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Abstract. Large amplitude free vibration behavior of thin,
isotropic rectangular plate configurations are expressed in
the form of simple closed-form solutions by using an appli-
cation of the Ritz method based on coupled displacement
fields. Influence of plate aspect ratio (%) and Poisson ratio
(v) on the behavior of back-bone curves is briefly discussed
for various boundary configurations of the rectangular plate.
Proposed closed-form solutions are corrected for the simple
harmonic motion (SHM) assumption using the well estab-
lished harmonic balance method which is applicable for the
homogeneous form of cubic non-linear Duffing equation.
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Nomenclature

a = length of the rectangular plate
b = width of the rectangular plate

C= axial rigidity of the plate ((15};2))

EHR3
12(1—v2)

D = flexural rigidity of the plate

E = Young’s modulus

h= thickness of the plate

Ny, Ny and N,y = in-plane stress resultants
My, My, and M, = moment resultants

u = displacement in x-direction

v = displacement in y-direction

U = strain energy of the plate

w = transverse displacement
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T = kinetic energy of the plate

X, y = in-plane co-ordinates

z1 = maximum reference amplitude of the rectangular
plate

%‘ = maximum reference amplitude to thickness ratio

€x, €y and €, = in-plane strain terms

phwy %a* )

Ar = linear frequency parameter ( 4D

AnL, =non-linear frequency parameter obtained

. . h 2,4
on the basis of SHM assumption %)

PthL2d4)

AnL = non-linear frequency parameter ( %

v = Poisson ratio

VYx, ¥y and ¥y, = curvature terms

Subscripts

L = linear

NL = non-linear

N L g =non-linear based on harmonic motion
assumption

x = partial derivative with respect to x

xx = second partial derivative with respect to x

y = partial derivative with respect to y

yy = second partial derivative with respect to y

xy = partial derivative with respect to x and y

1 Introduction

Large amplitude free vibration behavior of plates [1-18]
have received considerable attention by various researchers
due to its relative importance to the field of structural en-
gineering. Leung and Mao [7] applied an Hamilton’s for-
mulation and symplectic integration methods to investigate
the non-linear vibration behavior of beams and plates. Am-
abili and Carra [10] investigated the experimental large
amplitude forced vibration behavior of thin rectangular
plate carrying different concentrated masses. Recently,
Gunda [11, 12] simplified the problem of thermal post-
buckling and large amplitude free vibration behavior of var-
ious square plate configurations resting on elastic founda-
tion in the form of simple closed-form solutions by using
an application of coupled displacement fields (CDF) in the
Rayleigh-Ritz method. Leissa [13] discussed the historical
basis of Rayleigh and Ritz methods and concluded that the
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Rayleigh’s name should not be attached to the Ritz method.
Comprehensive literature review pertaining to the large am-
plitude free vibration behavior of plates is already discussed
by the author in the Ref. [11] and not much attention is fo-
cused here on the same.

The main objective of the proposed work is to revisit the
applicability of the study proposed and assumptions stated
in the Ref. [11] for evaluating the large amplitude free vi-
bration behavior of thin, isotropic rectangular plate config-
urations. Numerical accuracy of the proposed closed-form
solutions related to the rectangular plates are compared with
the available literature values which indicates the versatile
nature of the formulation discussed in Ref. [11]. Influence
of plate aspect ratio () and Poisson ratio (v) on large am-
plitude free vibration behavior of various thin rectangular
plate configurations is briefly discussed.

2 Large Amplitude Free Vibration Analysis of Thin
Rectangular Plates: Simple Closed-form Solutions

Fig. 1 shows a typical thin rectangular plate, where the in-
plane displacements of the plate are assumed to be con-
strained which induces the von-Kdrmén type of geometric
non-linearity due to the membrane stretching action of the
plate. Following assumptions are used for the analysis of
thin rectangular plates considered in this study:

* Material of the plate is elastic, homogeneous, and
isotropic.

* The straight lines, initially normal to the plate median
surface before deformation, remain straight and nor-
mal to the middle surface during the deformation, and
the length of such elements is not altered.

» Shearing forces, Nx, and N, are assumed to vanish
or Nyy and N, may remain as constant.

