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On the Piecewise Linear Exact Solution
Abstract: In this paper we will show how the exact fre-
quency response of the piecewise linear vibration isolator
can be reduced to be found by solving only two transcen-
dental equations. Adopting a new nondimensionalization
method, the mathematical modeling of the system is pre-
sented and themathematics to determine the exact steady-
state response of the system is explained.
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1 Introduction
It is a known fact that to provide a good vibration iso-
lator, the isolator suspension must be as soft as possi-
ble, [1]; however, soft suspension provides high relative
displacement, [2]. To use a soft suspension while protect-
ing the system from high relative displacement, two pas-
sive smart systems including hydraulic engine mounts [3–
10] and piecewise linear vibration isolators [11–16] were
introduced to provide a tough suspension at high ampli-
tudes, both with a variety of designs, [9, 10, 16]. Piece-
wise linear is a vibration isolator whose system has non-
linear geometric characteristics of sti�ness and damping,
where nonlinearity is a result ofmoving among�nite num-
ber of liner segments, [15]. These systems potentially can
model and a variety of practical applications [17–19]. The
piecewise linear systems are di�cult to analyze as sud-
den changes in system parameters display unprecedented
complex behavior.
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Fig. 1. A dual rate biliear sti�ness vibrating system.

Fig. 2. A vibrating system with gap-damper engagement.

The �rst analytic investigation of the piecewise lin-
ear vibration isolator was based on an undamped bilinear
sti�ness systemas is shown in Figure 1, [20, 21]. Gurtinwas
the �rst investigator who analyzed a damped bilinear sys-
tems [22]. He presented an approximate method to solve
the frequency response of the piecewise linear vibration
isolator with dual behavior damping, as is shown in Fig-
ure 2, using an equivalent viscous damping.

Although the closed form solution of piecewise linear
suspensions are not easy to determine, the simplicity of
the system made experiments easy and a�ordable. There-
fore, it is usually easy to validate analytic calculations. Be-
sides the validation of any mathematical analysis, scien-
tists were also successful to discover some interesting be-
haviors in the system which were not possible to be deter-
mined analytically [22–29].

Natsiavas was the scientist who systematically ap-
plied the required conditions to the analytic solutions of
the system in di�erent domains [30, 31]. Employing pertur-
bation analysis, some investigators developed analytical
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Fig. 3.Mechanical model of the piecewise linear system with sym-
metric constraints.

equations to calculate approximate frequency response of
piecewise linear system [12–14].

The simplest practical model of a piecewise linear
vibration isolator is a system with bilinear sti�ness and
dumping characteristics as is shown in Figure 3. The �rst
spring and damper that are directly attached to the mass
m is the Primary Suspension and the second stage, which
is e�ective beyond the clearance amplitude ∆, is the Sec-
ondary Suspension. The clearance ∆ acts as a switch to en-
gage and disengage the secondary suspension. The clear-
ance represents a sudden change in the system properties
providing a hard nonlinearity. In this investigation the ex-
amined system is subjected to a periodic base excitation
y(t) with period T > 0.

y = Y sin (ωt − φ) (1.1)

The equations governing the motion of the system
could be written as

mẍ + g1(x, ẋ) = f1(y, ẏ) (1.2)

where g1(x, ẋ) and f1(y, ẏ) are piecewise linear functions
presenting sudden changing characteristics of the system
and sudden changing excitation respectively:

g1(x, ẋ) =


(c1 + c2)ẋ + (k1 + k2)x − k2∆ x − y > ∆
c1 ẋ + k1x |x − y| < ∆
(c1 + c2)ẋ + (k1 + k2)x + k2∆ x − y < −∆

(1.3)

f1(y, ẏ) =


(c1 + c2)ẏ + (k1 + k2)y x − y > ∆
c1 ẏ + k1y |x − y| < ∆
(c1 + c2)ẏ + (k1 + k2)y x − y < −∆

(1.4)

