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Abstract. This paper describes an underwater glider mo-
tion control system intended to enhance locomotive effi-
ciency by reducing the energy expended by vehicle guid-
ance and control. In previous work, the authors obtained an
approximate analytical expression for steady turning mo-
tion as a regular perturbation from wings level flight. Using
this steady turn solution, one may easily construct feasible,
energy-efficient paths for a glider to follow. Because the
turning motion results are only approximate, however, and
to compensate for model and environmental uncertainty,
one must incorporate feedback to ensure precise path fol-
lowing. This paper describes the development and numeri-
cal implementation of a feedforward/feedback motion con-
trol system for a multi-body underwater glider model. The
feedforward component issues actuator commands based on
the analytical solution for a desired steady flight condition
while the feedback component compensates for uncertainty
and disturbances.

Keywords. Underwater glider, Motion control, Stability,
Steady flight, Slowly varying system.

1 Introduction

Remote sensing from spacecraft aids ocean scientists by
providing broad, dense measurements of ocean surface
properties. However, only limited measurements under the
ocean’s surface can be made, typically with ocean profil-
ing floats that drift with the currents. Marine scientists are
beginning to rely more heavily on autonomous underwater
vehicles (AUVs), however, to gather critical oceanographic
data. An underwater glider is a special form of AUV that
changes its buoyancy in order to sink and rise, while a fixed
wing generates lift to propel the vehicle forward. The ve-
hicle uses servo-actuators to shift its center of gravity (CG)
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relative to the center of buoyancy (CB) in order to control
its pitch and roll attitude. By appropriately cycling these
actuators, an underwater glider can control its flight path
and propel itself with great efficiency. Because underwater
gliders spend most of their time in stable, steady motion,
expending control energy only when changing their equi-
librium state, and because they are extremely robust, they
have the capacity to stay in water for months collecting a
large amount of horizontal and vertical in-situ data. For
example, Rutgers University Coastal Ocean Observation
Lab (RU-COOL) has flown battery powered Slocum Glid-
ers over 62000 km in partnership with Teledyne Webb Re-
search in different endurance flights [15]. (Figure 1 shows
a solid model of the Slocum gilder.) The success of the first
generation of underwater gliders including Slocum [30],
Seaglider [5], and Spray [27] in deep sea exploration moti-
vated a variety of new designs for different applications in
shallow water ( [33] and [31]).

Figure 1. The underwater glider Slocum solid model in
Rhinoceros 3.0 [9]

Mass 50 (kg); Length 1.5 (m); Wing Span 1 (m); Diameter
0.2 (m).

Extensive work regarding dynamics and control systems
of Underwater Gliders has been developed [1, 2, 8, 10, 14].
With increased interest in using underwater gliders for lit-
toral surveillance and military applications, stability and
performance analysis of underwater gliders, particularly
in turning motion, has been the subject of several pa-
pers [6,20,34]. Related research has focused on cooperative
control of glider “schools” to improve measurement quality
and robustness [19, 24, 28], as well as underwater localiza-
tion, which is important in applications that require more
precision than dead reckoning [3,29].

In developing a feedback control law for an underwater
glider, Leonard and Graver in [10, 18] mentioned the po-
tential value of “complementing the feedback law with a
feedforward term which drives the movable mass and the
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Figure 2. [llustration of point mass actuators.

variable mass in a predetermined way from initial to final
condition.” We consider a feedforward/feedback structure
for the motion control system as explained in [23]. The
feedforward term drives the servo-actuators and the buoy-
ancy bladder to predetermined values obtained from the an-
alytical solution presented in [20], corresponding to some
desired steady flight condition. The feedback term com-
pensates for the errors due to the approximation and en-
vironmental uncertainty. Steady motions can then be con-
catenated to achieve compatible guidance objectives, such
as waypoint following.

Our aim is to develop implementable, energy-efficient
motion control strategies that further improve the inherent
efficiency of underwater gliders. Section 2 describes a gen-
eral dynamic model for an underwater glider. Section 3
reviews the conditions for wings-level gliding flight given
in [11] and the approximate conditions for steady turning
flight developed in [20]. The motion control system de-
sign is presented in Sections 4 through 5 and the stability
of the closed loop system is analyzed in Section 6. Simula-
tion results for the Slocum model given in [2] are presented
in Section 7. Conclusions of the work and a description of
ongoing research are provided in Section 8.

2 Vehicle Dynamic Model with Actuator Dynamics

The glider is modeled as a rigid body (mass m) with two
moving mass actuators (m,, and mpy) and a variable ballast
actuator (my,). The total vehicle mass is

My = My + Mp, +mpy + my,

where my, can be modulated by control.

The vehicle displaces a volume of fluid of mass m. If
m := m, — m is greater than zero, the vehicle is heavy in
water and tends to sink while if m is negative, the vehicle
is buoyant in water and tends to rise. Figure 2 shows the
simplified model for the underwater glider actuation sys-

tem. The variable mass is represented by a mass particle
my, located at the origin of a body-fixed reference frame.

