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Abstract: The aim of the present paper is to present an-
alytical solution of fractional differential equations. The
fractional derivative is considered in Caputo sense. The re-
sults are derived by the application of Sumudu transform
in term of Mittag-Leffler function, which are suitable for
numerical computation. The results obtain by the Sumudu
transform method indicate that the approach is easy to im-
plement and computationally very attractive.
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1 Introduction

Fractional calculus is a field of applied mathematics
that deals with derivatives and integrals of arbitrary or-
ders. Fractional differential equations have gained im-
portance and popularity, mainly due to its demonstrated
applications in science and engineering. For example,
these equations are increasingly used to model problems
in fluid flow, theology, diffusion, relaxation, oscillation,
anomalous diffusion, reaction-diffusion, turbulence, dif-
fusive transport akin to diffusion, electric networks, poly-
mer physics, chemical physics, electrochemistry of cor-
rosion, relaxation processes in complex systems, prop-
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agation of seismic waves, dynamical processes in self-
similar and porous structures and many other physical
processes. The most important advantage of using frac-
tional differential equations in these and other applica-
tions is their non-local property. It is well known that the
integer order differential operator is a local operator but
the fractional order differential operator is non-local. This
means that the next state of a system depends not only
upon its current state but also upon all of its historical
states. This is more realistic and it is one reason why frac-
tional calculus has become more and more popular [1-
9]. In view of great importance of fractional differential
equations many authors have paid attention for handling
linear and non-linear fractional differential equations.
Among these is differential transform method [10, 11], ho-
motopy analysis method [12-14], homotopy perturbation
method [15], Laplace decomposition method [16-21], ho-
motopy analysis transform method [22-25], homotopy per-
turbation transform method [26—28] and variational iter-
ation method [29]. In the early 90’s, Watugala [30] intro-
duced a new integral transforms named the Sumudu trans-
form and further applied it to the solution of ordinary dif-
ferential equation in control engineering problems. For
further detail and properties about Sumudu transform, see
References [31-35]. Recently, Kilicman et al. [36] applied
this transform to solve the system of differential equations.

In this paper, we put on the Sumudu transform of the
fractional derivative and the expansion coefficients of bi-
nomial series to deduct the evident the solutions to ho-
mogeneous fractional differential equations. The Sumudu
transform has scale and unit preserving properties, so it
can be used to solve problems without resorting to a new
frequency domain. It is worth mentioning that the Sumudu
transform method provides the solution in closed form
and it is capable of reducing the volume of computational
work as compared to the classical methods.
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2 Preliminary results

The fractional derivative of a function f(t) is defined by [9,
37]
(6 if u=neN,
t
f )= 1
I'(n-p
0

£ ()

dt"
(t _ X)],l—rl+1

ifn-1<u<n,

€y

where the gamma function can be defined as a definite in-
tegral for Re(z) > O (Euler’s integral form)

I'(z)= / t“ e dt ()
0

The Mittag-Leffler function [38, 39] is defined by

- o
(z) = ;m, (a,BeC, Re(a) >0). (3)

The Riemann-Liouville fractional derivatives Dj,¢ and
D4_¢ of order a € C, Re(a) = 0 are defined by

(n=[Re(a)]+1;x>a)

and

b
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(n=[Re(a)] +1;x < b)

where [Re (a)] means the integral part of Re (a).
The simplest Wright function is defined by [40, 41]

o k
¢(a, B;2)= Zm% where a, B, zeC (6)
k=0

and the general Wright function is defined as
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where z, a;, bje C and a;, jeR(i=1,2,...,pandj=
1,2,..., 9.

The Sumudu transform of a function f (¢) , defined for
all real numbers t > 0, is the function Fs(u), defined by [30,
42]

oo

SO} =F -6 - [apesode . ®
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We will also use the following result [43]:
_ _ -6 _
st [u" 11 - wih) } = 1E‘Z,,y (wtﬁ)

and

1
5 [ u?2+au e+ b)}
Z( b)k ta(k+1) 1EkjK aks) ( atZ—a) (9)

k=0

The Sumudu transform of the Riemann-Liouville frac-
tional derivative is given by [44]

S [D°F(6)] = Fa(w) = u™ {G () - ; u [ Do) t_o]
(10)

where-1 < n -1 < a < nand neN.

