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Flat Ride; Problems and Solutions in Vehicle
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Abstract. Flat ride is the condition in which the uncom-
fortable pitch oscillation of the vehicle body turns into more
tolerable bounce oscillation, when a car hits a bump in for-
ward motion. Based on experimental results, Maurice Olley
discovered and introduced two conditions for flat ride:

1. The radius of gyration in pitch should be equal to the
product of the distance from the mass centers ap, a, of the
front and rear wheels of the car (r> = aaz).

2. The rear suspension should have around 20% higher rate
then the front. The equation r2 = aja, makes the car to
be considered as two separated uncoupled mass-spring sys-
tems of front and rear suspensions.

In this study, we will analytically review the flat ride condi-
tions and provide design charts to satisfy the required con-
ditions. The nonlinear practical model of shock absorbers
modifies the conditions which were based on linear models.

Keywords. Flat ride, Maurice Olley, Optimal suspension,
Vehicle vibrations, Vehicle dynamics, Suspension design,
Suspension optimization.

1 Flat Ride Definition

The excitation inputs from the road to a straight moving car
will affect the front wheels first and then, with a time lag,
the rear wheels. The general recommendation was that the
natural frequency of the front suspension should be lower
than that of the rear. So, the rear part oscillates faster to
catch up with the front to eliminate pitch and put the car
in bounce before the vibrations die out by damping. This
is what Olley called the Flat Ride Tuning [4, 6-8]. Mau-
rice Olley (1889 — 1983) established guidelines, back in the
1930, for designing vehicles with better ride. These were
derived from experiments with a modified car to allow vari-
ation of the pitch mass moment. Although the measures
of ride were strictly subjective, those guidelines are consid-
ered as valid rules of thumb even for modern cars. What is
known as Olley’s Flat Ride not considering the other pre-
requisites can be put forward as:
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The front suspension should have around 30% lower rate
than the rear.

An important prerequisite for flat ride was the uncou-
pling condition, which was introduced by Rowell and Guest
for the first time in 1923 [4, 6-9]. Rowell and Guest used
the geometry of a bicycle car model to find the condition
which sets the bounce and pitch centers of the model lo-
cated on the springs. Having the condition, the front and
rear spring systems of the vehicle can be regarded as two
separate one degree of freedom systems.

In this study, using analytical methods, we study the flat
ride conditions which has been respected and followed by
the car manufacturers’ designers since they were introduced
for the first time. This article will provide a more reliable
scientific and mathematical approach for what are the flat
ride design criteria in vehicle dynamic studies.

2 Previous works

Maurice Olley was one of the first pioneers who introduced
and studied the concept of flat ride in vehicle dynamics. He
was an English engineer born in 1889, who during his life
added a lot to the general knowledge of vehicle dynamics
and is counted as one of the great automobile engineers of
his era. He is one of the founders of modern vehicle dy-
namics. In his early career in the Rolls Royce design office,
he worked under Sir Henry Royce but the majority of his
career was spent at Cadillac in the USA and Vauxhall in
England.

Olley worked directly for Sir Henry Royce, and was in
the United States for some ten years struggling to get off the
ground the manufacture of Rolls-Royce cars at Springfield,
Massachusetts. The financial crash of 1929 put the skids un-
der the operation. His first task after moving to the Cadillac
company in 1930 was suspension and ride. He introduced
the Rolls-Royce type of bump rig and began a full program
of ride development. He studied the oscillation of wheels
and tires and by applying some changes on the rig was soon
studying the basic ride motions of the car. In his paper [4]
he published the results taken from his experiments using
the test rig for the first time.

He developed a bouncing table rig in General Motors
proving grounds, on which humans were vibrated vertically
at different frequencies and amplitudes. They would have
increased the frequency till the person on the table begins to
feel uncomfortable. Using this equipment Olley explained
the relation between vertical acceleration and comfort over
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Figure 1. Bicycle car model used for vibration analysis.

a range of frequencies. He generated a curve for passen-
ger comfort, which is very similar to the current ISO2631
standard.