The vehicle’s attitude is given by a proper rotation ma-
trix Rg which maps free vectors from the body-fixed refer-
ence frame to a reference frame fixed in inertial space. The
body frame is defined by an orthonormal triad {b1, b5, b3},
where b, is aligned with the body’s longitudinal axis. The
origin of a body-fixed reference frame is located the center
of volume of the vehicle as illustrated in Figure 2. The iner-
tial frame is represented by an orthonormal triad {i1, i3, i3},
where i3 is aligned with the local direction of gravity. To
define the rotation matrix explicitly, let vectors e; define the
standard basis for R3 fori € {1,2,3}:

1 0 0
e, = 0|, e= 1 , and ez = 0
0 0 1

Also, let the character * denote the 3 x 3 skew-symmetric
matrix satisfying ab = a x b for 3-vectors a and b. The
rotation matrix Ry is typically parameterized using the roll
angle ¢, pitch angle 6, and yaw angle v:

Ri(p,0,¥) = 03V 20,19

where
o0 1
o _ ~ nn nxn
e —E n!Q for Q € R"™".
n=0

Letv = [u, v, w]T represent the translational velocity
andletw = [p, ¢, r]T represent the rotational velocity of
the underwater glider with respect to inertial space, where
v and @ are both expressed in the body frame. Letting y
represent the position of the body frame origin with respect
to the inertial frame, the vehicle kinematic equations are

(D
2)

)} = vﬁ[Bv

eRIB = RIB(‘)-
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In terms of these Euler angles, the kinematic equations (1) and (2) become, respectively,

X cosfcosy singsinfcosy —cosgsinyy  cos¢sinf cos Y + sin ¢ sin Y u
Yy | =| cosfsinyy cos¢cosy +singsinfsiny —sing cosy + cos¢ sin 0 sin Y v
z —sinf sin ¢ cos 0 cos ¢ cos 6 w
é 1 singtanf cos¢tan6 )4
6 =10 cos ¢ —sin¢ q
v 0 singsecf cos¢sech r

As indicated in Figure 2, the mass particle m,, is constrained to move along the longitudinal axis while the mass particle
my, is constrained to move along the lateral axis:
rp, = rp,e; and Fp, = I'p€2

X

Following [32], define the mass, inertia, and inertial coupling matrices for the combined rigid body/moving mass/variable
ballast system as

Lojppp = Iip — mp Py Fp, — My, Fp, Fp,
Mrb/p/b = mV]I
Coojp/p = MupFry + mp Py + my Fp,

where I represents the 3 x 3 identity matrix. The rigid body inertia matrix I, represents the distribution of mass my, and
is assumed to take the form

Ixx 0 _I)CZ

_Ixz 0 Izz

where the off-diagonal terms in I, arise, for example, from an offset center of mass ry, = [x, 0, Zrb]T. It is notationally
convenient to compile the various inertia matrices into the generalized inertia matrix My, /p.

Lio/p/o Ciofp/o  MpFpe1 my Fpes
T
M _ Crb/p/b Mrb/P/b mp.€1 np, €2
b/p/b = T A T 0
_mpxel rpx mpxel me
T~ T
—mp e Fp, My e, 0 Mp,

The generalized added inertia matrix is composed of the added mass matrix My, the added inertia matrix Iy, and the added
inertial coupling matrix Cs:
1 f Cf O 3x2
Mf = C fT M f O 3x2
O2x3 O2x3 O2x2

The generalized added inertia matrix accounts for the energy necessary to accelerate the fluid around the vehicle as it
rotates and translates. In notation similar to that defined by SNAME (714,

,!,f,,i,gf,, Ny, N; N;iN; N, Ny
SARTY B  A
Y, Y, Y: Y. ¥, Yy

'In SNAME notation, roll moment is denoted by K rather than L
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The generalized inertia for the vehicle/fluid system is

M = Myy/pp + My =

1 C mpjpxel mpyfpy82
cT M mp. eq mp, ez 3)
—mp.ef Fp, mpef My, 0
—mpyeszpy mpyezT 0 mp,

where the inertia I, mass M, and coupling C matrices are
defined as follows:

Loy + It
Mrb/p/b + M;

1
M
C = Cypppt G
Let pgys represent the total linear momentum of the vehi-
cle/fluid system and hgy, represent the total angular mo-
mentum both expressed in the body frame. Let p, and py,
represent the total translational momentum of the moving
mass particles expressed in the body frame. Defining the
generalized velocity p = ( @ o7 7, #, )T and the
generalized momentum v = ( AL pT o p, py )7,
we have

v =My @)

The dynamic equations in mixed momentum/velocity
notation are

hsys :hsys X @ + Psys XV + (mwgrm + mp &rp,+
mpygrpy) X (eﬂé%) + Tvisc

psys =Psys X @ + "38(35313) + Flisc 5

Dp, =€1 - (pr X ® + mpxg(eﬂlj];iS)> + up,

Pp, =€2° (ppy X @ + mpyg(eﬂéh)) + U,

Ii’lb =Uyp

where the terms Ty;s. and Fy;, represent external moments
and forces which do not derive from scalar potential func-
tions. These moments and forces include control moments,
such as the yaw moment due to a rudder, and viscous forces,
such as lift and drag.

The forces up,, and i, can be chosen to cancel to re-
maining terms in the equations for p,, and py, , so that

ppx = upx
Pp, = Up,.