Let f(t) and g(t) be causal functions with Laplace
transforms F(s) and G (s) respectively, and M (u) and N (u)
respectively. Then the Sumudu transform of the convolu-
tion of f and g,

t
(f*g)(t)=/f(r)g(t—r)dr, (1)
0
is given by
S[(f * £) (0] = uM () N () 12)

Remark: If G(u) is the Sumudu transform of f(t), one
can take into consideration the Sumudu transform of the
Riemann-Liouville fractional derivative as follows [44]:

S [D*f (0)] = Fa () = u™® {G ()= utt (D ) t:O]
k=0

(13)

Let us take the Laplace transform of f = as follows:

L [D%f ()] (s / et [D%f (8)] d
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F(n (x)
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e
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Therefore, when we putting 1/u for the variable s, we get
the Sumudu transform of fractional order of f(¢) as follows

S[D%f ()] = Fur(u) = u™® [G - ut D )] 4

k=0

3 Solution of the fractional
differential equations

In this section, we apply the Sumudu transform method for
solving various fractional differential equations arising in
fluid mechanics.

Theorem 1. Let 1 < a < 2 and a, b € R Then the fractional

differential equation
y” (O +ay"® () + by (6) = (0 (14)

with the initial conditions y (0) = ¢ and y” (0) = c¢; has
its solution given by

A. Choudhary et al., Analytical Solution of Fractional Differential Equations

oo oo - r
i (=b) 2k F+k+1) (—at*™®)
}’(t)—COZ Il rz; rl T[(2-a)r+2k+1]
b) 2kt 2 Fr+k+1) (—atz"")]r
+Clz ] rz:; 7! I'2-a)r+2k+2]
o _ r
(—b)k 2kr2-a = (r+ k + 1) (—atz a)
+ aCOkZ k! = r! IF[2-a)r+2k+3-a]

t2k+3 a_ > (_atz—a) r

. aclz( b) ZI‘ (r +r1'< +1)

a(k+1) 1Ek

2-a,a(k+1) ( _a) ft-7dr
(15)

Proof: Applying the Sumudu transform both sides in
Eq. (14), we get
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oo k+r (2-a)r+2k+2
=> (-h) Z( )( a)’ u
k=0

17)

Now, taking the inverse Sumudu transform both sides
of the Eq. (16), and using results from Eq. (9), we obtain the
desired result (15).

If we set f(t) = O in theorem 1, then our result re-
duces in the following interesting results given in the form
of corollary.

Corollary 1.1. Consider the fractional differential equation
is [45]

Y (O +ay® () +by)=0 (18)

where 1 < a < 2; a, b € Rwith the initial conditions y (0) =
co and y (0) = c; is given by
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Ifweseta = % in the Eq. (18), then we get the following
result derived by [46].
Corollary 1.2. Consider the fractional differential equation

of a generalized viscoelastic free damping oscillation is
y” () +ay) () + by (£) = 0 (20)

with the initial conditions y (0) = ¢o and y, (0) = c1 hasits
solution given as
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k=0

r
‘el Z( b) t2"+1 I(r+k+1) (_atl/z)
r! I'[3r+2k+2]

r=0

r=0

r
oo _atl/2
t2k+2 @ F'r+k+1) ( at )

(-b)*
”’CZ 2.~ I [ir+2k+]]

r=0

- 12\"
(-b)* tZk+3 C~T(r+k+1) ( at )
raa Z Z r! I[3r+2k+3]"

r=0
(21)

If we put a = v/3 and b = 8 in the Eq. (20), then we get
the following result.

r! T'[(2-a)r+2k+4-a]”
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Corollary 1.3.The fractional differential equation

y” (6)+ 3y () + 8y () = 0 22)

with the initial conditions y (0) = ¢; and y'(O) = ¢ hasits
solution given as
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Theorem 2. Let 1 < a < 2 and ab €R. then the fractional

differential equation
Y@ (&) +ay (&) + by (6) = £(0) (24)

with the initial conditions y (0) = ¢o and y,(O) = ¢ hasits
solution given as

Ceo 3 ERE S T ke (zat™)’
y(© = COZ ; rl T[(a-1)r+ak+1]
- b) pakr1 =2 Ir+k+1) (—at"“l)r
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Proof: Operating with the Sumudu transform of both sides
in the Eq. (24), we get
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Now, taking the inverse Sumudu transform both sides of
the Eq. (26), and using results from Eq. (9), we obtain the
desired result (25).

