method of dynamic HS
extraction.

ii. Static HS extraction: it is typically used for the
determination of volatile and semi-volatile ana-
lytes in liquid mixtures.

iii. Multiple HS extraction: it extracts a sample and
calculates the amount of desired compound in
relation to a known standard.

(c) SD continuous extraction: in this multilayer dis-
tillation system, a steam is directed through the
raw plant material. The mixture of steam and vola-
tile compounds is collected followed by condensa-
tion to produce a liquid having two separate layers
of oil and water.

4. Simultaneous SD and SE: simultaneous micro SD/SE is
an efficient method of extracting semi-volatile, flavor, and
fragrance compounds for subsequent separation by GC.

5. SE followed by direct injection: this approach is based
on a simple SE followed by direct injection in GC which
may be coupled to tandem mass spectrometry (MS).

6. Solid-phase extraction: in these techniques, compounds
dissolved in a liquid mixture are separated from other

compounds on the basis of their physical and chemical
properties. SPME is a modern technique that consists in
direct extraction of the analytes with the use of a small-
diameter fused silica fiber coated with polymeric sta-
tionary phase. It is a solventless extraction procedure
which is especially suitable for trace analysis. It is used
for the analysis of volatile compounds due to low cost,
simplicity, solvent-free extraction, and speed.

7. HS-SPME: it combines the advantage of HS extraction
and solid-phase extraction. It is a simple, rapid, sol-
vent-free, and cost-effective extraction mode, which
can be easily hyphenated with GC-MS for the analysis
of volatile organic compounds (VOCs) [141].

8. Supercritical fluid extraction (SFE): it is a separation
and extraction process of volatile compound by the
use of supercritical fluids as the solvent. This solvent
is less toxic in comparison to the organic solvents. The
carbon dioxide (CO2), alone or in modified form, is an
extensively used extraction solvent.

6 Characterization of aromatic
compounds from Asian aromatic
rice cultivars

Plants undergo diverse stages of growth and development,
simultaneously secrete different levels of hormones, meta-
bolites (primary and secondary), and various chemical
compounds such as non-volatile organic compounds
(nVOCs) and VOCs of lipophilic liquids having low mole-
cular weight and high vapor pressure. Physical properties
of VOC compounds permit easy movement across the cel-
lular membranes as well as into the surrounding environ-
ment [57]. In the past, more than 1,700 VOCs have been
characterized from angiosperm and gymnosperm families
covering 90 different plants [142]. Biosynthesis of VOCs
relies on the presence of carbon, nitrogen, and sulfur as
well as reaction energy governed by primary metabolism.

Broadly based on the biosynthetic origin, VACs are
categorized into several chemical classes of alcohols,
acids, esters, aldehydes, ketones, lactones, phenols, sul-
fides, furans, terpenoids, phenylpropanoids (benzenoids),
FA derivatives, and amino acid derivatives [143]. The pro-
filing of volatile compounds of rice has been reported by
various researchers around the world, some of them have
also reported that the corresponding aromatic compounds
have pleasure odor through GC, mass spectroscopy (MS), and
other advanced instrumentation techniques [16,25,76,143,144].
Consequently, around 500 different VACs have been reported
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in rice around the world and among them 2-AP, 2-acetyl-
pyrrole, a-pyrrolidone, and pyridine have been reported
for enhancing consumer acceptability of rice, while hex-
anal, acetic acid, and pentanoic acid gained from lipid
oxidation are responsible for the reduced acceptability of
rice [28,75,145]. 2-AP is discovered as the most significant
flavoring constituent of cooked rice, and its presence
cannot be ignored from detection in the large number of
rice varieties [5,146]. Chemically, 2-AP holds N-hetero-
cyclic ring of five-carbon in its structure, which is named
as 1-(3,4-dihydro-2H-pyrrol-5-yl) ethenone according to
IUPAC. A cyclic imine and a ketone with pyrroline are
substituted in the structure of 2AP (Table 2). VOCs from
the Indian Basmati rice comprised 13 hydrocarbons,
14 acids, 13 alcohols, 16 aldehydes, 14 ketones, 8 esters,
and 5 phenols. Furthermore, 2-AP has been reported as a
core aromatic compound, which is found in all aerial
plant parts of Indian cultivar of Basmati rice [147,148].
Recently, Hinge et al. [79]have also reported that besides 2-AP
several volatile organic compounds such as hexanal, nonanal,
octanal, (E)-2-nonenal, (E,E)-2,4-nonadienal, heptanal,

pentanal, (E)-2-octenal, 4-vinylphenol, 4-vinylguaiacol, 1-octen-
3-ol, decanal, guaiacol, indole, and vanillin are also con-
tributing in the aromaticity of Basmati rice cultivars.