The new inputs up, and u, may then be chosen to servo-
actuate the point mass positions for attitude control, subject
to limits on point mass position and velocity. (Physically,

these actuators might each consist of a large mass m,_ or
my, mounted on a power screw that is driven by a servo-
motor.) The mass flow rate uy, is chosen to servo-actuate
the vehicle’s net weight, again subject to control magnitude
and rate limits. These magnitude and rate limits are sig-
nificant for underwater gliders and must be considered in
control design and analysis.

The viscous forces and moments are expressed in terms
of the hydrodynamic angles
o = arctan (E) and B = arcsin (2)

u V
where V' = ||v||. The viscous force and moment are most
easily expressed in the “current” reference frame. This
frame is related to the body frame through the proper ro-
tation

Rpc(a. f) = e 42238 =

cosacosfB —cosasinff —sina
sin 8 cos B 0
sinecosfp —sinasinf  cosa

For example, one may write

V cosa cos B
V sin 8
V sina cos

v = Rpc(a,f)(Vey) =

Following standard modeling conventions, we write

D(a)
8gpB + S5, 0r
Lot

Fvisc = _GRBC(C‘”B)

and

Lgp
Mo
NgB + N5, 0r

Equations (1), (2), and (5) completely describe the mo-
tion of an underwater glider in inertial space. In studying
steady motions, we typically neglect the translational kine-
matics (1). Moreover, the structure of the dynamic equa-
tions (5) is such that we only need to retain a portion of the
rotational kinematics (2). Given the “tilt” vector { = eﬂlgi 3
(i.e., the body frame unit vector pointing in the direction of
gravity), and referring to equation (2), it is easy to see that
¢ = ¢ x ®. The reduced set of dynamic equations, with
buoyancy control and moving mass actuator dynamics ex-
plicitly represented, are:

Ty = Dyow +

hsys :hsys X @ + Psys XV + (mwgrm + mp, g¥p,+
my, 8rp,) X & + Tise
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psys =Psys X @ + nﬁgi; + Fuise

(=t xw (6)
Pp =Up,
Py, =y,
My, =Uyp

As mentioned previously, equations (6) are written in
mixed velocity/momentum notation. To design a control
system, we convert these into a consistent set of state vari-
ables by computing

=M1 MM M v] (7

v=Mp

where M is the time derivative of the generalized inertia:

1 C my Fp€1  myFper
M CT @3)(3 Oe1 Oe2
- TA T
—mp.ei rp.  Oej 0 0
TA T
—mpe, Iy, Oey 0 0
with
I = —my (Fp Fp, + Fp Fp) —myp (Fp Fy, + Fp Fp )
C = merPx + mPery'

3 Steady Flight

In wings-level, gliding flight the vehicle has zero angular
velocity (w = 0), zero lateral velocity component (v = 0,
so that B = 0), and zero roll angle (¢ = 0). Also, Tp, = 0
and §r = O (if the vehicle has a rudder). Following the
analysis presented in [11], one may compute the required
CG location (r) and the required net mass 1 for balanced
gliding flight at a specified speed and glide path angle. Let y
denote the glide path angle; in wings-level flight, y = 0 —«.
For steady wings-level flight at a specified speed V, and
glide path angle yo = 09 — ),

0
Iy = Mvg xvo + | My x §o + 080
mepg 0
(8)

1
o =2 (cos (yo)Lawo — sin (yo)D (0. 0)) . €)

In the equation for ry,, vo = Vo [cosag, 0, sin ao]T, Co =
[—sin By, O, cos QO]T, and o is a free parameter related to
the vehicle’s “bottom-heaviness” in the given flight condi-
tion [11]. (Note that, in determining a nominal wings-level

glide condition, we assume that r, = 0. That is, the nom-
inal gravitational moment is due entirely to ry,.) Analysis
of turning (helical) flight using a sophisticated underwater
glider model is challenging. In [22], the problem was for-
mulated as a regular perturbation problem in the turn rate, as
represented by a small, non-dimensional turn rate parameter
€. In seeking a first order solution for turning flight, it was
assumed that the pitch angle remains at its nominal value
for wings-level flight (6y). Polynomial expansions for V,
o, B, Tpy» m, and ¢ in terms of € were substituted into the
nonlinear algebraic equations for steady turning flight. (For
example, one writes V = Vy + €V} + €2V, + ..., where
Vo is the nominal speed in wings level flight.) Solving the
coefficient equations for €! gives approximate equilibrium
values for Tpys m, ¢, V, a, and B, to first order in €. It was
found in [22] that these first order approximate values take
the form:

Vi = 0

ap = 0

m = 0

B1 = PBilao, 00,m0;8,) (10)
é1 = ¢i(ao.00.m0: B1.6r,)
Tpy, Tpy, (@0, 00, 110; 8r,)

Explicit expressions for 1, ¢1, and ry, , are given in [22].
The approximate solution indicated in (10) shows that V,
o, and m remain constant to first order in €. This suggests
that the primary contributors to steady turning motion are
lateral mass deflections (ry, ) and rudder deflections (8r), if
a rudder is present, and that these deflections have no first
order effect on speed or angle of attack. In practice, it is
considerably more costly to change the vehicle’s net mass
m than to shift its CG, so it is fortunate that turning motions
at the same (approximate) speed and glide path angle can be
obtained by only varying r,, and/or §,. These observations
suggest a natural approach to motion control for underwater
gliders: Fix the buoyancy and center of gravity for a desired,
wings level flight condition and then use the lateral moving
mass actuator to control turn rate and longitudinal moving
mass actuator to control flight path angle.

