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Diagnosis of Nonlinear Oscillatory Behavior of a Fluttering Plate
with a Periodicity Ratio Approach
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Abstract. This research focuses on diagnosing the nonlin-
ear dynamic responses of a fluttering plate excited by high-
velocity air flow. An approach based on the Periodicity Ra-
tio method is developed such that the characteristics of a
nonlinear system subjected to nonperiodic excitations can
be diagnosed. The governing equations of the nonlinear dy-
namic responses of a fluttering plate are derived and solved
numerically. Eight modes of motion are used for obtaining
accurate results. With the implementation of the present ap-
proach, a regular-irregular region diagram is generated for
quantitatively analysing and directly visualizing the behav-
ior of the fluttering plate with varying system parameters.
Bifurcation of the plate’s motion is analyzed with utiliza-
tion of the regular-irregular region diagrams. The routes
from regular motion to irregular motion are investigated and
illustrated. Comparison is made with the diagnosing results
available in the literature. The present approach demon-
strates the efficiency and accuracy in the characteristic di-
agnosis for the fluttering plate.

Keywords. fluttering plate, nonlinear oscillation, aero-
dynamics, Periodicity Ratio, chaos, bifurcation diagram,
regular-irregular diagram, nonperiodic excitation, dynamic
aeroelasticity.

Nomenclature
D = plate stiffness
E = modulus of elasticity
h = plate thickness
K = spring constant
L = panel length
M = Mach number
m = model number
Ny = in-plane force
N ,Ea) = applied in-plane force
P — Poo = aerodynamic pressure
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Ap = static pressure differential across the panel
P =ApL*/Dh

q = pU?/2, dynamic pressure

R, =N9L?/D

r = mode number

s = mode number

t =time

Usx, =flow velocity

W =w/h

= plate deflection

= spring stiffness parameter
= (M2 —1)/?

=2qe’/BD

=pL/pmh

= Poisson’s ratio

T < ® ™R g

= air density
Pm = plate density
v =t(D/pmhLH'?

1 Introduction

Aeroelasticity plays an important role in the design of su-
personic and hypersonic aircrafts. The fluttering or os-
cillation of panel structures of these aircrafts induced by
the aeroelasticity would threaten the fatigue life and riding
quality of the aircrafts, even the safety of the aircrafts [1].
Due to the existence of the effects of the aerodynamic, in-
ertial and elastic forces, the dynamic behaviors of the flut-
tering plate become extremely complicated especially when
the speed of external fluid flow increases.

Earlier investigation of flutter plate was undertaken by
Dowell [2, 3]. The dynamic behaviors, including deflec-
tion, stress and frequency, under 2D and 3D, were analyzed
with respect to various parameters. In the survey-type pa-
per reported by Garrick and Reed [1], an overview of an
aircraft flutter in historical retrospective is presented by the
authors. The influence of maneuvering on the nonlinear re-
sponse of a fluttering buckled plate on an aircraft has been
studied by Sipcic [4], which suggests amplitude modulation
as a possible new mode of transition to chaos. The flutter
phenomenon in aeroelasticity and the mathematical analy-
sis are given by Shubov [5]. Models of fluid-structure inter-
action with precise mathematical formulations available are
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selected and analytical results are obtained to explain flutter
and its treatments. Due to the high velocity of fluid, thermal
effects caused by friction have to be taken into considera-
tion, which actually makes the problem more complicated.
Enormous work could be found in this area such as [6-10].

To study the motions of fluttering plate subjected to high-
velocity flow, which can be mathematically described by
nonlinear differential equations of aerodynamics, the crite-
ria for distinguishing a nonlinear motion such as chaos from
regular motions are crucial. Such criteria are also important
for analysing the nonlinear and regular behaviors of the sys-
tem. Numerous research and great contributions have been
made in investigating the characteristics of fluttering plates
by researchers and engineers as mentioned above. How-
ever, based on the current literature, Lyapunov-Exponent is
probably the most popular criterion used for diagnosing the
characteristics of the fluttering plates. It should be noticed,
nevertheless, Lyapunov-Exponent is suitable for describing
whether a response of the plate is convergent or divergent.
As recognized by the recent studies, a divergent response
may not necessarily be chaos and the convergent ones may
not all be periodic. Also, Lyapunov-Exponent cannot be
used to distinguish a quasiperiodic response from the other
linear or nonlinear motion of a fluttering plate [11]. There-
fore, a novel approach with high accuracy and reliability
and provides detailed information regarding the character-
istics of the fluttering plates is in demand.