Comparative characterization of aroma volatiles was
performed at vegetative andmature stages in Indian Basmati
(Basmati-370, scented), non-Basmati rice (Ambemohar-157,
scented), and IR-64 (non-scented) cultivars [149]. The
researcher’s group has reported the presence of 26 vola-
tile compounds in three rice cultivars at vegetative and
mature stages. The aromatic compound 2-AP was found
to be the core contributor for aromaticity at vegetative
and mature stages of AM-157 and BA-370 cultivars.
Further with inclusion of 2-AP, 1-octanol, 1-octen-3-ol,
(E)-3-octen-2-one, and aliphatic aldehydes octanal,
(E)-2-nonenal, nonanal, heptanal, hexanal, decanal, and
(E)-2-octenal were prime aromatic compounds present in
matured seeds of scented rice cultivars, while during vege-
tative phase 1-octanol, (E)-3-octen-2-one, heptanal, octanal,
nonanal, hexanal, 1-octen-3-ol, (E)-2-nonenal, (E)-2-octenal,
phenylacetaldehyde, and pentanal aromatic compound
were detected.

Table 2: Chemical characterization of VACs of Asiatic aromatic rice

Sl. No. Chemical group VOCs References

1. Alcohols Pentanol, (Z)-3-hexen-1-ol, 1-hexanol, 1-ccten-3-ol, 1-hexanol, 2-ethyl-hexanol, 1-
octanol, linalool, 3, 4-dimethylcyclohexanol, 2 nonen-1-ola, carveol, 3,7-dimethyl-1-
octanol, 2-hexyl-1-octanol, 2-hexadecanol, 2-methylpropanol, 2-pentanol, 1-butanol,
3-methylbutanol, 2-hexanol, 1-pentanol, and 1-octen-3-ol

[77,79,95,149]

2. Esters Ethyl hexanoate, ethyl heptanoate, ethyl octanoate, methylsalicylate, 5 acetic acid,
1,7,7-trimethyl-bicyclo(2,2,1)hept-2-yl, ester methyl 2-aminobenzoate, ethyl laurate,
ethyl benzoate, and geranyl acetate

[25,149]

3. Aldehyde Benzaldehyde, 2 phenylacetaldehyde, vanillin, pentanal, hexanal, (E)-2-hexenal,
heptanala, (Z)-2-heptenal octanal, (E,E)-2 4-octadienal (E)-2-octenal, nonanal, (E,Z)-
2,6-nonadienal, (E)-2-onenal, oecanal, (E,E)-2,4-nonadienal, β-cyclocitral, (2,6,6-
trimethyl-1-cyclohexen-1-yl) acetaldehyde, and (E,E)-2,4-decadienal

[26,77,149]

4. Phenols Phenola, 2 2-methoxyphenol, 3 2-phenoxyethanol, and 2-methoxy-4-vinylphenol [149]
5. Ketones 2-Heptanone, 6-methyl-2-heptanone, 6-methyl-5-hepten-2-one, (E)-3-octen-2-one,

2,2,6 trimethylcyclohexanone, 2-nonanone, (E)-5-ethyl-6-methyl-3-hepten-2-one,
4-cyclopentylidene-2-butanone, 2,6,6-trimethyl-2-cyclohexene-1,4-dione, 2
undecanone, 6,10-dimethyl-2-undecanone, and β-lonone

[16,79,161]

6. Terpenes Pinene, camphene, 3-carene, L-limonene, azulene, β-elemene, isolongifolene,
longifolene, β-caryophyllene, aromadendrene, and valencene

[79,149]

7. Carboxylic acid Benzoic acid, hexanoic, octanoic, nonanoic, decanoic, myristic, pentadecanoic,
stearic, and tridecanoic

8. Aliphatic
hydrocarbons

Nonane, 4-methyldecane, dodecane, tetradecane, pentadecane, heptadecane,
nonadecane, allylcyclohexane, (E)-5-methyl-4-decene, (Z)-3-undecene hydrocarbon,
(Z)-3-dodecene, 7-tetradecene, 1-tetradecenea, 1,1-diethoxy-2-methylpropane,
1,1-diethoxy-2-methylbutane, 1,1-diethoxy-3-methylbutane, 1,1-diethoxypropane,
1,1-diethoxyhexane, 1,1-diethoxynonane, and 1,1-diethoxy-2-phenylethane