4 Motion Control System

Having characterized steady, wings level flight and steady
turning motions (at least approximately), as described in
Section 3, one can formulate a motion control strategy
which relies on these solutions. The aim is to track in-
puts of constant desired speed (Vy), glide path angle (yq),
and turn rate (1/}d). Given feasible values for desired speed,
glide path angle, and turn rate, one may compute feedfor-
ward actuator commands to adjust the net weight and cen-



68

N. Mahmoudian and C. A. Woolsey

ter of gravity in order to achieve the given flight condi-
tion. Because these values are only approximate, though,
and because of modeling and environmental uncertainty,
the commanded values must be augmented using feedback
compensation. The design and analysis of such a feedfor-
ward/feedback motion control system requires a model that
incorporates buoyancy and moving mass actuator dynamics
as presented in Section 2.

An illustration of such a feedforward/feedback control
system is shown in Figure 3. The vector field f (x, u) repre-
sents the system dynamics with state vector x and inputs u,
and the vector field f (x, u) notionally represents their first
order approximation in turn rate. The pair (Xcq, #eq) repre-
sents the first order solution for a given desired steady mo-
tion. The vector p contains parameter values which, if held
constant, correspond to some stable steady motion. Such
a feedforward/feedback motion control system was briefly
presented in [23]; a more thorough discussion of the design
and analysis was presented [21].

The first step in the motion control scheme is to obtain
the parameter values fiq (net mass and moving mass po-
sitions) that correspond to the desired steady motion X.q
(characterized by Vy, y4, and 1/'/d), to first order in turn rate.
This inverse problem is expressed notationally in the feed-
forward block in Figure 3 by the equation

0= f(-’zeqv ﬁeq),

which was solved analytically for the corresponding param-
eter values fiq in [22].

The feedback block compensates for the error due to the
approximation and environmental uncertainty, adding a cor-
rection denoted g °".

The feedback-compensated “parameter commands” fLq
are then realized within the vehicle dynamics

x = f(x;u(x;pa)

through an appropriately designed servo-control system.
Here, u is a feedback control law that attempts to main-
tain commanded parameter values u4 in spite of the vehicle
dynamics.

The control system depicted in Figure 3 suggests that
one may vary the steady motion, according to some de-
sired guidance objective. However, one must verify that
the closed loop system is stable. Fixing parameter values,
one may examine open-loop stability by linearizing about
the approximate equilibrium conditions and computing the
eigenvalues of the state matrix. Because eigenvalues de-
pend continuously on the matrix parameters, stability of the
true equilibrium may be inferred from stability of the ap-
proximate equilibrium provided (i) the equilibrium is hy-
perbolic and (ii) € is small relative to the magnitude of the
real part of each eigenvalue. See Section 1.7 of [12] for a
brief discussion or Chapter 9 of [13] for more details. While

the system does possess a stable, steady motion parameter-
ized by a set of commanded parameter values, one must still
verify that the system remains stable while varying these
parameter values. For example, if one changes the refer-
ence commands in Figure 3 too rapidly, one might drive the
nonlinear system unstable.

As explained earlier, underwater gliders steer by mov-
ing one or more internal masses. The vehicle dynamics are
quite slow, relative to the actuator dynamics. Command-
ing a rapid change in turn rate, for example, will result in
a quick change in center of mass location, but the resulting
effect on the vehicle’s motion will be much slower. Alterna-
tively, one may issue reference commands that vary “qua-
sisteadily” and treat the closed-loop system as “slowly vary-
ing” in the turn rate y74(f). We may then analyze stability
of the closed loop system in the context of slowly varying
systems theory [16].

Suppose the output of a nonlinear system

i=f(xuy); up = k(x, )

is required to track a reference input Va(t), where the feed-
back controller « is designed such that the closed-loop sys-
tem has a locally exponentially stable equilibrium at xeq
when q4(¢) is constant. The turn rate q4(¢) is called
“slowly varying” if it is continuously differentiable and, for
some sufficiently small &€ > 0, one has ||V4(¢)| < & for all
t>0.

We will analyze the underwater glider’s motion control
system using slowly varying systems theory to prove stabil-
ity of the closed-loop system and, simultaneously, to deter-
mine a (possibly conservative) bound on how fast one may
vary the commanded turn rate and maintain stability.