Olley as well as other investigators in well-established
car companies realized that the pitch and roll modes of the
car body are much more uncomfortable than the bounce
mode. The investigators’ effort focused on the suspension
stiffness and damping rates to be experimentally adjusted to
provide acceptable vertical vibrations. However, the strat-
egy about roll and pitch modes were to transform them to
bounce. Due to usual geometric symmetry of cars, as well
as the symmetric excitation from the road, roll mode are
being excited much less than pitch mode. Therefore, lots
of investigations have been focused on adjustment of the
front and rear suspensions such that pitch mode of vibra-
tion transform to the bounce.

In the early 1930s most cars were built with fairly stiff
springs at the front and soft at the rear, with a a: 22 ratio in
pitch of about 0.8, where r is the pitch radius of gyration of
the car and a; and a, are the distance of the mass center,
C, from the front and rear axles, as shown in Figure 1, [1].
However, based on what Olley discovered, such a choice
was against the mode transfer desire.

Besides all the important facts that Olley discovered dur-
ing his experiments, the principle known as the Flat Ride
Tuning or Olley’s Flat Ride proved to be more industry ap-
proved and accepted. After his publications [6—8] in which
he advocated this design practice, they became rules of
practice.

We can summarize what has been said about ride and
comfort in American passenger cars by Olley as the follow-
ing:

(i) The front spring should be softer than the rear for Flat
Ride Tuning. This will promote bouncing of the body
rather than pitching motions at least for a greater ma-
jority of speeds and bump road situations. The front
suspension should have a 30% lower ride rate than
the rear suspension, or the spring center should be at
least 6.5% of the wheelbase behind the center of grav-
ity. Although this does not explicitly determine the
front and rear natural frequencies, since the front-rear

weight distribution on passenger cars is close to 50-
50, it will generally assure that the rear frequency is
greater than the front.

The ratio % normally approaches unity. This re-

duces vibration interactions between front and rear be-
cause the two suspensions can now be considered as
two separate systems. As a consequence there will
be less resonant build-ups on the road and the pitch-
ing frequency will have a magnitude closer to that of
bounce.

(i)

(iii) The pitch and bounce frequencies should be close to-
gether: the bounce frequency should be less than 1.2
times the pitch frequency. For higher ratios inter-
ference kicks resulting from the superposition of the
two motions. This condition will be met for modern
cars because the dynamic index is near unity with the
wheels located near the forward and rearward extremes

of the chassis.

(iv) Neither frequency should be greater than 1.3 Hz,
which means that the effective static deflection of the

vehicle should exceed roughly 6 inches.

(v) The roll frequency should be approximately equal to
the pitch and bounce frequencies. To minimize roll
vibrations the natural frequency in roll needs to be low

just as for the bounce and pitch modes.

2Rowell and Guest [9] in 1923 identified the value of
2 1’ - being associated with vehicles in which the front and
rear responses were uncoupled. Olley was able to investi-
gate the issue experimentally and these experiments led him
to the belief that pitching motion was extremely important
in the subjective assessment of vehicle ride comfort. He
built the Cadillac k» rig in 1931 which was a 12 cylinder, 7
passenger Cadillac limousine of the period, fitted with front
and rear outriggers each of which could carry up to 327k g
made up in 27kg weights. To their surprise, under these
supposedly ideal conditions, they still got an unsatisfactory
ride. This arrangement gave no fixed oscillation centers and
the ride had no pattern. However, by fitting all the weights
they found that if the front spring static deflections are some
30% greater than the rear then the revolutionary flat ride oc-
curs. Olley’s explanation was that because the two ends of
the car did not cross a given disturbance at the same instant
it was important that the front wheels initiated the slower
mode and that the rear wheels initiated the faster mode. This
allowed the body movement at the rear to catch up the front
and so produce the flat ride.

The condition of Flat Ride is expressed in various de-
tailed forms; however, the main idea states that the front
suspension should have a 30% lower ride rate then the rear.
The physical explanation for why this is beneficial in reduc-
ing pitch motion is usually argued based on the time history
of events following a vehicle hitting a bump. First, the front
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of the vehicle responds “approximately- in the well-known
damped oscillation manner. At some time later, controlled
by the wheelbase and the vehicle speed, the rear responds
in similar fashion. The net motion of the vehicle is then
crudely some summation of these two motions which mini-
mizes the vehicle pitch response, [2].