The Periodicity Ratio approach, since first introduced by
Dai and Singh [12, 13] in their investigation of a Duffing’s
system, has demonstrated its effectiveness to characterize
the behavior of a nonlinear dynamic system in addition to
diagnosing chaos from regular motions and distinguishing
periodic motions from nonperiodic ones [11]. By the lit-
erature available to the authors, the application of this ap-
proach so far has been limited to the cases in which the pe-
riodical external excitations are involved. For the systems
of nonperiodic excitations, which are more general in the
applications of real world, the implementation of the Peri-
odicity Ratio approach has not been found. For the systems
with nonperiodic excitations, the direct analogy of the tech-
niques used in the previous research work is not suitable
and a new approach needs to be developed on the basis of
the Periodicity Ratio approach.

This research is to develop a method to diagnosing the
characteristics of a plate subjected to nonperiodic excita-
tions of high-velocity flow. With the method developed,
the responses of the fluttering plate are to be analyzed
with considerations of various varying systems parameters.
A regular-irregular region diagram will be generated, by
which the states of motion of the fluttering plate can be vi-
sualized and the diagram allows accurate and simultaneous
examinations of regular and irregular responses of the plate.
The regular-irregular region diagram generated in this re-
search will be compared with a similar diagram existing in
the literature. Bifurcation of the responses of the plate and

the transitions from one response to the others will also be
studied.

2 The governing equation for the motion of a 2D plate

The sketch of the fluttering plate considered in this research
is shown in Fig. 1. The panel, which has simply supported
boundaries, is a flat thin plate with infinite length in the y-
direction and length L in thex-direction. The thickness is
negligible in comparing with the other geometric dimen-
sions of the plate. The panel is subjected to a supersonic
flow over the outside surface with constant velocity Ueo.
Gravity is perpendicular to the plate. The plate is induced
to vibrate along the z-direction due to the loading generated
by the interaction between the high-velocity flow and the
plate, which is dominating and thus of great importance.

Z Yy

A
—  ——
Figure 1. Panel Geometry.

To obtain the governing equations of the motion of a 2D
fluttering plate, some assumptions adopted are presented
first as follows:

1. The von Karman’s large deflection plate theory is em-
ployed;

2. The effects of in-plane load and static pressure differ-
ential are taken into consideration;

3. The plate is undergoing cylindrical bending but no
span-wise bending;

4. The material of the plate is homogeneous and
isotropic;

5. With assumptions and conditions above, the motion
of the fluttering plate can be considered as two-
dimensional.

Based on the assumptions and conditions listed above, the
governing equation for the fluttering plate can be given
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as [1]:

4 2w

Dg o (N +N(")) 2—+ h8 5+ (P — Poo) =

(1)
where w is the deflection of the plate, D the plate stiffness,
Ppm and & the density and thickness of the plate, p — pso
the aerodynamic pressure where po, denotes the pressure
at infinite location from the plate, Ny and N ,Ea) the in-plane
force and applied in-plane force, Ap the static pressure dif-
ferential across the panel.

The in-plane force is calculated as

L
Ny = aEh/2L / (dw/dx)* dx )
0

where E is the modulus of elasticity, L the panel length, and
« the spring stiffness parameter which is presented as

a=KL/(KL + Eh)

Following the assumption of quasi-steady and supersonic
theory [17], the dynamic pressure can be obtained as

_ 2q [ow M? -2\ 1 dw
r-re= 5 () ow] @

U ot
where ¢ is dynamic pressure, 8 = (M2 — 1)'/2 and M the
Mach number, U the velocity of the fluid.
Applying the non-dimensionalization as follows:

§=x/L

T=t (D/,(),nhL“)l/2
W =w/h

A =2qL*/BD

w = pL/pmh

P = ApL*/Dh C))

where L and & the length and thickness of the plate, D the
plate stiffness, p,, the density of the plate, g is dynamic
pressure and Ap the static pressure differential across the
panel.

Substituting Egs. (2)~(4) into (1), the non-
dimensionalized governing equation can be expressed
as

1
w" —a6(1 — 1)2) |:/ (W/)2 dsil w’ — RxW”-l-
0

S L (M2 () )
012 M2—1)\BA ot [
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where « is the spring stiffness parameter, v the Poisson’s
ratio and Ry = N\9L2/D.

For large Mach number, M > 1, the simplified relation-
ship can be applied which reads

M>-27pn  p
— % —
M2—-1] B M
where p is the viscosity of the fluid.
Following the Galerkin Method [15], for simply sup-

ported plate, the non-dimensional displacement W (&, t) can
be expressed by the basis functions as

(6)

WE, r) = Z am(t) - sinmmé @)

m=1

where a,, represents the temporal variation modes.