Following Khalil [16, Ch. 9], to analyze this system, con-
sider V74 as a “frozen” parameter and assume that for each
fixed value the frozen system has an isolated equilibrium
point defined by x.q = h(y/q) where ”33%” < L. To ana-
lyze stability of the frozen equilibrium point, we shift it to
the origin via the change of the variables ¥ = x —h(y/) to
obtain equation

X =g(¥)

Based on Theorem 9.3 in [16], if there is a positive definite
and decrescent Lyapunov function V(x) that has a negative
definite derivative along the trajectories of the system and
which satisfies certain inequalities to handle the perturba-
tion and the fact that v/4(¢) is not constant, the solution will
be uniformly ultimately bounded within a ball around the
equilibrium point, with a radius proportional to ¢, for suffi-
ciently small &. Moreover, if /4(1) — 0 as t — oo, then
the tracking error tends to zero. As will be discussed in
Section 6, the resulting € may be conservative.
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Figure 3. A steady motion-based feedforward/feedback control system.

5 Feedforward/Feedback Controller Design

The feedforward block takes the commanded steady mo-
tion parameters (speed, glide path angle, and turn rate) and
generates the corresponding values for buoyancy and cen-
ter of mass location, as predicted by perturbation analysis.
Because the turning motion results are only approximate,
however, and to compensate for model and environmental
uncertainty, we incorporate feedback. The objective here
is to design single-input, single-output PID control loops to
modify the feedforward commands based on measured er-
rors in the values of speed V, glide path angle y = 6 —a,
and heading rate vy = thq;q + zgzgr Speed and glide
path angle are inherently coupled for underwater gliders,
just as they are for airplanes. For a fixed glide path an-
gle, speed can be directly modulated by changing the net
mass . Changing m requires pressure-volume work, how-
ever, which is relatively expensive, especially at depth. In
practice, it is best to modulate 71 as infrequently as possi-
ble. Here, we focus on controlling the glide path angle y by
varying the longitudinal moving mass position ry, .

A sophisticated dynamic model presented in Section 2
has been used to design the feedback compensator. The
model incorporates the buoyancy and moving mass actuator
dynamics and servo-control laws. It is convenient to replace
the velocity v, as expressed in the body reference frame,
with speed, angle of attack, and sideslip angle (V, «, 8). To
do so, note that

v = e‘a“e‘;}ﬁ(Vel)
(1 0 0 Vv
Vo= e o 0 v @
0 VcosB O ,3

The change of variables is well-defined for 8 € (=7, 5).

The equations of motion (7) can be written in the form
FX,X,U)=0
where the system state and control vectors are

T
X = [¢.0.V.o, B, p.q.r.rp. vp. Tp,. Uy, |

U = [upx,upy,ub]T

Note that v, and vy, represent the translational velocity of
the moving masses relative to the inertial frame expressed
in the body frame.

To design a servo-controller for the moving mass actu-
ators and the variable ballast actuator, we linearize the dy-
namic equations about a wings-level equilibrium (X, Up)
and compute the transfer function for each input-output
channel of interest. Let U denote one of the available in-
put signals U € {uy, . up,, up} and define a corresponding
output Y (X). With these definitions, we obtain the pertur-
bation equations

AX AAX + BAU (11)
AY = CAX (12)

4 [ oF \~' (OF
- ) &)
eq
& [ oF \~"' ( OF
- (%) (@)
eq
i
0X |eq
The matrix SLFX is non-singular within the vehicle’s normal
performance envelope.

In designing moving mass servos, the objective is to
choose an input u, € {up,,up,} such that the position of
the moving mass r, € {ry,, 7}, } asymptotically tracks a de-
sired trajectory ry, € {rp, .rp, }. WithU =upandY =r,
in equations (11) and (12), the scalar CA B is nonzero. Let
e = rp, —I'p represent the error between the desired position

of a moving mass and its current position. In order to drive
e to zero, one may choose

where

C

[
Mp = m(i"pd — CAZAX + [a)r% 2§'wn]e)

where e = [e,é]T and where w, € {wy,,wy,} and { €
{¢x. ¢y} are appropriately chosen control parameters, as-
suming that rp, is twice differentiable.



70

N. Mahmoudian and C. A. Woolsey

To design a PID compensator to correct the feedforward
commands, let G(s) represent the transfer function for a
particular control channel and let G.(s) represent the PID
controller:

1
Ge(s) = Kp(1 + Tos + Tys)

The proportional gain K,, the integrator time 7; and the
derivative time Ty are control parameters to be tuned by the
control designer. In the time domain, the control signal is

t
r;"” = Kpe + K; / e(v)dt + Kgzé
to

where K; = K,/ T; and K; = K,T,. The error signal e()
measures the difference between the actual and commanded
value of the output.

The approximate equilibrium value of 7, € {7y, Fpy, }s
as predicted by analytical solutions, is augmented with
feedback compensation to correct for approximation error:

_ ~ corr
Tpg = rpd—l—rp .

To smooth the commanded parameter value so that the
reference command to the internal servo-actuators is twice
differentiable, we define a linear reference model:

F(s):rpy — r;;’mm

where
1

(s/w)? + 28:(s/wr) + 1

Equivalently, in time domain, define the following reference
model dynamics for each servo-actuator:
) T

. 0 1 n 0
i = z
-0} 24w, w?
e = (1 0)z

where rp, (1) € {rp, (), 1y, (1)} is the (possibly discontinu-
ous) reference command to be filtered.