The equation of motion for the system shown in Figure 3
may also be written in a nondimensional form:

w′′ + 2ξ1w′ + w = −v′′ + f
(
w, w′) (1.5)

f
(
w, w′) =


−2ρξ2w′ − ρ2w + ρ2δ w > δ
0 |w| < δ
−2ρξ2w′ − ρ2w − ρ2δ w < −δ

(1.6)

v = y
Y = sin (rτ − φ) (1.7)

where,

w = u − v = z
Y z = x − y u = x

Y v = y
Y

δ = ∆
Y ω2

1 =
k1
m ω2

2 =
k2
m

k1 + k2
m =ω2

1 + ω2
2 2ξ1ω1 =

c1
m 2ξ2ω2 =

c2
m

c1 + c2
m = 2ξ1ω1 + 2ξ2ω2 w′ = dwdτ ẇ = dwdt

τ = ω1t r = ω
ω1
ρ = ω2

ω1
ξ1 < 1 ξ2 < 1

and therefore,

w′′ + 2ξ1w′ + w = r2 sin (rτ − φ) + f
(
w, w′) (1.8)

We seek the frequency response of the system (1.5) by
developing and detecting its exact steady state time re-
sponse.

2 Exact solution
While the relative displacement of m is less than ∆, the
system is a linear single valued parameters one degree-of-
freedom base exciting system with well known time and
frequency responses [2]. However, there is no closed form
solution for the systemwhen the relative displacement ex-
ceeds ∆. The reason for not having a closed form solution
is that when x > ∆ then in every cycle of the motion the
massm will be supported by k1 and c1 for a part of the the
motion and be supported by k1 + k2 and c1 + c2 for the the
other part. The four times sudden changes of the sti�ness
and damping of the system in every cycle makes it impos-
sible to generate a closed form solution [16].

To determine the frequency response of the system,we
must search for a possible steady state time response of the
system and detect its maximum amplitude for a given ex-
citation frequency ω. Repeating this method ends up with
a series of amplitudes for di�erent values of excitation fre-
quencies.
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Fig. 4. A steady state periodic response of the system.

Fig. 5. A steady state periodic response of the system in nondimen-
sional space.

A steady-state periodic response of the system for x >
∆ will be similar to Figure 4. To ensure that the secondary
suspension is engaged, we seek a periodic solution of the
system (1.5) with the following initial conditions:

z(0) = ∆ ż(0) > 0 (2.1)

To set the time axis to begin at this condition,we introduce
a phase lag φ in the excitation function y.

y = Y sin (ωt − φ) (2.2)

We also assume that there is a steady state periodic re-
sponse with exactly the same frequency ω as the the ex-
citation frequency, the in the �rst half of the period passes
through z = ∆ with ż(0) < 0 at a time t = t1, 0 6 t1 6
2π/ω. Therefore, the solution will be

∣∣z(t)∣∣ = ∆ at t = 0,
t = t1, t = π/ω, t = π/ω + t1 and t = 2π/ω in the period
starting at t = 0. Let us call the solution in domain z > ∆
as z2(t) and the solution in domain |z| < ∆ as z1(t) as are
shown in 4. The continuity and compatibility of z1(t) and
z2(t) need the following conditions:

z2(0) = ∆ ż2(0) = p2 z2(t1) = ∆ ż2(t1) = p1

z1(t1) = ∆ ż1 (t1) = p1 z1(
π
ω ) = −∆ ż1

( π
ω

)
= −p2

p = dzdt (2.3)

Employing the same assumptions, wewould have
∣∣w(τ)∣∣ =

δ at τ = 0, τ = τ1, τ = π/r, τ = π/r + τ1 and τ = 2π/r in
the period starting at τ = 0. In the nondimensional form,
we name the solution in domain w > δ as w2(τ) and the
solution in domain |w| < δ as w1(τ) as are shown in 5. The
continuity and compatibility of w1(τ) and w2(τ) need the
following conditions:

w2(0) = δ ẇ2(0) = q2 w2(τ1) = δ ẇ2(τ1) = q1

w1(τ1) = δ ẇ1(τ1) = q1 w1

(π
r

)
= −δ ẇ1

(π
r

)
= −q2

q = dwdτ = 1
ω1Y

dz
dt (2.4)