[16,67,79,149]

9. Aromatic
hydrocarbons

p-Xylene, toluene, 1-isopropyl-2-methylbenzene, 1-isopropyl-4 methylbenzene,
acetophenone, guaiacol, p-cresol, 4-vinylguaiacol, 4-vinylphenol, benzyl alcohol,
2-phenylethanol, and furfural

[79,149]

10. Furans 1,2-Pentylfurana [149]
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The VACs presence in Indian Basmati rice and char-
acterized VACs belong to chemical groups as alkane,
alkene, ketone, aromatic hydrocarbon, terpenes, alco-
hols, aliphatic aldehydes, aromatic aldehydes, N hetero-
cyclic, ester, phenol-containing compounds, carboxylic
acid, and furan [148–151] (Figure 1). The characterization
of VACs compound (2-AP) from 208 paddy varieties of
Indian origin having aromatic property reported varying
intensity of 2-AP ranging from 0.05 to 4.49 ppm [145].
The highest level of 2-AP in tested rice genotypes was
4.49 ppm in variety RD 1214 Dubraj. Some of the impor-
tant aromatic compounds present in Asian paddy are
presented in Table 2.

Black rice is the most preferable rice in Asian coun-
tries in Korea, as it is often blended with non-aromatic
white rice prior to cooking for increasing aromaticity,
flavor, color, and nutritional value. Thirty-five volatile
compounds from Korean black rice (Geumjeong-ssal)
among the different classes of chemicals responsible for
aromaticity are broadly classified into aromatic, nitrogen-
containing, alcohol, aldehyde, ketone, and terpenoid
groups [95]. The black rice comparable to white rice has
high degree of aromatic and nitrogen-containing com-
pounds than the white non-aromatic rice. In black rice,
2-AP (9.7%) is the least abundant aromatic compound of
total volatiles and hexanal (25.3%) is the most abundant
with nonanal (14.8%) and 2-pentylfuran (10.4%) [91].
Around 140 volatile compounds of the Khao Dawk Mali
105 brown rice were extracted by capillary GC-MS [67].

Among the extracted compounds, 70 volatiles were iden-
tified as aromatic compounds, including 2-AP, a key aroma
compound of brown rice. The aromatic compounds are
present in Asian brown rice of the three varieties Malagkit
Sungsong (IMS), Basmati 370 (B 370), and Khaskhani (KK)
[25]. A total of 41 aromatic compounds including 2-AP were
identified and of them 11 are reported for the first time
as rice-derived compounds such as 2-aminoacetophenone
and bis-(2-methyl-3-furyl) disulfide are in prominently
higher concentration. Nasi Pandan wangi from Indonesia
and Indian Basmati rice hold the highest proportion of
aromatic compounds viz. 2-AP; at the same time, hexanal
and 2-pentylfuran were found to be the most prominent
volatile compounds for Jasmine and Mentik Wangi [77].
The different levels of accumulation of volatile compounds
in aromatic rice depend on the environmental factors [152].

7 Quantification of aromatic
compounds from Asian aromatic
rice cultivars

GC and MS have revolutionized the field of analytical
measurements from complex mixture. GC is an analytical
technique used for the separation of chemical compo-
nents from sample mixture followed by detection and
quantification. This is especially used for compounds
that can be vaporized without decomposition. A vapor-
ized sample is injected into GC column, and components
will be resolved due to flow of inert gas utilized as
medium. MS measures the mass-to-charge ratio of ions
represented as mass spectrum. This technique can be
applied to pure samples as well as complex mixtures.
Combination of GC and MS for simultaneous separation
and quantification of volatile compounds has been widely
used to study rice aroma. Modifications of GC-MS are uti-
lized for accurate quantification of volatile compounds
from sample mixture. Some are narrated as follows.
1. GC-flame ionization detector (GC-FID): a flame ioniza-

tion detector (FID) measures analytes in a gas stream.
It is frequently coupled with GC for the detection of
analytes.

2. GC-olfactometry (GC-O): here, compounds resolved
from the GC are analyzed by both FID detector and
human olfactory system separately. This combination
makes it more appropriate technique for analysis of
aromatic volatile compound such as 2-AP.