In physical implementations, the servo-actuation system
is self-contained and there is no need to include it in the
motion control system. Referring to the control system
schematic in Figure 3, this reference command filter is in-
ternal to the system dynamics block appearing at the right.
We include this element explicitly here in order to account
for the full complexity of the multi-body mechanical system
and to allow analysis of issues such as actuator magnitude
and rate saturation. The natural frequency and damping ra-
tio parameters in the reference model are chosen to respect
actuator performance limits.

F(s) =

For a fixed glide path angle, speed can be directly mod-
ulated by changing the net mass 7. That is, given values
o and yp, one may solve relation (9) for the corresponding
values of r74. We design an input uy, such that the net mass
m asymptotically tracks a desired value n14. The simplest
approach is to choose

uy = ky (mq —m)

where the constant ky, is chosen to accommodate the rate
limit on uy,.

5.1 Flight Path Control

We control the glide path angle y by modulating the longi-
tudinal moving mass position r, . Let e, () = yq — y(¢),
where yq is the desired value of the glide path angle. The
longitudinal moving mass reference signal is

t
ey(r)dt + Kg,éy.

to

oo = Kp,ey + Ki,
The first step is to tune the flight path controller for the lin-
earized system dynamics. Having done so, the next step
is to re-tune the controller as necessary for the nonlinear
dynamics through simulation. Adding the result to the lon-
gitudinal moving mass position from the feedforward block
gives the required position of the longitudinal moving mass
to maintain a constant flight path angle.
sy fPXd + r;: "

As explained in Section 3, we have assumed that the nom-
inal gravitational moment is due entirely to ry, and that
prd = 0. Hence, for y4 = Yo, we have only the feedback
term rp, = rp"

The reference command should be filtered to accommo-
date the magnitude and rate limit on the longitudinal mov-
ing mass actuator due to limited range of travel of the mov-
ing mass and the operational limit of the servomotor driv-
Ing 1t.

where

. 0 1
7, =
—w} =24 o,

0
)zx + < wrzx )rde(t)

The input u, guarantees that the position of the longitudi-
nal moving mass rp,, asymptotically tracks the twice differ-
entiable trajectory r;fdmm generated by filtering the desired
value rp,

(Fomm — CLA%X + [wi 28xwn Jex)

Pxq

MP:

) CcAB,
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where

ey = (eXa éx)T

5.2 Turn Rate Control

The channel from lateral mass position r;y"“ to turn rate
is non-minimum phase, with a single zero in the right half
plane. This non-minimum phase zero limits closed-loop
bandwidth. In any case, closing the loop from turn rate to
lateral mass location is quite effective, provided the perfor-
mance limitations are respected in control parameter selec-
tion. Let e ; () = Ya(t) — ¥ (r), where ¥4(¢) is the desired
turn rate. The lateral moving mass control signal is

t
e ek

The turn rate PID controller was first tuned for the lin-
earized system dynamics, and then re-tuned for the nonlin-
ear dynamics through simulation. Adding the result to the
lateral moving mass position from the feedforward block
gives the required position of the lateral moving mass to
maintain the desired turn rate.

~ corr
Tpyq Tbyq + rPy

The reference command should be filtered, with filter pa-
rameters chosen in a way that respects the performance lim-
itations (e.g., the rate limit) of the servomotor:

comm

Pyg (1 O)zy

T =
0
zy + ( wrz )rpm(t)
y

The input u,, guarantees that the position of the lateral mov-
ing mass rp, asymptotically tracks the trajectory rsy‘;mm gen-
erated by filtering the desired value rp,

(3 = CAPX + [0}, 20l
C,AB,

Up, =
where

N4
ey = (ey, éy)

6 Stability Analysis of Closed Loop System

To analyze this system, consider /4 as a “frozen” parame-
ter. For each fixed value the frozen system has an isolated
equilibrium point. Consider the linearized equations about
this equilibrium point:

X AX + Byuy,
rn, = GX

where X is the state vector

T
X = [d)vgv Vsaaﬂ5p7qarvrpxavpxarpysvpy]

Defining the lateral mass error e, = r ™™ — r, and the
y Pyg Py

heading rate error e, = Yia — ¥, the input Up, 18

i S
Up, = CyAB,
where
ey = (ey»éy)T
r;;dmm = ( 1 0 )Zy
where

_ =~ corr
Toyy = Toy + rPy

with

corr __ . . . 5 .
T —va.,ew+K,1bzv,+Kd¢ew

By where

Zv‘/:ev}

Putting all the parts together, we have

X = AX+ Byu,
zy = 2 Zy
—wy _2§rya)ry
0 - .
T\ g2 | Ore T Kpyey + Kigzy + Ky éy)
Ty
tp, = Va—y
where
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o = i |(0 Vw0007

1 5 . .,
= C,AB, [—( oy 28w )zy+a)ry[rpycl +( Ky, Ka, )( )+K . ]}

¢
1 T
Py 2
YA, {( w2 2yon, Yoy— (02 20, ) ( " )—CyA x]
_ 1 2~ 2 €y 2 Tp
= C,AB, [w‘yr"’“ +ol ((Kny Kay >< & )_< o %o ) n

1 w? 2% o
-1 1 I ol K; —C,A*X
+CyABy |:( ) ( a)2 zé-ya)ny ) Zy +CU lwzlll y :|

rpy

DeﬁneC~ sothatC-X = ( ej‘/.’ ) and Gy, so that C, X =
é, v

¥ Py

Next, we shift the frozen equilibrium point h(vq) = (Xeq, yea» 2 )T to the origin to analyze stability. Define