Assuming underdamped solutions, w2(τ) and w1(τ)
are:

w1(τ) = v
(
A1 sin

(
rd1τ

)
+ B1 cos

(
rd1τ

))
+ Q1 sin (rτ − φ) + Q2 cos (rτ − φ)
= e−ξ1τ

(
A1 sin

(
rd1τ

)
+ B1 cos

(
rd1τ

))
+ C1 sin rτ + D1 cos rτ

rd1 =
√
1 − ξ21 (2.5)

w2(τ) = e−(ξ1+ρξ2)τ
(
A2 sin

(
rd2τ

)
+ B2 cos

(
rd2τ

))
+ Q3 sin (rτ − φ) + Q4 cos (rτ − φ) +

ρ2
1 + ρ2 δ

= e−(ξ1+ρξ2)τ
(
A2 sin

(
rd2τ

)
+ B2 cos

(
rd2τ

))
+ C2 sin (rτ) + D2 cos (rτ) +

ρ2
1 + ρ2 δ

rd2 =
√
(1 + ρ2) − (ξ1 + ρξ2)2 (2.6)

and therefore,

ẇ1(t) = −ξ1e−ξ1τ
(
A1 sin

(
rd1τ

)
+ B1 cos

(
rd1τ

))
+ rd1e

−ξ1τ (A1 cos
(
rd1τ

)
− B1 sin

(
rd1τ

))
+ r (C1 cos (rτ) − D1 sin (rτ)) (2.7)

ẇ2(t) = − (ξ1 + ρξ2) e−(ξ1+ρξ2)τ
(
A2 sin

(
rd2τ

)
+ B2 cos

(
rd2τ

))
+ rd2e

−(ξ1+ρξ2)τ (A2 cos
(
rd2τ

)
− B2 sin

(
rd2τ

))
+ r (C2 cos (rτ) − D2 sin (rτ)) (2.8)

The coe�cients A1, B1, A2, B2 will be found by imposing
the initial and compatibility conditions (2.4). The coe�-
cients C1, D1, C2, D2 depend on the forcing function and
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will be found by collecting the coe�cients of sin (rτ) and
cos (rτ) in w1(τ) and w2(τ)

C1 = Q1 cosφ + Q2 sinφ (2.9)
D1 = Q2 cosφ − Q1 sinφ (2.10)

C2 = Q3 cosφ + Q4 sinφ (2.11)
D2 = Q4 cosφ − Q3 sinφ (2.12)

where,

Q1 =
r2
(
1 − r2

)
(1 − r2)2 + (2ξ1r)2

(2.13)

Q2 =
−2ξ1r3

(1 − r2)2 + (2ξ1r)2
(2.14)

Q3 =
r2
(
1 − r2 + ρ2

)
(1 + ρ2 − r2)2 + (2 (ξ1 + ρξ2) r)2

(2.15)

Q4 =
−2 (ξ1 + ρξ2) r3

(1 + ρ2 − r2)2 + (2 (ξ1 + ρξ2) r)2
(2.16)

Imposing the eight boundary conditions (2.4) on equations
(2.5)-(2.8) produces eight transcendental equations with
eight unknowns A2, B2, A1, B1, t1, q1, q2 and φ:

w2(0) = δ ẇ2(0) = q2 w2(τ1) = δ ẇ2(τ1) = q1

w1(τ1) = δ ẇ1(τ1) = q1 w1

(π
r

)
= −δ ẇ1

(π
r

)
= −q2
(2.17)

q = dwdτ = 1
ω1Y

dz
dt (2.18)

B2 + D2 =
1

1 + ρ2 δ (2.19)

− (ξ1 + ρξ2) B2 + rd2A2 + rC2 = q2 (2.20)

e−(ξ1+ρξ2)τ1
(
A2 sin

(
rd2τ1

)
+ B2 cos

(
rd2τ1

))
+ C2 sin (rτ1) + D2 cos (rτ1) =

1
1 + ρ2 δ (2.21)