3. GC-NPD: nitrogen-phosphorus detectors (NPDs) for GC
are specific to nitrogen- or phosphorus-containing

Figure 1: Structural formula of aromatic compounds present in Asian
paddy.
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compounds. NPD is also known as a thermionic-spe-
cific detector which uses thermal energy to ionize an
analyte.

4. Tandem GC-MS: GC followed by MS. Tandem MS uses
two or more mass analyzers coupled together to increase
resolution for analysis of chemical samples.

5. GC-time-of-flight-MS: the time-of-flight (TOF) analyzer
uses an electric field to accelerate the ions and then
measures the time they take to reach the detector. TOF
MS deals with increase in time taken by analytes to
travel during MS, which eventually leads to the higher
resolution.

6. GC-MS with SIM: selected ion monitoring (SIM) allows
themass spectrometer to detect specific compoundswith
very high sensitivity. The instrument is pre-adjusted to
measure the masses of selected compounds.

7. SHs-GC-FID and SHs-GC-NPD: static HS GC-FID and
static HS GC-NPD. In case of static HS gas chromato-
graphy, the sample is placed in a sealed container and
after an appropriate incubation time the gas in the HS
of the container is sampled and analyzed by GC.

8. Capillary GC-MS: capillary GC is a high-resolution
analytical method. A selective stationary phase and
an efficient column preparation method are the two
main factors for GC column separation with high
resolution.

Purge and trap method, SDE, SE followed by direct
injection, SPME, HS analysis, and SFE are most com-
monly utilized for extraction of 2-AP, while GC with
nitrogen-phosphorus detector (NPD), flame ionization

detector (FID), MS, or olfactometry as a detector are
most widely used techniques for quantification of 2-AP
[31]. The extraction and quantification of VACs are briefly
explained in Figure 2.

8 Applications

8.1 Nutraceuticals

Nutraceuticals can be defined as a part of food that alleg-
edly provide benefit to human health by either decreasing
or preventing the incidence of disease [153]. Specialty rice
varieties with unique properties such as color, flavor, and
aroma are documented to possess nutraceutical values
and maintain huge market demand than the traditional
white rice varieties. Pigmented along with aromatic rice
varieties that are enriched with pleasant taste and odor
are also associated with innumerable health benefits
[154]. Brown rice is the dehusked whole grain rice con-
taining bran and germ. Due to the presence of bran and
germ, brown rice retains a significant amount of dietary
fiber, vitamins, and minerals that are present in negli-
gible or trace amounts in the milled white rice. It contains
low calories and also serves as a good source of magne-
sium, phosphorus, selenium, manganese, and vitamins
and majority of these minerals are reported to be depos-
ited in the bran itself [155]. Manganese and selenium
present in brown rice play an important role against

Figure 2: Methods for extraction and quantification of aroma in rice.
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free radicals and act as anti-cancerous agents. Brown
aromatic basmati rice contains 20% more fiber than other
brown rice varieties, which prevents the formation of
cancerous cells in the body [156]. Brown rice contains
naturally occurring bran oil, which helps in reducing
LDL forms of cholesterol [110].

Similarly, colored rice varieties (black and red) could
be either semi-polished or unpolished. They inherit their
color from anthocyanin pigments that are known to have
antioxidant properties, free radical scavenging activity,
along with other health benefits. Besides this, they pos-
sess other pigmented compounds such as cyanidin-3-O-
β-D-glucopyranoside in enormous quantity [157] that is
associated with diverse functional properties including
protection against cytotoxicity [158] and anti-neuro-
degenerative activity [100]. Red-colored varieties of rice
are reported to be iron and zinc rich, whereas black rice
varieties are high in protein, fat, and crude fiber. Reports
suggest intake of black rice to be highly beneficial for the
elimination of reactive oxygen species, lowering of cho-
lesterol levels due to the presence of vitamin E, phytic
acid, and γ-oryzanol [159,160]. In addition to this, colored
rice varieties also possess phytochemical compounds in
large amounts including flavonoids and wall-bound phe-
nolics that are necessary for breaking digestive enzymes,
promoting digestion [161]. Consumption of red rice rich in
proanthocyanidins reduces the risk against type 2 diabetes
[162] and anthocyanins present in black rice possess hypo-
glycemic effect [163]. In Asian countries, white rice is often
mixed with black rice to enrich flavor, color, and nutri-
tional content [95]. Asem et al. [164] analyzed the antho-
cyanin, phenolics, and antioxidant activity of two black
scented rice cultivars Chakhao Poireiton and Chakhao
Amubi and reported high amounts of all these nutraceu-
tical compounds than white rice.