X720 2)T = X2l )" —h(a)

The complete linearized equations are

< — 1 2 2 1<
X = [A +Bym[wry( Kp, Kay )Cy—( 02 20, )G, —CA HX
1 w2 20, o, 1

By———|( -1 1 SO N E oy Ki, 2

+ yCyABy |:( )<U)§y 2§y0)ny ot B yC AB, 2y
: 0 , 0 1 0
G = K, Ka )C;X ; Ki 2 13
b= () (o et Jae (0 )m
Bo= (-1 0)eyx

Consider x = (XT, zyT , é¢)T as the new state vector of the system. The set of equations (13) is equivalent to
x o= A

where the elements of A are continuously differentiable functions of {pd e I' = [0, a), where a is the maximum turn rate
for the underwater glider. Suppose that A is Hurwitz uniformly. This means the controller has been designed such that
the closed-loop system is Hurwitz:

Re[M(A)] < —0 <0, V4 € T

Then, from Lemma 9.9 in [16] the Lyapunov equation
PA+ATP =1

has a unique positive definite solution P for every y/q € I'. P(v/4) is continuously differentiable and satisfies

Cl.X/TTX,T < ,T P(l//d) x’ Tx’
—P
I s W)l

A

sz’

v

IA
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for all (X, 1/}d) € R"” x T', where c¢1, ¢z, and ¢ are posi-
tive constants independent of 1/}d. Consequently, the Lya-
punov function V (¥, yq) = ¥T P ¥ satisfies the following
inequalities

al®> < VE Yo < ol
1% . s ,
[ P lg(¥,ya) < —c3]¥|?
X
av
”W” < ca4 |
v ,
=1 < esll#]
V4

forall ¥ € D = {¥ € R"|||#]| < r}and g € T = [0,q)
where, once again, a is the maximum turn rate for the un-
derwater glider. The positive constants in inequalities are:
1 = Amin(P)a C2 = /xmax(P)a c3 = 1,¢c4 = 2lmax(P)’
and ¢c5; = 0 (Lemma 9.9 in [16]). The solutions are uni-
formly ultimately bounded with an ultimate bound propor-
tional to &, the upper bound of the turn acceleration. The
upper bound of ¢ can be calculated from the following rela-
tion:

C3 r

I 9a() <& < 2

dh

s ==L (14
Cr rcs + cq L Vg
The norm of the tracking error remains smaller than ke for
some finite k > 0. Moreover, if %(z) — 0ast — oo, the
tracking error tends to zero by Theorem 9.3 in [16].

Solving the Lyapunov equation and calculating the
eigenvalues of P one obtains the ¢;, i = 1,2,...,5 and
an upper bound for &, the limit for commanded turn accel-
erations. Applying the proposed motion control system to
the Slocum model given in [2], and performing the analysis
outlined above, one obtains the constants:

¢1 = Amin(P) = =378.75, ¢3 = Anax(P) = 979.82,
c3 =1, ¢4 =2Anx(P), and c5 = 0.

which gives
()] = & <2x 107~

This is a conservative upper bound for acceleration in turn
rate reference commands. A relaxed bound could be ob-
tained by applying similar analysis in the time varying set-
ting. (See Theorems 7.4 and 7.8 in [25], for example.)

7 Simulation Results

A sophisticated glider model based on the Slocum model
given in [2] was linearized about the following equilib-

015 — rpyfeedﬂ:;rward/back
- = I'pyfeedforward

— 01§
=
=
o
& 0.05
<}
-
7]
s
s 0
=)
<
=
o
= -0.05r
e
)
w
= -0

-0.151

0 50 100 150 200 250

Figure 4. Lateral moving mass location (open- and closed-
loop).

80

60

feedforward/back|
= = = feedforward

20 40 60 80 100 120 140 160 180

Figure 5. Slocum path in response to input histories shown
in Figure 4.

rium flight condition, which corresponds to wings-level, de-
scending flight:

V() =0.77 m/s, 0o = 4.30,
Op = —8.4°, yo = —12.7°, and gy = 0.63 kg.
The moving mass values are m, = m, = 9 kg. The

servo-actuator parameter values are

wn, = 20 rad/s, ¢ = 0.001, wr, = 0.8 rad/s,
and ¢ =1

wy, = 20 rad/s, ¢y, =0.01, w;, = 0.8 rad/s,
and  §, =1

The PID control parameter values are
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Figure 7. Turn rate response to command sequence.

K,, =—-0.2m, T, =23s,
and Ty, =2s

Kplb = 0.2 m/(rad/s), Ti;y =0.65s,
and Tdu'/ =0.39s

Figures 4 through 8 compare the results of simulations
using feedforward and feedforward/feedback control. Fig-
ure 4 shows the lateral mass location in response to a com-
mand sequence that is intended to effect a right turn, a
straight segment, and a left turn (viewed from above) from
an initial point to a desired final point. In the open-loop case
(feedforward only), the moving mass is simply commanded
to move to the (approximate) equilibrium value correspond-
ing to a desired heading rate ¢d. In the closed-loop case
(feedforward/feedback), however, the heading rate is di-
rectly commanded, with the lateral moving mass actuator

responding as necessary. The resulting path is depicted in
Figure 5.

