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Abstract: In this paper, Sumudu transform is advanced
and designed for the solution of linear di�erential mod-
els with uncertainty. For this purpose, Sumudu trans-
form is coupled with fuzzy theory and all its fundamen-
tal properties are formalized in fuzzy sense. At last, to
demonstrate the accuracy of this approach, fuzzy Sumudu
transform is employed to some examples of fuzzy lin-
ear di�erential equations considered under generalizedH-
di�erentiability and analytical solutions are obtained e�-
ciently.
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1 Introduction
In the literature, there are numerous integral transforms
extensively used to solve the di�erential equations in dif-
ferent �elds of physics, engineering and astronomy. As
a consequence, there are several works on the theory
and application of integral transforms such as Laplace,
Fourier, Mellin and Hankel, to name a few. Sequentially,
of these transforms, in early 1990,Watugala [1] introduced
a new integral transform, named “Sumudu transform”.
Sumudu transform was primarily shown to be a theoret-
ical dual of the Laplace transform in [2], eventually, many
authors studied its properties, coupled it with other theo-
ries and established e�cient and straightforwardmethod-
ologies for treating ordinary and partial di�erential equa-
tions in various mathematical and physical sciences prob-
lems. Belgacem et al. [3, 4] established fundamental prop-
erties of Sumudu transform, and applied it to Maxwell’s
equations [5]. Eltayeb et al. [6, 7] discussed existence and
uniqueness of Sumudu transform and applied this trans-
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form to solve the system of di�erential equations. Singh
et al. [8], Gupta et al. [9], Katatbeh et al. [10] and many
others [11–15] elaborated its applications on di�erent frac-
tional di�erential models. Solutions of integral equations
using this transform are found in thework of Asiru [16, 17].
Similarly, many others used this transformation for inves-
tigations of several problems.

The key purpose of the following study is to show the
applicability and accuracy of Sumudu transform in solv-
ing the fuzzy linear di�erential equations. Fuzzy theory
plays an important role in modeling dynamical systems
under uncertainty. Fuzzy linear di�erential equations are
one of the simplest fuzzy di�erential models which have
signi�cant importance in many applications [18–26]. Here
fuzzy di�erential equations are considered under general-
ized Hukuhara di�erentiability. Hukuhara derivative was
presented byHukuhara [27]. H-derivative of a fuzzy-valued
function is also found in paper of Puri et al. [26].

The present work is organized in sections where some
necessary preliminaries of fuzzy and calculus theory are
explained in Section 2, basic descriptions of fuzzy Sumudu
and fuzzy Laplace transforms and detailed derivation of
properties of fuzzy Sumudu transform are elaborated in
Section 3. In Section 4, several examples are solved ana-
lytically using this approach, and at last its e�ective con-
clusion is drawn in the Section 5.

2 Preliminaries
In this section, basic de�nitions of fuzzy number, fuzzy
Riemann-Liouville integral and H-di�erentiability of
fuzzy-valued functions along with fundamental theorems
of fuzzy di�erential equations are demonstrated.

2.1 Fuzzy Number

Fuzzy number is as a mapping v : R → [0, 1] with the
properties of being upper semi continuous, convex, nor-
mal, and compactly supported, in a metric space E1. The
r-level of a fuzzy number v ∈ E, for 0 ≤ r ≤ 1, is rep-
resented by an ordered pair of lower and upper bound
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interval i.e.[v]r = [v (r) , v (r)] where lower bound is left
continuous non-decreasing and upper bound is left con-
tinuous non-increasing functions on the interval [0, 1].
(see [18, 19])

2.2 Riemann–Liouville Integral

Let f (x) be a fuzzy valued function on [a, ∞) represented
by
[
f (x; r) , f (x; r)

]
. For any �xed r ∈ [0, 1], let f (x; r) and

f (x; r) are Riemann-integrable functions on [a, b] for ev-
ery b ≥ a, if there exists two positive functions M (r) and

M (r) such that
b∫
a

∣∣f (x; r)∣∣ dx ≤ M (r) and
b∫
a

∣∣∣f (x; r)∣∣∣ dx ≤
M (r) for every b ≥ a, then f (x) is said to be improper fuzzy
Riemann-Liouville integrable function on [a, ∞), i.e.

∞∫
a

f (x) dx =

 ∞∫
a

f (x; r) dx,
∞∫
a

f (x; r) dx

 , 0 ≤ r ≤ 1

(1)
Also found in Refs. [28, 29].