− (ξ1 + ρξ2) e−(ξ1+ρξ2)τ1
(
A2 sin

(
rd2τ1

)
+ B2 cos

(
rd2τ1

))
+rd2e

−(ξ1+ρξ2)τ1 (A2 cos
(
rd2τ1

)
− B2 sin

(
rd2τ1

))
+r (C2 cos (rτ1) − D2 sin (rτ1)) = q1

(2.22)

e−ξ1τ1
(
A1 sin

(
rd1τ1

)
+ B1 cos

(
rd1τ1

))
+C1 sin rτ1 + D1 cos rτ1 = δ (2.23)

−ξ1e−ξ1τ1
(
A1 sin

(
rd1τ1

)
+ B1 cos

(
rd1τ1

))
+rd1e

−ξ1τ1 (A1 cos
(
rd1τ1

)
− B1 sin

(
rd1τ1

))
+r (C1 cos (rτ1) − D1 sin (rτ1)) = q1

(2.24)

e−ξ1
π
r

(
A1 sin

(
rd1
π
r

)
+ B1 cos

(
rd1
π
r

))
− D1 = −δ

(2.25)

−ξ1e−ξ1
π
r

(
A1 sin

(
rd1
π
r

)
+ B1 cos

(
rd1
π
r

))
+rd1e

−ξ1 πr
(
A1 cos

(
rd1
π
r

)
− B1 sin

(
rd1
π
r

))
− C1r = −q2

(2.26)

The eight unknowns A2, B2, A1, B1, τ1, q1, q2 and
φ can be found for a set of given system and excitation
by solving the following two transcendental couple equa-
tions for τ1 and φ.(

Q7 sin
(
rd2τ1

)
+ Q8 cos

(
rd2τ1

))
+C2 sin (rτ1) + D2 cos (rτ1) =

1
1 + ρ2 δ (2.27)

− Q9 sin
(
rd2τ1

)
+ Q10 cos

(
rd2τ1

)
+ Q13 sin

(
rd1τ1

)
− Q14 cos

(
rd1τ1

)
+ r ((C2 − C1) cos (rτ1)

− (D2 − D1) sin (rτ1)) = 0 (2.28)

Proof. For a given system parameters and a given excita-
tion function, the value of the parameters Q1, Q2, Q3, Q4

are known. Having Q1, Q2, Q3, Q4, the coe�cients C1, D1,
C2, D2 are only functions of the phase angle φ. The param-
etersB2 andA2maybe found from the equations (2.19) and
(2.20),

B2 =
1

1 + ρ2 δ − D2 (2.29)

A2 =
q2 − rC2 + B2 (ξ1 + ρξ2)

rd2
= Q5−

1
rd2

δρ2
1 + ρ2 (ξ1 + ρξ2)

(2.30)
and the parameters B1 and A1 from the equations (2.25)
and (2.26)

B1 = eξ1
π
r

(
Q6 sin

( rd1π
r

)
+ (D1 − δ) cos

( rd1π
r

))
(2.31)

A1 = eξ1
π
r

(
−Q6 cos

( rd1π
r

)
+ (D1 − δ) sin

( rd1π
r

))
(2.32)

where,

Q5 = (δ − D2) (ξ1 + ρξ2) − C2r + q2
rd2

(2.33)
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Q6 =
(δ − D1) ξ1 − C1r + q2

rd1
(2.34)

Now, substitution of A1, B1, A2 and B2 in (2.21)-(2.24) pro-
duces four equations for q1, q2, τ1 and φ

(
Q7 sin

(
rd2τ1

)
+ Q8 cos

(
rd2τ1

))
+ C2 sin (rτ1) + D2 cos (rτ1) =

1
1 + ρ2 δ (2.35)

−Q9 sin
(
rd2τ1

)
+ Q10 cos

(
rd2τ1

)
+r (C2 cos (rτ1) − D2 sin (rτ1)) = q1 (2.36)

Q11 sin
(
rd1τ1

)
+ Q12 cos

(
rd1τ1

)
+C1 sin (rτ1) + D1 cos (rτ1) = δ (2.37)