For the sake of clarification and simplicity, in the follow-
ing, Eq. (6) will be used. Substituting Egs. (6) and (7) into
Eq. (5), then Eq. (5) can be rewritten as:

Zam(mzr)4 sinmmé + ab6(l — v?)x
2
s

+ Ry Zam (mm)*sinmm§ + Z

:| Z am (mm)? sinmmé+

d = sinmmE+

+)L|:Z am(mm) cosmné—}—(Mk) Z — smmn§:| =

=P ®)
By multiplying Eq. (8) by sin (mx§) and integrating over
the length of the panel, Eq. (8) can be reduced into a set of
ordinary differential equations.
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Eq. (9) is comprised of a coupled set of ordinary, nonlin-
ear differential equations with respect to time. For such a
complex nonlinear system, one may have to rely on numer-
ical solutions as the solutions of analytical form are very
difficult to obtain if not possible. In this research, the 4th
order Runge-Kutta method is employed for pursing numer-
ical solutions and performing numerical analysis [16]. It
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has been reported in [1] that to obtain accurate solutions,
at least 4 modes must be used. When the in-plane or static
pressure loading produces larger tension in the plate, more
modes would be taken into consideration. In this paper, un-
der the range of parameters applied, all the calculations are
performed using eight modes. The accuracy of the numer-
ical solutions is demonstrated against those obtained in [1]
and good agreement is obtained as shown in Fig. 2.
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Figure 2. The plate deflection against A (the continuous
line is obtained by the author, the dots by [1]).

In Fig. 3, the deflection shapes under different values of
R, are presented. The amplitude of deflection becomes
greater as R, decreases. Also, analysis of Figure. 1 in-
dicates the maximum deflection occurs at about & = 0.75.
The following calculation will be implemented at this point.
It is obvious that there are nonlinear effects other than the
one shown above. For Mach number of the order of one,
both the aerodynamic nonlinearities and the nonlinear struc-
tural effect of large curvature play the key role, while other
nonlinear effects are unlikely to be of any importance [1].
As a result, the following work will mainly focus on two
parameters, namely, R and A.

3 Nonlinear behavior charaterization with periodicity
ratio approach

3.1 Regular-irregular region diagrams corresponding to
varying parameters of the fluttering plate

The Periodicity Ratio approach, a criterion for distinguish-
ing between periodic, quasiperiodic and chaotic response of
a nonlinear system, was first introduced by Dai and Singh
[12] in their investigation of a Duffing system. This single
valued criterion is applied based on Poincare maps that for a

-1.2 i T T T ¥ T v T T 1
0.0 0.2

Figure 3. Panel Deflection Shape
(u/M =0.01,A = 200, p = 0.0).

periodic motion, the visible points demonstrating motion of
the same period in a Poincare map will eventually overlap
each other given a large enough period of time. However,
for a chaotic or quasiperiodic motion, overlapping points
range from a few to none in the Poincare map due to the
fact that they are randomly spread over the corresponding
phase plane. From this point of view, a criterion for ana-
lyzing the dynamic behaviors can be applied to consider the
overlapping points with the total number of points in the
Poincare map. To do this, a parameter called periodicity
ratio is defined as:

. NOP
y = lim

n—»oo n

(10)

In Eq. (10), NOP is denoted as the total number of periodic
points which are overlapping points and n represents the
number of all the points forming the Poincare map. NOP
can be obtained by the formula shown below:

k—1

NOP =¢(1)+ ) (k) P (]"[ {Xx1 + Xk1}> (11)
k=2

=1

In the equation above, ¢ (k) represents the number of points
overlapping the kth point in the Poincare map, and [] is the
symbol for multiplication. Xg;, Xy and P (z) are functions
expressed as

X1 = | X(to +kT) — X(zo + IT)| (12)

Xkl = |X(‘L’0+kT)—X(‘L’0+lT)| (13)
0 if z=0

£ = { I it z#0 (1
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As mentioned above, if the motion is pure periodic, all the
points in Poincare map will be overlapping points and they
would appear periodically so that ywill equal one. On the
other hand, if y is very small or even zero, the motion
clearly belongs to quasiperiodic or chaotic motion. When
y falls between 0 and 1, the motion is a mixture of both pe-
riodic and non-periodic motions. It is obvious that y can be
tread as a criterion of characterizing the dynamic behaviors
for regular and irregular motions. Its effectiveness and ac-
curacy have been proved in [14] considering Duffing equa-
tion.