2.3 H-di�erentiability

Let f : (a, b) → E, then f is said to be strongly generalized
H-di�erentiable function at x0 ∈ (0, b), if there exists an
element f ′ (x0) ∈ E such that for h > 0 and su�ciently
close to zero:
1.

f ′ (x0) = lim
h→0

f (x0 + h)Θf (x0)
h = lim

h→0

f (x0)Θf (x0 − h)
h

(2)
2.

f ′ (x0) = lim
h→0

f (x0)Θf (x0 + h)
(−h)

= lim
h→0

f (x0 − h)Θf (x0)
(−h)

(3)
3.

f ′ (x0) = lim
h→0

f (x0 + h)Θf (x0)
h = lim

h→0

f (x0 − h)Θf (x0)
(−h)

(4)
4.

f ′ (x0) = lim
h→0

f (x0)Θf (x0 + h)
(−h)

= lim
h→0

f (x0)Θf (x0 − h)
h

(5)

Equivalent de�nition is found in Refs. [30, 31].
Theorem 2.3.1

Let f : R → E be a fuzzy valued function such that for
r ∈ [0, 1], [f (x)]r =

[
fr (x) , fr (x)

]

1. If f (x) is di�erentiable function in �rst form i.e. (1)-
di�erentiable, then[

f ′ (x)
]r
=
[
f ′r (x) , f ′r (x)

]
(6)

2. If f (x) is a di�erentiable function in second form i.e.
(2)-di�erentiable, then[

f ′ (x)
]r
=
[
f ′r (x) , f ′r (x)

]
(7)

2.4 n-th order Fuzzy linear di�erential
equations

Consider the following nth order fuzzy linear di�erential
equation under generalized H-di�erentiability, proposed
in Allahviranloo et al. [29], as:

y(n) (x) + ϕ
(
x, y (x) , y′ (x) , . . . , y(n−1) (x)

)
= ψ

(
x, y (x) , y′ (x) , . . . , y(n−1) (x)

)
(8)

where n ∈ Z , with initial conditions

y (x0) = y0, y′ (x0) = y′0, . . . y(n−1) (x0) = y
(n−1)

0 (9)

where y (x) =
(
y (x; r) , y (x; r)

)
is a fuzzy-valued

function of x, with linear fuzzy-valued functions
ψ
(
x, y (x) , y′ (x) , . . . , y(n−1) (x)

)
, ϕ

(
x, y (x) , y′ (x) , . . . ,

y(n−1) (x)
)
.

Theorem 2.4.1
Let x0 ∈ (a, b) and f : [a, b] × E × E → E

is continuous fuzzy-valued function. Also, assume that
f (x) , f (x) , f ′ (x) , ... are continuous, then De�nition 2.3
can be restated for nth-order di�erential of f as:

f is strongly generalized H-di�erentiable of the nth-
order at x0, if there exists an element f (n) (x0) ∈ E, such
that for h > 0 and su�ciently near zero:
1.

f (n) (x0) = lim
h→0

f (n−1) (x0 + h)Θf (n−1) (x0)
h

= lim
h→0

f (n−1) (x0)Θf (n−1) (x0 − h)
h (10)

2.

f (n) (x0) = lim
h→0

f (n−1) (x0)Θf (n−1) (x0 + h)
(−h)

= lim
h→0

f (n−1) (x0 − h)Θf (n−1) (x0)
(−h)

(11)

3.

f (n) (x0) = lim
h→0

f (n−1) (x0 + h)Θf (n−1) (x0)
h

= lim
h→0

f (n−1) (x0 − h)Θf (n−1) (x0)
(−h)

(12)



Najeeb Alam Khan et al., On the solution of fuzzy di�erential equations | 51

4.

f (n) (x0) = lim
h→0

f (n−1) (x0)Θf (n−1) (x0 + h)
(−h)

= lim
h→0

f (n−1) (x0)Θf (n−1) (x0 − h)
h (13)

Similar to the Theorem 2.3.1 we have the following re-
sults for nth-order strongly generalized H-di�erentiability
of fuzzy-valued function.
Theorem 2.4.2

Let f (x) , f ′ (x) , ...,f (n−1) (x) are di�erentiable fuzzy-
valued functions, with r-cut representation [f (x)]r =[
fr (x) , f r (x)

]
:

1. If f (x) and f ′ (x) , ...,f (n−1) (x) are (1)-di�erentiable,
then [

f (n) (x)
]r
=
[
f (n)r (x) , f (n)r (x)

]
(14)