−Q13 sin
(
rd1τ1

)
+ Q14 cos

(
rd1τ1

)
+r (C1 cos (rτ1) − D1 sin (rτ1)) = q1 (2.38)

where,

Q7 = A2e−(ξ1+ρξ2)τ1 Q8 = B2e−(ξ1+ρξ2)τ1 (2.39)

Q9 = e−(ξ1+ρξ2)τ1
(
(ξ1 + ρξ2)A2 + rd2B2

)
(2.40)

Q10 = e−(ξ1+ρξ2)τ1
(
rd2A2 − (ξ1 + ρξ2) B2

)
(2.41)

Q11 = A1e−ξ1τ1 Q12 = B1e−ξ1τ1 (2.42)

Q13 = e−ξ1τ1
(
ξ1A1 + rd1B1

)
(2.43)

Q14 = e−ξ1τ1
(
rd1A1 − ξ1B1

)
(2.44)

The parameter q1 can be eliminated between Equations
(2.36) and (2.38) by

ẇ1(τ1) = ẇ2(τ1) (2.45)

to reduce the number of equations to three to �nd q2, τ1
and φ.(

Q7 sin
(
rd2τ1

)
+ Q8 cos

(
rd2τ1

))
+C2 sin (rτ1) + D2 cos (rτ1) =

1
1 + ρ2 δ (2.46)

−Q9 sin
(
rd2τ1

)
+ Q10 cos

(
rd2τ1

)
+ Q13 sin

(
rd1τ1

)
−Q14 cos

(
rd1τ1

)
+ r ((C2 − C1) cos (rτ1)

− (D2 − D1) sin (rτ1)) = 0
(2.47)

Q11 sin
(
rd1τ1

)
+ Q12 cos

(
rd1τ1

)
+C1 sin (rτ1) + D1 cos (rτ1) = δ (2.48)

The parameter q2 is embedded in A2, B1, and A1. There-
fore, Q5 to Q7 and Q9 to Q14 are functions of q2. Substitut-
ing Q11 and Q12 in Equation (2.48) produces a linear equa-
tion of Q6

Q15Q6 + Q16 = δ (2.49)

therefore,
Q6 =

δ − Q16
Q15

(2.50)

where

Q15 = e
( π
r −τ1

)
ξ1 sin

(π
r − τ1

)
rd1 (2.51)

Q16 = e
( π
r −τ1

)
ξ1 (C1 sin (rτ1) + D1 cos (rτ1))

+ e
( π
r −τ1

)
ξ1 (D1 − δ) cos

(π
r − τ1

)
rd1 (2.52)

Q6 is solvable for q2

q2 = rC1 + (D1 − δ) ξ1 − Q6rd1

= rC1 + (D1 − δ) ξ1 −
δ − Q16
Q15

rd1 (2.53)

and therefore, eliminating q2 in Equations (2.46) and (2.47)
reduces the number of transcendental equations to two to
determine t1 andφ for a set of given systemand excitation.(

Q7 sin
(
rd2τ1

)
+ Q8 cos

(
rd2τ1

))
+C2 sin (rτ1) + D2 cos (rτ1) =

1
1 + ρ2 δ (2.54)

−Q9 sin
(
rd2τ1

)
+ Q10 cos

(
rd2τ1

)
+ Q13 sin

(
rd1τ1

)
−Q14 cos

(
rd1τ1

)
+ r ((C2 − C1) cos (rτ1)

− (D2 − D1) sin (rτ1)) = 0 (2.55)

3 Steady-state time response
The primary suspension’s frequency response is

Z1 =
√
C21 + D2

1 =
r2√

(1 − r2)2 + (2ξ1r)2
(3.1)

The peak value of Z1 is ZP

ZP =
1

2
√
ξ21 − ξ41

(3.2)

that happens at
rP =

1√
1 − 2ξ21

(3.3)
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Fig. 6. The frequency response curve of the primary or ω1 = 1,
δ = 1, ξ1 = 0.11.

While δ < ZP, there is a frequency span in which the sec-
ondary suspension engages. No engagement is expected
outside the frequency span. If δ > 1, then the engagement
will begin after a frequency and never ends.