However, by now the application of Periodicity Ratio
method is limited only to application on the dynamic sys-
tems of periodical external excitations. Direct employment
of Periodicity Ratio method to diagnose the fluttering plate,
whose motions are excited by the nonperiodical interaction
between high-velocity flow and plate, would give inaccu-
rate results and thus be unavailable. Therefore, when the
periodicity ratio method is applied to the specific case of
the fluttering plate, the difficulties caused by nonperiodi-
cal excitations must be overcome first, which causes a dif-
ficulty in the construction of the Poincare map. In [15], one
way to construct the Poincare map for such a case is intro-
duced when the points in Poincare map corresponding to the
nondimensional velocity W = 0 are selected. W = 0 indi-
cates the maximum deflection amplitude of the plate. Once
we find the way to draw the Poincare map, the periodicity
ratio method can be easily performed.

Eq. (11) is then modified as:

n k—1
NOP =¢(1)+ Y (k). P <]‘[ Wk,) (15)

k=2 =1

where

Wi = [Wie — Wi (16)

Wy represents the kth point on Poincare map, in con-
sidering that Wy is taken in a Poincare section where the
nondimensional displacement is the maximum.

However, to obtain the numerical solution, the point cor-
responding to W = 0 cannot be calculated exactly since the
numerical solution for the governing equation can only be
discretized and the fixed time step is applied when we use
the 4" order Runge-Kutta method. As a result, a process is
required to determine the approximate maximum deflection
points, which is presented as follows:

Suppose the series W, = W(t,) are the numerical solu-
tions, where subscript n represents 1, 2, ..., co. The values
which indicate the maximum deflection are chosen when

Wy > Wy—iland |Wy > Wyq1] . a7

To illustrate this clearly, a small portion of the wave di-

agram of the system is presented as shown in Fig. 4. The

dots in this figure represent the points selected for Poincare
map. As can be observed from Fig. 4, the motion is peri-
odic. The points in this figure can be grouped into four sets
and the points in each set have identical W values. There-
fore, there are only four sets of points visible and the others
are overlapped by these four points. This should be the case
no matter how large the time range is considered, provided
that the system maintains the stable periodic motion.

1.0 T T v T T T T T

0.5+ i

-0.54 B

-1.0 T T T ?
80.0 80.4

82.0

Figure 4. Wave diagram and points corresponding to
Poincare map.

In analysing the complex behavior of a nonlinear sys-
tem such as the fluttering plate under the excitation of high
speed fluid, it is practically convenient to have a diagram
in which the regions illustrating regular and irregular re-
sponses of the system can be plotted corresponding varying
system parameters. Specifically, with the diagram, the ir-
regular responses of a nonlinear system can be directly vi-
sualized in reflecting the system parameters. To construct
such a diagram to show regular and irregular regions, R,
and A are taken into consideration as the varying parame-
ters. The diagram is known as the region diagram hereafter.
Corresponding to the two parameters a region diagram is
plotted as shown in Fig. 4. Though the two system param-
eters are used for the diagram, however, the other system
parameters can be considered if so desired.

In Fig. 4, the red color represents regular region, while
the blue mean irregular region. Other colors represent the
motion between the stable and unstable motions. This fig-
ure provides a global picture of the properties of the motion
of the plate. It can be seen that most of the region of the
graph consists of stable points.

The region diagram Fig. 5 compares well with the re-
sults reported [1] except in two areas. As mentioned above,
the periodicity ratio is determined by the characteristics of
overlapping points, which are generally distributed into sev-
eral sets of overlapping points. By summing up the sets’
number obtained in computing periodicity ratio, the regular
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Figure 5. Region Diagram.

motion can be easily distinguished as stable, simple har-
monic and double periodical motions etc., shown as Fig. 6.
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Figure 6. Contour of the sets of overlapping points.

In comparing with the corresponding diagram in [1] and
that in Fig. 6, the first difference is about the point where
Ry/m? = —5and A = 350. According to [1], the motion
at this point is simple harmonic. However, based on the PR
method, the number of set is more than 2, which actually
implies a complicated periodical motion. As illustrated by
the wave trajectory in Fig. 7. For this point, the motion is
periodic but not simple harmonic.

2L 4

99.2 99.6

T

98.0 98.4 98.8 100.0

Figure 7. Wava Diagram (R, /7% = —5,1 = 350).

Another area shows difference from that of [1] is the re-
gion demonstrated as periodic but not simple harmonic in
[1]. The motion in this area consists not only complicated
periodical motions, but also irregular motions according to
Periodicity-Ratio obtained. This is the motion correspond-
ingto Ry /m? = —4and A = 200. The corresponding phase
trajectory is presented in Fig. 8. It is evident that the motion
in this case is chaotic but not periodic or regular.
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Figure 8. Phase trajectory of chaotic motion
(Rx/m? = —4,1 = 200).