2. If f (x) and f ′ (x) , ...,f (n−1) (x) are (2)-di�erentiable,
then [

f (n) (x)
]r
=
[
f (n)r (x) , f (n)r (x)

]
(15)

3. If f (x) is (1)-di�erentiable and f ′ (x) , ...,f (n−1) (x) are
(2)-di�erentiable, then[

f (n) (x)
]r
=
[
f (n)r (x) , f (n)r (x)

]
(16)

4. If f (x) is (2)-di�erentiable and f ′ (x) , ...,f (n−1) (x) are
(1)-di�erentiable, then[

f (n) (x)
]r
=
[
f (n)r (x) , f (n)r (x)

]
(17)

3 Fuzzy Sumudu Transform
Here, we present de�nitions, notations of Sumudu, fuzzy
Sumudu and fuzzy Laplace transforms and fundamental
properties of fuzzy Sumudu transformation.

3.1 Sumudu Transformation

Let A be the set of functions de�ned as:

A =
{
f (x) | ∃M, τ1, and/or τ2 > 0,

such that |f (x)| < Me|x|/τj , if x ∈ (−1)j × [0,∞)
}

where constantMmust be �nite, while τ1 and τ2 eachmay
be �nite and do not need to exist simultaneously. Using u
to factor the variable x in the argument of the function f ,
Sumudu transform is de�ned as follows:

G (u) = S [f (x)] =
{ ∫ ∞

0 f (ux) e−xdx 0 ≤ u < τ2∫ ∞
0 f (ux) e−xdx, −τ1 < u ≤ 0

(18)

Here M is taken equal to 1, τ2 is �nite and τ1 is simply not
needed. Both parts de�ne the domain of f , and sign of vari-
able x will remain unchanged. (see [1–6])

3.2 Fuzzy Sumudu Transformation

Let f be a continuous fuzzy-valued function de�ned in
parametric form [f (x)]r =

[
f (x; r) , f (x; r)

]
for 0 ≤ r ≤ 1.

Suppose that f (ux) e−x is improper fuzzy Riemann inte-
grable function on [0,∞), with u > 0 a real parameter,
then

S [f (x)] =
∞∫
0

f (ux) e−xdx = G (u) (19)

is called fuzzy Sumudu transform. Since f is fuzzy-valued
function, therefore parametric representation of Eq. (19)
will be, for 0 ≤ r ≤ 1:
∞∫
0

f (ux) e−xdx =

 ∞∫
0

f (ux; r) e−xdx,
∞∫
0

f (ux; r) e−xdx


(20)

or

S [f (x)] =
[
S
[
f (x; r)

]
, S
[
f (x; r)

]]
=
[
G (u) , G (u)

]
= G (u)

(21)
where

G (u) = S
[
f (x; r)

]
=

∞∫
0

f (ux; r) e−xdx,

and G (u) = S
[
f (x; r)

]
=

∞∫
0

f (ux; r) e−xdx (22)

3.3 Fuzzy Laplace Transformation

Let f (x) be the fuzzy-valued function which vanishes for
negative values of x. Then fuzzy Laplace transform of f (x)
is de�ned by the following expression: (see [28])

L [f (x)] =
∞∫
0

e−ux f (x) dx = F (u) (23)

With parametric form
∞∫
0

e−ux f (x) dx =

 ∞∫
0

e−ux f (x; r) dx,
∞∫
0

e−ux f (x; r) dx

 ,
0 ≤ r ≤ 1 (24)

or

L [f (x)] =
[
L
[
f (x; r)

]
, L
[
f (x; r)

]]
=
[
F (u) , F (u)

]
= F (u)

(25)
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where

F (u) = L
[
f (x; r)

]
=

∞∫
0

e−ux f (x; r) dx,

F (u) = L
[
f (x; r)

]
=

∞∫
0

e−ux f (x; r) dx (26)

provided that integral exists.
Theorem 3.1

If fuzzy Laplace transform of a fuzzy- valued function
f (x) is L [f (x)] = F (u) and fuzzy Sumudu transform of this
function is S [f (x)] = G (u), then for 0 ≤ r ≤ 1,

G (u) = 1
u F
(
1
u

)
, (27)

or

G (u) = 1
u F
(
1
u

)
, G (u) = 1

u F
(
1
u

)
(28)

Proof:
By the de�nition of fuzzy Sumudu transformation,

S [f (x)] =
[
S
[
f (x; r)

]
, S
[
f (x; r)

]]
=
[
G (u) , G (u)

]
= G (u)

(29)
Using Eq. (20) and changing variable ux = x′ and dx =
dx′
u we get:

G (u) =

1
u

∞∫
0

e−
(
x′
u

)
f
(
x′; r
)
dx′, 1u

∞∫
0

e−
(
x′
u

)
f
(
x′; r
)
dx′


(30)
Recalling the de�nition of fuzzy Laplace transform, above
equation reduces to:

G (u) =
[
1
u F
(
1
u

)
, 1u F

(
1
u

)]
(31)

or
G (u) = 1

u F
(
1
u

)
(32)

Theorem 3.2
Let f be fuzzy-valued function, then fuzzy Sumudu

transform of f (ax; r), where a is a constant, is given by:

S [f (ax)] = S
[
f (ax; r) , f (ax; r)

]
=
[
G (au) , G (au)

]
= G (au) , 0 ≤ r ≤ 1 (33)

Proof:
Using De�nition 3.2, fuzzy Sumudu transform of

f (ax; r) and f (ax; r) are:

S
[
f (ax; r) , f (ax; r)

]
=

 ∞∫
0

e−x f (uax; r) dx,

∞∫
0

e−x f (uax; r) dx


=
[
G (au) , G (au)

]
(34)

proved.
Theorem 3.3

Let f be fuzzy-valued function. Then fuzzy Sumudu
transform of f (x − b), where b is a constant, is given by:

S [f (x − b)] = S
[
f (x − b; r) , f (x − b; r)

]
=
[
e−bG (u) , e−bG (u)

]
= e−bG (u) , 0 ≤ r ≤ 1

(35)

Proof:
Starting with De�nition 3.2, fuzzy Sumudu transform

of f (x − b; r) and f (x − b; r) are:

S
[
f (x − b; r) , f (x − b; r)

]
=

 ∞∫
0

e−x f (u (x − b) ; r) dx,
∞∫
0

e−x f (u (x − b) ; r) dx


(36)

changing variable x − b = x′ and dx = dx′

S
[
f
(
x′; r
)
, f
(
x′; r
)]

=

 ∞∫
0

e−(x
′+b)f

(
ux′; r

)
dx′,

∞∫
0

e−(x
′+b)f

(
ux′; r

)
dx′

(37)

using exponential property in above equation we get:

S
[
f
(
x′; r
)
, f
(
x′; r
)]

=

e−b ∞∫
0

e−x
′
f
(
ux′; r

)
dx′, e−b

∞∫
0

e−x
′
f
(
ux′; r

)
dx′

(38)

again using De�nition 3.2

S
[
f (x − b; r) , f (x − b; r)

]
=
[
e−bG (u) , e−bG (u)

]
(39)

or
S [f (x − b)] = e−bG (u) . (40)

Theorem 3.4
Let f be fuzzy-valued function, then fuzzy Sumudu

transform of e−cx f (x) is:

S
[
e−cx f (x)

]
= 1
(1 + cu)

G
( u
1 + cu

)
, c ∈ Real

(41)
with lower and upper functions

S
[
e−cx f (x; r) , e−cx f (x; r)

]
=
[

1
(1 + cu)

G
( u
1 + cu

)
, 1
(1 + cu)

G
( u
1 + cu

)]
, 0 ≤ r ≤ 1

(42)
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Proof:
Starting from the equalities in De�nition 3.2, fuzzy

Sumudu transform of e−cx f (x; r) and e−cx f (x; r) are:

S
[
e−cx f (x; r) , e−cx f (x; r)

]
=

 ∞∫
0

e−xe−c(ux)f (ux; r) dx,
∞∫
0

e−xe−c(ux)f (ux; r) dx


(43)

yielding:

S
[
e−cx f (x; r) , e−cx f (x; r)

]
=

 ∞∫
0

e−(1+cu)x f (ux; r) dx,
∞∫
0

e−(1+cu)x f (ux; r) dx

 (44)

changing variable (1 + cu) x = x′ and (1 + cu) dx = dx′

we get:

S
[
e−cx f (x; r) , e−cx f (x; r)

]
=

 1
1 + cu

∞∫
0

e−x
′
f
( u
1 + cu x

′; r
)
dx′,

1
1 + cu

∞∫
0

e−x
′
f
( u
1 + cu x

′; r
)
dx′
 (45)

by the de�nition of fuzzy Sumudu transform, above equa-
tion reduces to:

S
[
e−cx f (x; r) , e−cx f (x; r)

]
=
[

1
(1 + cu)

G
( u
1 + cu

)
, 1
(1 + cu)