Confirmation of the effectiveness in pitch reduction of
the Olley design was given by Best [1] over a limited range
of circumstances. Random road excitation was applied to a
half-car computer model, with identical front and rear exci-
tations, considering the time delay generated by the wheel-
base and vehicle’s speed. Pitch suppression was associated
with the wheelbase filtering effect. Pitch suppression ap-
peared to be necessarily associated with increases in bounce
response, leaving in unclear whether or not it is a worth-
while goal, [10].

Sharp and Pilbeam [11] attempted a more fundamental
investigation of the phenomenon, primarily by calculating
frequency response for the half-car over a wide range of
speed and design conditions. At higher speeds, remarkable
reductions in pitch response with only small costs in terms
of bounce response were shown. At low speeds, the situa-
tion is reversed. These behavioral features were shown to be
generic insofar as variations in mass center location, pitch
inertia and damping level were concerned, and the impli-
fications from the frequency responses were confirmed by
simulations with nonlinear asymmetric suspension damp-
ing.

Later on Sharp [10] discussed the rear to front stiffness
tuning of the suspension system of a car, through reference
to a half-car pitch plane mathematical model. He used new
results relating to the frequency responses of the bounc-
ing and pitching motions of the car body to show that the
pitch minimization mechanism of Olley’s Flat Ride tuning
“involves interference between the responses to the front
and rear axle inputs. He showed that interference with re-
spect to the rotational motion implies reinforcement with
respect to the translational motion, and vice versa. Sharp
conclude almost the same facts mentioned by Best and other
researchers before him, saying that at higher vehicle speeds,
Olley tuning is shown to bring advantage in pitch suppres-
sion with a very little disadvantage in terms of body accel-
eration. At lower speeds, he continues, not only does the
pitch tuning bring large vertical acceleration penalties but
also suspension stiffness implied are impractical from an
attitude control standpoint.

The flat ride problem was revisited by Crolla and
King [2]. They generated vehicle vibration response spec-
tra under random road excitations. Some results included
the wheelbase filter effect, while others did not. Olley and
reverse Olley designs were simulated at speeds of 10, 20,
30, and 40 m/s, with the result that Olley design was good
in pitch and bad in bounce in all cases. It was confidently
concluded that the rear/front stiffness ratio has virtually no
effect on overall levels of ride comfort.
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Figure 2. The bicycle model of a car is a beam of mass m
and mass moment /, sitting on two springs k; and k5.

In 2004, Odhams and Cebon investigated the tuning of a
pitch-plane model of a passenger car with a coupled suspen-
sion system and compared it to that of a conventional sus-
pension system, which followed the Rowell and Guest treat-
ment [5]. They believed that there is a significant benefit
from coupling front and rear suspensions; coupled suspen-
sions with a "Hydrolastic" or "Hydragas" systems, in which
the front and rear suspension struts are connected hydrauli-
cally, have proved very effective in some applications. The
concluded that the Olley’s flat ride tuning provides a near
optimum stiffness choice for conventional suspensions for
minimizing dynamic tire forces and is very close to optimal
for minimizing horizontal acceleration at the chest (caused
by pitching) but not the vertical acceleration.

3 Uncoupling the Car Bicycle Model

Consider the two degree-of-freedom (DOF) system in Fig-
ure 2 . A beam with mass m and mass moment / about the
mass center C is sitting on two springs k; and k, to model
a car in bounce and pitch motions. The translational coor-
dinate x of C and the rotational coordinate 6 are the usual
generalized coordinates that we use to measure the kine-
matics of the beam. The equations of motion and the mode
shapes are functions of the chosen coordinates.