If we set f(t) = O in theorem 2, then our result re-
duces in the following interesting results given in the form
of corollary.

Corollary 2.1. Consider the fractional differential equation
is [45]

YOO +ay () +by(t)=0 (28)
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with the initial conditions y (0) = ¢p and y' (0) = ¢y hasits
solution given as

b) K ST (r+k+1) (-at* )’
)’(t)—COZ ; rl T[(a-1)r+ak+1]
b) tak+1 T (r+k+1) (—ata_l)r
* Clz s r! I'l(a-1)r+ak+2]
- b) tak+a 1 > Irr+k+1) (—at“‘l)r
+aCZ rz:; r! Ta-Dr+ak+a]”
(29)

Ifweseta = 3, a =-1 and b = -2in Eq. (28), then
our result reduces in the following interesting results given
in the form of corollary.

Corollary2.2. The fractional differential equation is

Y2 ©-y0-2y(0=0 (30)

with the initial conditions y (0) = ¢, and y,(O) = ¢y has
its solution given as

2k tz F(r+k+1) tz
)’(t)—COZ Z F[5+3k+ 1]

2 tzk*l Z I(r+k+1) tz

2kpkes & F'r+k+1) t2
—Co E E 3 3 (31)
Theorem 3. Let 0 < @ < 1 and b €R. then the fractional

differential equation

YO (&) - by () = £(0) (32)

with the initial condition y (0) = ¢o has its solution given
as

oo t
Y (t) = coEq,1 (bt +Z/T"‘ "Eq,o (bT) f(t - T)dT.
k=0 {

(33)
Proof: Applying Sumudu transform of both sides in the
Eq. (32), we get

S [y ®)] - bS [y(0)] = S [£(0)
(%_b> y(®)] = +F(u)
F
O @f— TN
=Co i b u®* + uF ()] i pryk+a-1)
k=0 e

(4)
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Now, taking the inverse Sumudu transform both sides
of the Eq. (34), and using results from equation (3), we ob-
tain the desired result (33).

If we set f(t) = O in theorem 3, then our result re-
duces in the following interesting results given in the form
of corollary.

Corollary 3.1. Consider the fractional differential equation
is [45]

YO -by =0 (35)

where O < a < 1 and b eR with the initial condition y (0) =
Co has its solution given as

Y (t) = CoEq,1 (btY) . (36)

If we set a = 0 in Eq. (28), then we arrive at the following
result given as

Corollary 3.2. Consider the fractional differential equa-
tion is

YOty +by(t)=0 37)

where 1 < a < 2 and b eR with the initial condition y (0) =
coandy (0) = c; has its solution given as

Y (t) = CoEq,1 (-bt") + c1tEo (-bt*).  (38)

If we set b = w? Eq. (37), then we get the following result
derived by [46].

Corollary 3.3 A nearly simple harmonic vibration equa-
tion by [46]

YOt +w’y () =0 39)

where 1 < a < 2 and b eR with the initial condition y (0) =
coandy (0) = c; hasits solution given as

Y(t) = coEq1 (—(uzt”‘) +C1tE, (—(uzt"‘) . (40)

4 Conclusions

In this paper, we have presented a solution of a fractional
differential equation. The solution has been developed in
terms of the generalized Mittag-Leffler form with the help
of Sumudu transform and its inverse after deriving the
related formulae for fractional integrals, and derivatives.
The modifications to Coimbra’s proposals carried out here
by developing and discussing an alternate mathematical
model to psychoanalyse the behaviour of a viscous vis-
coelastic damping system represents just an example of
what needs to be done to increase our general understand-
ing and use of these concepts.
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