G
( u
1 + cu

)]
(46)

or
S
[
e−cx f (x)

]
= 1
(1 + cu)

G
( u
1 + cu

)
, (47)

Theorem 3.5
Let f be di�erentiable fuzzy-valued function. If f (x) =

f (0) (x), and for j ≥ 1, jth derivative of f (x) is f (j) (x) then for
m ≥ 1:

S
[
f (m) (x)

]
= S [f (x)]um −

m−1∑
j=0

f (j) (0)
um−j , (48)

with lower and upper functions, for 0 ≤ r ≤ 1,

S
[
f (m) (x; r) , f

(m)
(x; r)

]
=

 S [f (x; r)]
um −

m−1∑
j=0

f (j) (0; r)
um−j ,

S
[
f (x; r)

]
um −

m−1∑
j=0

f (j) (0; r)
um−j


(49)

Proof:
Let fuzzy Sumudu transform off ′ (x; r) and f ′ (x; r), for

0 ≤ r ≤ 1, are:

S
[
f ′ (x; r)

]
=

∞∫
0

e−x f ′ (ux; r)dx

= 1
u

 d
dx

∞∫
0

e−x f (ux; r) dx +
∞∫
0

e−x f (ux; r) dx


(50)

and

S
[
f ′ (x; r)

]
=

∞∫
0

e−x f ′ (ux; r)dx

= 1
u

 d
dx

∞∫
0

e−x f (ux; r) dx +
∞∫
0

e−x f (ux; r) dx


(51)

using fundamental theorem of calculus

S
[
f ′ (x; r) , f ′ (x; r)

]
=
[
1
u

{
S
[
f (x; r)

]
+ e−x f (ux; r)

∣∣∞
0

}
,

1
u

{
S
[
f (x; r)

]
+ e−x f (ux; r)

∣∣∣∞
0

}]
(52)

since lim
x→∞

e−x f (ux; r) = 0 hence,

S
[
f ′ (x; r) , f ′ (x; r)

]
=
[
1
u
{
S
[
f (x; r)

]
− f (0; r)

}
, 1u

{
S
[
f (x; r)

]
− f (0; r)

}]
(53)

Now second derivative of lower and upper functions is ob-
tained as:

S
[(
f ′ (x; r)

)′]
= 1
u

[
S
[
f ′ (x; r)

]
− f ′ (0; r)

]
= 1
u

[
S
[
f (x; r)

]
− f (0; r)

u − f ′ (0; r)

]
(54)

and

S
[(
f ′ (x; r)

)′]
= 1
u

[
S
[
f ′ (x; r)

]
− f ′ (0; r)

]
= 1
u

 S
[
f (x; r)

]
− f (0; r)

u − f ′ (0; r)

 (55)

hence, we get:

S
[(
f ′ (x; r)

)′
,
(
f ′ (x; r)

)′]
=
[
S
[
f (x; r)

]
u2 −

f (0; r)
u2

−
f ′ (0; r)
u ,

S
[
f (x; r)

]
u2 − f (0; r)u2 − f

′ (0; r)
u

 (56)
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and so on, for m + 1th order we have:

S
[
f (m+1) (x; r) , f

(m+1)
(x; r)

]
=

 S
[
f (m) (x; r)

]
− f (m) (0; r)

u ,

S
[
f (m) (x; r)

]
− f (m) (0; r)

u

 =

 S [f (x; r)]
um+1 −

m∑
j=0

f (j) (0; r)
um−j ,

S
[
f (x; r)

]
um+1 −

m∑
j=0

f (j) (0; r)
um−j

 (57)

and

S
[
f (m+1) (x)

]
=
S
[
f (m) (x)

]
− f (m) (0)

u

= S [f (x)]um+1 −
m∑
j=0

f (j) (0)
um−j (58)

or, for any m ≥ 1:

S
[
f (m) (x; r) , f

(m)
(x; r)

]
=

 S [f (x; r)]
um −

m−1∑
j=0

f (j) (0; r)
um−j ,

S
[
f (x; r)

]
um −

m−1∑
j=0

f (j) (0; r)
um−j


(59)

Theorem 3.6
Suppose that f is continuous fuzzy-valued function on

[0,∞) and that f ′ is piecewise continuous fuzzy-valued
function on [0,∞), then under strongly generalized H-
di�erentiability:

If f is (1)-di�erentiable, then

S
[
f ′ (x)

]
= S
[
f ′ (x; r) , f ′ (x; r)

]
= 1
u {S [f (x)]Θf (0)} ,

0 ≤ r ≤ 1 (60)

and, If f is (2)-di�erentiable, then

S
[
f ′ (x)