The free vibration equations of motion of the system are:

m 0f[x n ki + ko ark, —arky X —0
0o I 9 ark, —arkq a%kz—i—a%kl 0 N

(1)

To compare the mode shapes of the system practically, we

employ the coordinates x; and x, instead of x and 6, The
equations of motion of the system would then be:

mas+1  maya, — 1

a + ar? a; + ax? |:x1:| n |:k1 0:|[X1:| —0
maiay — 1 ma% + 1 X2 0 kol|x2

ai+a*>  ay+ax?

2
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Let us define the following parameters:

I =mr 3)
SH )
m
03 = 2 )
m
12
B = (6)
aidap
2
o= @)
aiday
y=2 ®)
ai
Il =a; +as 9)

and rewrite the equations as

1— . Q2 0
o4y Cf )fl + 1 ) X1 =0 (10)
l—«o Ol+7 X2 0 Q5||x

Setting
1)

a=1

makes the equations decoupled

oa+y 0 ).6.1 Q% 0 X1 |
R ]l e

The natural frequencies w; and mode shapes u; of the sys-
tem are

1 I k 1
wl=——Q}=—— u = (13)
y +1 a, m 0
2 Y o2 Lk 0]
wy, = ——Q5 = —— up= 14
27 v +1 ay m > 1 14

They show that the nodes of oscillation in the first and sec-
ond modes are at the rear and front suspensions respectively.
The decoupling condition o = 1 yields

r? = aia, (15)

which indicates that the pitch radius of gyration, r, must
be equal to the multiplication of the distance of the mass
canter C from the front and rear axles. Therefore, by setting
a = 1, the nodes of the two modes of vibrations appear to
be at the front and rear axles. As a result, the front wheel
excitation will not alter the body at the rear axle and vice

versa. For such a car, the front and rear parts of the car act
independently. Therefore, the decoupling condition o = 1
allows us to break the initial two DOF system into two
independent one DOF systems, where:

ap

mr _mT = me (16)

mpg =mal—2 =m(l—¢) a7
ai

=— 18

£=7 (18)

The equations of motion of the independent systems will
be:

19)
(20)

m(l —e)¥1 + c1x1 + ki1xy =ki1y1 + c1)1
meXa + caXo + kaoxo =kays 4+ c2)2

The decoupling condition of undamped free system will
not necessarily decouple the general damped system. How-

ever, if there is no anti-pitch spring or anti-pitch damping
between the front and rear suspensions then equations of

motion
a+y l—al|]|i n 2812, 0 X1
l—a o+ ||i 0 260 ||

i Q% 0 X1 _
0 Q% X2 N
2812 0 N QF 0 ||
— + 21
[ 0 25292} [)"2:| {0 9%} |:)’2:| @D

%@ = LB (22)
%2 = 2 (23)

will be decoupled by o = 1.
oa+y 0 X1 C1 0 X1
1 . |t )
0 0[+; X2 0 ¢ X2
i Q% 0 X1 _
0 Q% X2
2612 0 y Q2 0
N T T e
0 25Q ||y 0 5] [»

The equations of motion of the independent system may
also be written as

(25)
(26)

m(l — &)Xy + c1x1 + kixy =c1y1 + ki

meXa + caXo + kaoxo =c2y2 + ka )2
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which are consistent with the decoupled equations 36 be-
cause of

27)

4 No Flat Ride Solution for Linear Suspension

The time lag between the front and rear suspension oscil-
lations is a function of the wheelbase, /, and speed of the
vehicle, v. Soon after the rear wheels have passed over a
step, the vehicle is at the worst condition of pitching. Olley
experimentally determined a recommendation for the opti-
mum frequency ratio of the front and rear ends of cars. His
suggestion for American cars and roads of 50s was to have
the natural frequency of the front approximately 80% of that
of the rear suspension.

To examine Olley’s experimental recommendation and
possibly make an analytical base for flat ride, let us rewrite
the equation of motion (25) and (26) as:

. . k ) k
X1+ 251x1 + m(l—l—g)xl =2&1y1 + m(l—l—e)yl (28)
. . kk kk
%y 4 26E10 + —— x5 =2EE1Y2 + — 2 (29)
me me
where,
£ ¢ €
== = — 30
3 P (30)
k2 kl &
k=-—==— 31
kl k2 1—¢ ( )
C1
= 32
€1 md—2) (32)
c
b= (33)
me

Parameters k and £ are the ratio of the rear/front spring rates
and damping ratios respectively.