In fact, the patterns of motion are different from region
to region. Region with one type of motion can be easily dis-
tinguished from the other region in which the motion is dif-
ferent with implementation of PR approach. Four types of
motion within the range of the parameters are considered.
As illustrated in Fig. 9, dark blue represents flat motion,
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green represents buckled motion, yellow denotes regular os-
cillation and red is irregular oscillations. Three patterns of
stable responses of the system are chosen from Fig. 9 and
illustrated by the wave diagrams and phase trajectories in
Figs. 10-12.

R T 5.0
R, /m?

Figure 9. Patterns of Motions.

From the figures listed above, it can be recognized that
among the stable motions, some reach a final static point as
demonstrated in Figs. 10 and 11, and the others tend to con-
verge to a simple harmonic oscillation as shown in Fig. 12.

3.2 Transition from a regular point to irregular points

As mentioned above, the regular and irregular region di-
agrams can be conveniently constructed by implementing
the periodicity ratio method and then be applied to analyze
the dynamic behavior of the fluttering plate. Also, the dia-
gram can be used to capture the routes from regular motions
to irregular motions. Irregular regions are surrounded by or
bounded with regular region, which is observed through the
regular-irregular region diagram. By changing either one
or both of the control parameters in the system, the routes
from regular motion to irregular motions can be identified.

As shown in Fig. 5, along a fixed horizontal line A =
200, motions of the system vary from stable to simple har-
monic, then to irregular. This variation of motion is illus-
trated in the bifurcation diagram of Fig. 13. Starting from
R, = 0, a dynamically stable and static motion is obtained
for which the corresponding Poincare map consists of only
one set of points over the selected time range. As the value
of R, decreases, bifurcation of the system occurs. When
R, /m? reaches approximately —1.85, a periodic oscillation
is observed. Irregular motion appears when R, /72 is less
than —3.38.

Similarly, the transition from irregular motion to regular
motion along the vertical line R, /m? = —4 is also demon-
strated in Fig. 5. The corresponding variation is depicted
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Phase Trajectory

Figure 10. Flat Motion (R,C/JT2 =—-1,A= 100).

in the bifurcation diagram of Fig. 14, where the motion be-
comes irregular when A exceeds 114 and returns to regular
after A surpasses 225.

4 Conclusion

The dynamic behavior of a fluttering plate can be very com-
plex. The model used in this research describes a nonlinear
plate system subjected to the nonlinear excitations of high
speed fluid. In order to quantitatively analyze the charac-
teristics of such a complex system, a new approach based
on the Periodicity Ratio (PR) method is introduced. Most
of the studies on the nonlinear behavior with employment
of PR method are for the systems subjected to periodic
excitations. The present approach constructs the Poincare
maps with considerations of the maximum deflections of
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Figure 11. Buckled and stable motion
(Rx/n2 =-3,A= 50).

the plate. The Poincare maps such constructed therefore
the PR values determined based on the Poincare sections
better reflect the responses of the nonlinear fluttering plate
and show great advantage in analyzing the behavior of the
plate system.

With employment of the present approach, regular and
irregular responses of the fluttering plate subjected to non-
periodical external excitations can be efficiently studied. A
regular-irregular region diagram for the plate system is plot-
ted with the results obtained. In comparing with the pub-
lished results in the literature, the results and the regular-
irregular region diagram of the present research reflect more
accurately and completely the behavior of the plate system.
Some of incorrect results in the previous publications are
also identified. Yet, with employment of the present ap-
proach, no single plot such as phase diagram and wav form

Z 0 |||
|
=
i [ 1 | 1
2O ) 11[_) 15 20
Wave Diagram (harmonic)
30
15
-
2 4k
2
©

730_””|‘...|HH|HH

Phase Trajectory

Figure 12. Limit Cycle Oscillation
(Rx/m? = =3, = 300).

diagrams is needed in constructing the regular-irregular re-
gion diagram. Although the regular-irregular region dia-
gram presented considers the two parameters of the system,
the region diagrams for the other system parameters can be
easily constructed with the same approach.

As demonstrated in the research, the present approach
show high efficiency in analyzing and directly visualizing
the responses of a complex nonlinear system. Pattern of
the routes to irregular motion may also be conveniently in-
vestigated with the present approach, such as the route of
buckling — periodic oscillations — irregular motions. The
present research may provide a practically sound guidance
to the researchers and engineers in identifying the charac-
teristics of the nonlinear fluttering plates and thus avoiding
the design that may lead to unwanted responses.
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Figure 14. Bifurcation Diagram (Rx / 72 = —4).
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