» Edges at x=0 and x=a are free to move in the y-
direction and edges at y=0 and y=b are free to move
in the x-direction.

The third assumption stated here is slightly different with
reference to the assumption stated in the author’s previous
works [11,12] which deals with the analysis of square plates
where the membrane stretching forces are assumed to be
uniform on either side of the square plate and subsequently
it is assumed that it results in the absence of shearing forces.
In case of a rectangular plate, it is assumed that the net re-
sultant stretching forces (Ny and N, ) may not be equal in
magnitude on either side of the plate and the net resultant
shearing forces (Nx, and Ny) are assumed to remain as
constant. However, the formulation discussed in Ref. [11]
remains unaffected with the above stated assumption and di-
rectly it can be applied for the analysis of rectangular plates.

u=07 =

Figure 1. A rectangular plate subjected to in-plane forces
(In-plane displacements are constrained to move as shown
in this figure).

The strain-displacement relations of a plate mid-plane
considering the von-Kdrman type of geometric non-
linearity are expressed as follows

1
€x =ux+_wx2 (1)

2

1
€y =uy + Ewyz 2)
€xy = Uy + Ux + WxWy 3)
Yx = —Wxx 4
Yy = —wyy )
ny = _zwxy (6)

Strain energy of a thin rectangular plate can be expressed
in terms of its in-plane strains and curvature terms as fol-
lows

1 b pra 1—
U= —/ / C [exz + €y% + 2verey + (—U)exyz:|
2Jo Jo 2
2 2 (1-v) 2
+D | Yx" + ¥y + +20Yx ¥y + way dxdy (7)

The kinetic energy of the rectangular plate, neglecting
in-plane inertia, with the assumption of SHM can be ex-
pressed as follows

1 b pra w2 b pa
T = —phf / wrdxdy = —ph/ / w?dxdy
20 Jo Jo 2 o Jo ®

Where w denotes the first derivative of w with reference to
time.
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Table 1. Approximate lateral displacement field (w(x, y))
variations assumed in Ritz method for various rectangular
plate configurations (H-Hinged,C-Clamped,G-Guided).

Boundary w
Configuration
HHHH

cccc 2 (1 —cos (2 Z%)) (1 —cos (2 52))
CHCH 2 (1 —cos (2 Z%)) sin (52)
HHGG Z1 COS (%) cos (’;—b)

CCGG 2 (1 —cos (££)) (1 —cos (%))

The total potential energy of the rectangular plate can be
expressed as follows

n=uv-T ©)]

Following author’s previous work [11] considering the

above stated assumptions, the in-plane displacement field
(u) can be simply expressed as follows:

U= —/ (/(wxwxx — vawxy)dx) dx + Cix + Cy
(10)
Where C; and C, are constants of integration and these
constants can be obtained by using the immovable in-plane
edge boundary conditions (1(0, y) = 0 and u(a, y) = 0)
along the x-direction of the plate.
Similarly, following the author’s previous work [11], the
in-plane displacement field (v) can be simply expressed as
follows:

v = —/ (/(wywyy — vwxwxy)dy) dy + C3y + Cy
an

Where C3 and Cy4 are constants of integration and these
constants can be obtained by using the immovable in-plane
edge boundary conditions (v(x,0) = 0 and v(x,b) = 0)
along the y-direction of the plate.

Assumed approximate lateral displacement field varia-
tions for various rectangular plate configurations are shown
in Table. 1 (which satisfy the essential boundary conditions
shown in Table 2). Egs. (10) and (11) are used to derive an
approximate in-plane displacement field variations of the
plate, where the immovable in-plane edge boundary condi-
tions of the plate are discussed in Table 2. In-plane displace-
ment field variations obtained by using Eqgs. (10) and (11)
are shown in Tables 3 and 4.