The necessity to achieve a flat ride provides that the rear
system must oscillate faster to catch up with the front sys-
tem at a reasonable time. At the time both systems must
be at the same amplitude and oscillate together afterwards.
Therefore, an ideal flat ride happens if the frequency of the
rear system be higher than the front to catch up with the os-
cillation of the front at a certain time and amplitude. Then,
the frequency of the rear must reduce to the value of the
front frequency to oscillate in phase with the front. Fur-
thermore, the damping ratio of the rear must also change
to keep the same amplitude. Such a dual behavior is not
achievable with any linear suspension. Therefore, theoreti-
cally, it is impossible to design linear suspensions to provide
a flat ride, as the linearity of the front and rear suspensions
keep their frequency of oscillation constant.

5 Nonlinear Damper

The force-velocity characteristics of an actual shock ab-
sorber can be quite complex. Although we may express
the complex behavior using an approximate function, ana-
lytic calculation can be quite complicated with little design
information. Furthermore, the representations of the exact
shock absorber do not greatly affect the behavior of the sys-
tem. The simplest linear viscous damper model is usually
used for linear analytical calculation

FD = CUp (34)

where ¢ is the damping coefficient of the damper.

The bound and rebound forces of the damper are dif-
ferent, in other words the force-velocity characteristics dia-
gram is not symmetric. Practically, a shock absorber com-
presses much easier than decompression. A reason is that
during rebound in which the damper extends back, it uses
up the stored energy in the spring. A high compression
damping, prevents to have enough spring compression to
collect enough potential energy. That is why in order to get
a more reliable and close to reality response for analysis on
dampers, using bilinear dampers is suggested. It is similar
to a linear damper but with different coefficients for the two
directions [3].

FF{

where cpg is the damping coefficient when damper is ex-
tended and cpc is the damping coefficient when the damper
is compressed.

An ideal dual behavior damper is one which does not
provide any damping while being compressed and on the
other hand damps the motion while extending.

After using the nonlinear model for the damper, the mo-
tion had to be investigated in 3 steps for the front and same
for the rear. Ideally, the unit step moves the ground up in
no time and therefore the motion of the system begins when
y = 1 and the suspension is compressed. The first step
is right after the wheel hits the step and the damper starts
extending. The second step is when the damper starts the
compression phase, which the damping coefficient would
be equal to zero. The third step is when the damper starts
extending again. Each of the equations of motion should be
solved for the 3 steps separately in order to find the time and
amplitude of the third peak of the motion which have been
chosen to be optimal time for the flat ride to happen at.

Figure 3 illustrates the behavior of the car equipped with
a nonlinear damper when going over a unit step input.

CDEVD Extension

(35)

cpCcVUD Compression
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Figure 3. Response of the front and rear suspension of a
near flat ride car with ideal nonlinear damper to a unit step
input.

6 Near Flat Ride Solution for Ideal, Nonlinear
Damper

The conditions that x; and x, meet after one and a half
oscillations can be shown by equations (36) and (37).

X1 = X2 (36)

Ip1 = Ip2 37)

The equation resulted from x; = x,, (equation 38) has
got £ and & as its variables and could be plotted as an ex-
plicit function of the variables which interestingly shows
that the value for £ = £,/&; must equal to 1 for any value
for damping coefficient of the front suspension &;.

—0.8x 10718
@ - D=1

EQl =

_ﬂgl
x ( —0.3172834025 x 10'8¢ V=41 ¢¢2

—niy

+0.3172834025 x 10'8e V! ~¢1 ¢2

_”{']
+0.3172834025 x 10'8¢ V141 ¢2¢2
—0.3172834025 x 10'8e V' ~¢1

_ﬂzl
+0.130151797 x 10% V=41 /1 - £2¢3¢2
_ﬂ{-l

—0.3172834025 x 10% V=41 /1 — ¢3¢y

—n&ig
+0.3172834025 x 10'8¢ V!¢
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Figure 4. The value of spring ratio k = k,/kq versus t =
[ /v to have near flat ride with ideal nonlinear damping, for
differente = a;/1.