Although rice contains higher levels of complex
carbohydrates and is considered as a food with high gly-
cemic index, several traditional varieties have been iden-
tified to have a low glycemic index [165] and basmati rice
is one among them [166]. Furthermore, it is widely known
that phytate present in cereals severely interfere with
dietary iron (Fe) and restrict its absorption into human
body. Basmati rice is known to produce a metallothio-
nein-like protein, rich in cystine that helps in iron absorp-
tion and the corresponding gene has been used in the
biofortification programs for the development of Fe-rich
rice varieties [167]. In addition to basmati, several tradi-
tional scented varieties of rice have been reported to pos-
sess higher levels of Fe and zinc (Zn) and could be used to
develop micronutrient-rich cultivars through biofortifica-
tion programs [167]. These VACs can give a new way for

the development of biofortified aromatic rice cultivars,
which can return higher exchange in global market.

8.2 Value addition to beverage industry

In the last decade, cereal-based beverages undoubtedly
gained popularity with acknowledged beneficial effects
on human health and predominant sensory traits. The
health and functional properties of these beverages could
be mainly attributed to the bioactive phytochemicals pre-
sent in them that include phenolic compounds, carote-
noids, tocols, dietary fibers, phytosterols, γ-oryzanol, and
phytic acid [168]. Among various cereal-based beverages,
roasted cereal grain tea is a caffeine-free beverage typi-
cally prepared by boiling the roasted whole grains or
powder or by brewing in hot water. The aroma that arises
from volatile compounds is a key feature of roasted cereal
grain tea and a principal indicator of the tea quality. The
major volatile compounds reported in these beverages
comprise alcohols, alkanes, aldehydes, esters, and pyra-
zines. Of these, alcohols often contribute to sweet, floral,
and fruity odors, with positive impact on the aroma of tea
[169,170]. Among various cereal-based teas available,
rice tea has been a conventional beverage for many
people across the globe and prepared using different var-
iants of rice viz., brown rice, white rice, and black rice.
Few studies reported a total of 37 volatiles in white rice tea,
pre-dominated with aldehydes, alkanes, and furans and
49 volatile compounds in the beverage prepared from
black rice including alkanes, aldehydes, alkenes, and pyr-
azines [171,172]. Typically, rice wine is prepared from var-
ious kinds of rice or even rice brans among which, red rice
winemade from unpolished aromatic red rice was reported
to have premium quality, with a sour taste and wine-like
fruit aroma [173]. Since, red rice is characterized by high
nutritional value and immense health properties, the wine
prepared from red rice through fermentation is docu-
mented to possess high biological value with essential
sensory properties [174]. Thus, VACs have the potential
to be used as bioflavor and bioaroma compounds to
enhance value addition of beverages (Figure 3).

9 Conclusion and future
perspective

Aromatic Asian rice cultivars are predominantly judged
by superior and standard grain quality, aromaticity,

Extraction, characterization, and application of VACs from rice  285



cooking quality, and appearance, which make it worth of
revenue generation in global market. The characteristic
features of aromatic rice are due to the presence of
number of VACs. These aromatic compounds were pre-
sent in diverse germplasm of rice in Asian countries and
classified into different chemical groups. There were sev-
eral conventional methods used for extraction, character-
ization, and quantification of VACs, which were cost and
time consuming. To overcome this, an advancement has
been taken place to develop cost-effective analytical tech-
niques. Till date, more than 500 VACs have been identi-
fied in aromatic rice cultivars and derived products.
Owing to the presence of number of VACs, aromatic rice
has significant nutraceutical values, which is gaining
noteworthy interest due to the secretion of scented com-
pounds and also show nutraceutical effects on human
health in the form of richer source of dietary fibers, pheno-
lics, antioxidant property, proteins, vitamins, and minerals
such as Fe and Zn. Furthermore, these VACs can be speci-
fically used by beverage industry as bio-aroma or bio-flavor
to increase the value addition of beverages such as rice
wine, rice tea, and other alcohol drinks. Adoption of these
health-based crops could ensure nutritional and food
security along with growth of food processing sector.
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