Without loosing generality we may assume

ω1 = 1 (3.4)

and set
δ = 1 ξ1 = 0.1 (3.5)

and plot the associated frequency response curve of the
primary in Figure 6. The amplitude of the primary will
greater than Z1 = δ when the excitation frequency is

r > 0.7142857143 (3.6)

To express the method and determine a sample of steady
state time response, let us set the secondary suspension
parameters as

ω2 = 2 ξ2 = 0.1 (3.7)

Substituting the system characteristics we should solve
the two equations of (2.46) and (2.47) t1 and φ. Figure 7
illustrates the implicit plot of the equations, with a unique
solution at

φ = −0.4856710316 t1 = 1.383067511 (3.8)

Employing t1 and φ we calculate

q1 = −0.7345298322 q2 = 0.9020194017

and determine w2(t) and w1(t) to plot the the steady state
solution as shown in Figure 8. The steady state response of
the system is as shown in Figure 9 for

r = 1.4 (3.9)

Fig. 7. The implicit plot of the two transendental equations (2.46)
and (2.47) as functions of τ1 and φ for ω2 = 2, ξ2 = 0.1, ω1 = 1,
δ = 1, ξ1 = 0.1, r = 1.

Fig. 8. A sample of the steady response of the system for ω2 = 2,
ξ2 = 0.1, ω1 = 1, δ = 1, ξ1 = 0.1, r = 1.

Fig. 9. A sample of the steady response of the system for ω2 = 2,
ξ2 = 0.1, ω1 = 1, δ = 1, ξ1 = 0.1, r = 1.4.

4 Conclusion
Dynamic systems with a sudden change in any param-
eters are among highly nonlinear system with time and
frequency responses hard to calculate. Around 1990, a
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method has been introduced to calculate the steady-state
time response of piecewise linear suspension. Themethod
was based on a set of eight transcendental equations that
appeared as a result of imposing eight boundary condi-
tions to synchronize and make compatible the exact so-
lutions for primary and secondary. In this article we have
shown how the eight equations can systematically be re-
duced to two transcendental equations. The equations,
that are based on a new nondimensionalization method,
have been solved for a sample system and the steady-state
time response examined. Having only two equations sim-
pli�esmany of the numerical problems, narrows down the
domain of the possible solutions, reduces the number of
multiple solutions, and reduces the calculation time.

5 Key Symbols

Ai sin coe�cient in wi(t)
Bi cos coe�cient in wi(t)
c damping coe�cient [N s / m]
c1 damping coe�cient of the primary suspension [N s / m]
c2 damping coe�cient of the secondary suspension [N s / m]
Ci sine coe�cient in wi(t)
Di cosine coe�cient in wi(t)
k sti�ness [N /m]
k1 sti�ness of the primary suspension [N /m]
k2 sti�ness of the secondary suspension [N /m]
m mass [kg]
q1 speed of m when w1 = δ
q2 speed of m when w2 = δ
Qi short notation of mathematical expression
r = ω/ω1,excitation frequency ratio
rd1 damped natural frequency of the primary suspension
rd2 damped natural frequency of the secondary suspension
t time [s]
t1 time when w2 = w1 = +δ [s]
v dimensionless base excitation amplitude
w dimensionless relative displacement
w1 time response of the system when w < δ
w2 time response of the system when w > δ
x absolute displacement of m [m]
y base excitation function [m]
Y base excitation amplitude [m]
z relative displacement [m]
z1 relative displacement when z < ∆
z2 relative displacement when z > ∆
Z1 frequency response of the primary suspension

δ dimensionless gap distance
∆ gap distance
q1 velocity in t1
q2 velocity in z2(t) = 0
ξ damping ratio
ξ1 damping ratio of the primary suspension

ξ2 damping ratio of the secondary suspension
ρ = ω2/ω1, natural frequency frequency ratio
φ phase lag
τ = ω1t, dimensionless time
τ1 dimensionless t1
ω excitation frequency [1/ s]
ω1 natural frequency of the primary suspension
ω2 natural frequency of the secondary suspension
ωdi damped natural frequency
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