—n§1¢
—0.3172834025 x 10'8¢ V14147 ¢2
—n81¢
+0.3172834025 x 10'8¢ V1-¢1¢2
—ng1¢
—0.130151797 x 10% V"1 | J1 - 2023t

—nri1¢
+0.130151797 x 10%e V1 =612 \/1 — 520

(38)

Therefore, regardless of the value of &; the rear suspen-
sion should have an equal coefficient for the damper. The
equation resulted from tp, = f,, generates equation 39 to
determine k = k;/k;. Figure 4 illustrates the spring ratio
k = kp/k; versus T = [ /v, to have near flat ride with ideal
nonlinear damping, for different e = a; /1.

7l 1= G+ 1= me - 1)
(@ — Dk

w21 =287 +1-8%8])

@8-

EQ2 =

(39)
-7+

The average length of a sedan vehicle has been taken
equal to 2.6 meters with a normal weight distribution of a
front differential vehicle 56/44 heavier at the front. Using
the given information some other values can be calculated
as: a; = 1144 mm and a, = 1456 mm which yields to ¢ =
0.44. Considering the existing designs for street vehicles,
only the small section of 0.1 < v < 0.875 is applied. The
mass center of street cars is also limited to 0.4 < ¢ < 0.6.

Figure 5 shows how k varies with t for £, = 0.5 and
different ¢ to provide a near flat ride with ideal nonlinear
damper. For any ¢, the required stiffness ratio increases by
increasing t. Therefore, the ratio of rear to front stuffiness
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Figure 7. ¢ versus t, for different k for & = 0.3 to have
near flat ride with ideal nonlinear damping.

There will be a possibility of using the 7 vs. € diagrams
as a design chart, which has been illustrated using the values

in Table 1, by figure 10.

The box in figure 10, is indicating the values that the
spring rate should be having as the travelling speed of the

0.6
linear damper.

05

Figure 10. Design chart for a smart suspension with a non-

vehicle changes to provide the passengers with a flat ride,
in case of having a smart active suspension. The point on

the figure is an example for a passive suspension vehicle. It

is showing the required spring rate, for getting a flat ride in
a car with a wheelbase of 2.6 meters, traveling at 28 km/h.
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Table 1. Specification of a sample car.

Specification Nominal value
m [kg] 420
ay [m] 1.4
az [m] 1.47
[ [m] 2.87

k1 [N/m] 10000
ko [N/m] 13000
¢1 [Ns/m] 1000
¢ [Ns/m] 1000
B 4.00238
y 1.05
Q 95.2947
Q5 123.8832
& 0.05
& 0.0384

7 Conclusion

Olley’s flat ride tuning has been regarded as a rule for de-
signing chassis. The fact that these rules were based on ex-
perimental results, motivated many researchers to study and
validate these rules. In this study, has been tried to validate
Olley’s results analytically for the first time.

As a result of the dual behavior of the suspension which
is required to get the optimal flat ride, more accurate re-
sults were looked for using a nonlinear suspension system
for this analysis. The results prove that the forward speed
of the vehicle affects the flat ride condition, which agrees
with previous researchers’ results. In a passive suspension
syetem flat ride can be achieved at a certain speed only, so
the suspension system of a car should be designed in a way
which provides the flat ride at a certain forward speed.

A design chart based on the nonlinear analysis, for smart
active suspension systems has been provided which enables
a car with smart suspension system to provide flat ride at
any forward speed of the vehicle. The design chart can

be used for designing chassis with passive suspension for
a specified speed as well. examples of both of the above
mentioned conditions have been reviewed and discussed,
by using some numerical values from a sample car. The
research proves the effectiveness of Olley’s flat ride for get-
ting a more comfortable ride in cars, and considering the
shortcomings of the principles suggests better ways of im-
plementing them to the design of suspension systems for a
better and more effective flat ride tuning.
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