These assumed (w) (Table 1) and derived displacement
field variations (4 and v) (Tables 3 and 4) obtained by us-
ing Egs. (10) and (11) are substituted in the strain energy
(U) and the kinetic energy (7)) expressions. Minimiza-

tion of the total potential energy (371_{ = O) (Eq. (9)) ex-

pression with reference to the unknown displacement field
co-efficient (z;) results in linear frequency parameter when
linear strain displacement relations are used for each bound-
ary configuration. The use of non-linear strain displace-
ment relations in the process of minimization of total po-
tential energy (IT) results in arriving at simple closed-form
expressions for the non-linear frequency (wnr, ) of the
rectangular plate based on the SHM assumption. The non-
dimensional parameters obtained corresponding to the lin-
ear and the non-linear frequency parameters of various rect-
angular plate configurations are shown in Tables 5 and 6.
Observation of the closed-form solutions presented in Ta-
ble 6 indicates that the plate exhibits conventional cubic
nonlinearity which is governed by the homogeneous form
of Duffing equation. Frequency parameters (Ayz,, ) pre-
sented in Table 6 are obtained on the basis of SHM assump-
tion and these expressions can be corrected by using the har-
monic balance method (HBM) discussed in Refs. [16, 17].
The non-linear frequency parameters (A7) which are ob-
tained after correcting for the SHM assumption using the
HBM method discussed in Refs. [16, 17] are indicated in
Table 7. For the sake of brevity, the HBM method is not
discussed here and readers can refer to these Refs. [16-18]
for more details on HBM.

3 Results and Discussion

Numerical accuracy of the closed-form solutions presented
in Tables 5, 6 and 7 by using the Ritz method based on
coupled displacement fields approach are compared to the
available literature values in Tables 8 and 9 for various as-
pect ratio (% =1.0 and 2.0) of the plate. Poisson’s ra-
tio is considered as 0.3 for all the numerical calculations
shown in this study. It can be observed that the numeri-
cal results presented in Tables 8 and 9 by using the Ritz
method based on CDF approach shows good comparison
with available literature values for the non-linear to linear
frequency ratios % or % obtained with or with-
out the assumption of SHM. For few boundary configura-
tions numerical results are not readily available for com-
parison purpose and for these configurations numerical re-
sults are presented for future reference. Linear frequency
parameters obtained from the commercially available finite
element software (ANSYS) [19,20] are compared with the
present results for all the boundary configurations. Figs. 2-3
shows the influence of plate aspect ratio (%) on the behavior
of back-bone curves of various rectangular plate configura-

tions for v=0.3. In general, it is observed that non-linear to
ONL

linear frequency ratio increases with an increase in

plate aspect ratio of the plate for any given maximum ref-

erence amplitude of the plate. Finally, influence of Poisson
. o . (N

ratio (v) on variation in frequency ratio o

Fig. 4 for various plate configuration which indicates that

is shown in
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Figure 2. Back-bone curves indicates the influence of aspect ratio (%) of various rectangular plates obtained by using the
proposed closed-form solutions for v=0.3
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Table 2. Essential edge boundary conditions considered for the various rectangular plate configurations with the addi-
tional in-plane displacement constraints (1(0, y)=u(a, y)=v(x, 0)=v(x, b)=0).

S.No. Plate Boundary conditions on w
configuration

1 HHHH w(0,y) =w(x,0) =w(a,y) =wx,b)=0

2 CCccC w(0,y) = w(x,0) =w(a,y) =w(x,b)=0
w'(0,y) =w (x,0) = w'(a,y) = w(x,b) =0

3 CHCH w(0,y) = w(x,0) =w(a,y) =w(x,b)=0
w'(0,y) = w'(@,y) =0

HHGG w(0,y) = w(x,0) =w'(a,y) =w (x,b) =0
5 CCGG w(0,y) = w(x,0) = w' (0, y) = w (x,0)

w(a,y)=w'(x,b)=0

in general an increase in Poisson ratio (v) results in an in-
crease in frequency ratio for any given maximum reference
amplitude of the plate.

4 Conclusions

Large amplitude free vibration behavior of thin, isotropic
rectangular plates are expressed in the form of simple
closed-form solutions by using the Ritz method based on
CDF approach. Geometric non-linearity of von-Karman
type is taken into consideration which accounts for mem-
brane stretching action of the rectangular plate. Numeri-
cal accuracy of the proposed closed-form solutions obtained
from the Ritz method are compared to the available litera-
ture results which indicates the wider applicability of the
formulation discussed in the Ref. [11].
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