Figures 6 and 7 show desired, open-loop, and closed-
loop value of the vehicle’s glide path angle and turn rate.
As expected, the deviation between the open-loop values
and the desired values is significant. In Figure 7, the small
spikes at the end of each segment correspond to reaction
forces due to the movement of the lateral mass within the
vehicle. We note that the turn rate magnitudes are of the
same order as turn rates seen in glider operations. The
Slocum glider, for example, can achieve a 20-30 m turn ra-
dius at speeds on the order of 0.5 m/s. A shallow-water
variant of Slocum, which includes a movable rudder, can
perform turns with a 7 m radius [4]. Figure 8 shows the lo-
cation of the longitudinal moving mass, which regulates the
glide path angle.

0.015| r 7
—_— preedforward/back

r
feedforward
0.01} Px

0.005F A b

-0.005

Longitudinal Moving Mass Location
o
L}
1
1
1
1
1
1
1
]
]
]
)
}
}
1
1
1
1
]

-0.01f 1

-0.015 ) ) ) ) ]
0 50 100 150 200 250
t(s)

Figure 8. Variation in longitudinal moving mass position
from nominal.

Remark 7.1. The path in Figure 5 is reminiscent of a Du-
bins path, although the vehicle and actuator dynamics are
included here. Time-optimal paths for a Dubins car with
acceleration limits are discussed in [17] and [26], where
it is recognized that extremal paths comprise sequences of
straight, clothoidal, and circular segments. We call these
“suboptimal Dubins paths.”

It must be stressed that the final guidance loop has not
been closed, at this point. That is, we have not presented
a control law to make the vehicle track a commanded path,
such as a suboptimal Dubins path. Rather, we have pre-
sented the underlying motion control system over which a
guidance loop might be imposed.

Figures 9 through 11 compare results of the simulation
for the common feedback motion control system and the
feedforward/feedback motion control system presented in
this work. Figure 9 shows that the steady-motion based
feedforward/feedback system reaches the desired turn rate
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Figure 9. Lateral moving mass position and turn rate.

much faster. Hence, the vehicle reaches the desired final
point in shorter time (Figure 11). Figure 10 illustrates the
effectiveness of both control loops in maintaining a constant
flight path angle.

Comparing results of the simulations, for the three cases
of feedforward, feedback, and feedforward/feedback con-
troller, shows that there is large error in turn rate when using
just feedforward controller (Figure 7) which corresponds to
large error in the resultant path (Figure 5). Figure 11 shows
that the feedback controller is slow but precise, therefore it
takes longer time and larger distance to achieve the desired
turn rate (Figure 11). The combination, the proposed feed-
forward/feedback controller, illustrates fast, precise track-
ing of the commanded turn rate. Since the control system
relies largely on steady motions, it is intrinsically efficient.

8 Conclusions

Building on prior results in glider steady motion analysis, a
feedforward/feedback motion control system was presented
to control speed, glide path angle, and turn rate. The control
system uses feedforward commands obtained from an ap-
proximate solution for steady turning motion and includes
feedback to compensate for approximation error and other
uncertainties. The control system design includes model
reference controllers for the servo-actuators, to allow actu-
ator rate and magnitude saturation effects to be more easily
analyzed and accommodated. Stability of the closed-loop
system was analyzed using slowly varying systems theory
in which the turn rate command was treated as a slowly
varying parameter. A bound on turn acceleration was ob-
tained as a product of the analysis. The controller’s effec-
tiveness was demonstrated in a simulation of a multi-body
model of the underwater glider Slocum.

The proposed control system provides a mechanism for
path following. The next step is to implement a guidance
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strategy, together with a path planning strategy, and one
which continues to exploit the natural efficiency of this class
of vehicle. The structure of the approximate solution for
steady turning motion is such that, to first order in turn rate,
the glider’s horizontal component of motion matches that of
the “Dubins car,” a simple model for a wheeled robot that
moves at constant speed and can turn left or right, up to
some turn rate limit. The Dubins car is a classic example in
the study of time-optimal control for mobile robots. For an
underwater glider, one can relate time optimality to energy
optimality. Specifically, for an underwater glider travelling
at a constant speed and maximum flight efficiency (i.e., the
maximum lift-to-drag ratio, in still water), minimum time
paths are minimum energy paths. Hence, energy-efficient
paths can be obtained by generating sequences of steady
wings-level and turning motions. These efficient paths can,
in turn, be followed using the motion control system de-
scribed here.

In closing, we note that the feedforward component of
the proposed control system, as presented, relies on the an-
alytical solution for the steady turning motions of an un-
derwater glider. This analysis is based on a sophisticated
model of the underwater glider dynamics. In the absence
of such a model, and the corresponding solution for steady
motions, one may instead use a look-up table which maps
vehicle configurations to stable, steady motions. Although
such a table would have to be developed through an exhaus-
tive series of experimental sea trials, the approach may, in
some cases, be more expedient than developing a complete
dynamic model.
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