]
= S
[
f ′ (x; r) , f ′ (x; r)

]
= 1
u {(−f (0))Θ (−S [f (x)])} ,

0 ≤ r ≤ 1 (61)

In order to solve second order fuzzy-di�erential equa-
tions under strongly generalized H-di�erentiability, we
need the fuzzy Sumudu transform of second order deriva-
tives under generalized H-di�erentiability. In this connec-
tion, we prove the following result:
Theorem 3.7

Suppose that f and f ′ are continuous fuzzy-valued
functions on [0,∞) and that f ′′ is piecewise continuous
fuzzy-valued function on [0,∞), then fromTheorem3.5 for
0 ≤ r ≤ 1 and m = 2:

If f and f ′ are (1)-di�erentiable, then

S
[
f ′′ (x)

]
= S
[
f ′′ (x; r) , f ′′ (x; r)

]
=
{
S [f (x)]
u2 Θ f (0)u2 Θ f

′ (0)
u

}
(62)

If f is (1)-di�erentiable and f ′ is (2)-di�erentiable, then

S
[
f ′′ (x)

]
= S
[
f ′′ (x; r) , f ′′ (x; r)

]
=
{
− f (0)u2 − f

′ (0)
u Θ S [f (x)]−u2

}
(63)

If f is (2)-di�erentiable and f ′ is (1)-di�erentiable, then

S
[
f ′′ (x)

]
= S
[
f ′′ (x; r) , f ′′ (x; r)

]
=
{
− f (0)u2 Θ f

′ (0)
u Θ S [f (x)]−u2

}
(64)

If f and f ′ are (2)-di�erentiable, then

S
[
f ′′ (x)

]
= S
[
f ′′ (x; r) , f ′′ (x; r)

]
=
{
S [f (x)]
u2 Θ f (0)u2 − f

′ (0)
u

}
(65)

Proof:
Let f ′ and f ′′ are lower function’s derivatives, f ′ and f ′′

are upper function’s derivatives. Nowwe prove Eq. (62) as,
for arbitrary �xed r ∈ [0, 1):

S [f (x)]
u2 Θ f (0)u2 Θ f

′ (0)
u =

[{
S
[
f (x; r)

]
u2 −

f (0; r)
u2 −

f ′ (0; r)
u

}
, S

[
f (x; r)

]
u2 − f (0; r)u2 − f

′ (0; r)
u


 (66)

since

S
[
f ′′ (x; r)

]
= S
[
f
′′
(x; r)

]
=
S
[
f (x; r)

]
u2 −

f (0; r)
u2 −

f ′ (0; r)
u

S
[
f ′′ (x; r)

]
= S
[
f ′′ (x; r)

]
=
S
[
f (x; r)

]
u2 − f (0; r)u2 − f

′ (0; r)
u

(67)
and, also since

f ′ (0; r) = f ′ (0; r) , 0 ≤ r ≤ 1 (68)

f ′ (0; r) = f ′ (0; r) , 0 ≤ r ≤ 1 (69)

we get,

S [f (x)]
u2 Θ f (0)u2 Θ f

′ (0)
u =

[
S
[
f ′′ (x; r)

]
, S
[
f ′′ (x; r)

]]
(70)
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S [f (x)]
u2 Θ f (0)u2 Θ f

′ (0)
u = S

[
f ′′ (x; r) , f ′′ (x; r)

]
(71)

S [f (x)]
u2 Θ f (0)u2 Θ f

′ (0)
u = S

[
f ′′ (x)

]
(72)

Now proving Eq. (63) for arbitrary �xed r ∈ [0, 1),

− f (0)u2 − f
′ (0)
u Θ S [f (x)]−u2

=

− f (0; r)u2 − f
′ (0; r)
u +

S
[
f (x; r)

]
u2

 ,

{
−
f (0; r)
u2 −

f ′ (0; r)
u +

S
[
f (x; r)

]
u2

}]
(73)

since,

S
[
f ′′ (x; r)

]
= S
[
f
′′
(x; r)

]
=
S
[
f (x; r)

]
u2 −

f (0; r)
u2 −

f ′ (0; r)
u

S
[
f ′′ (x; r)

]
= S
[
f ′′ (x; r)

]
=
S
[
f (x; r)

]
u2 − f (0; r)u2 − f

′ (0; r)
u

(74)
and

f ′ (0; r) = f ′ (0; r) , 0 ≤ r ≤ 1 (75)

f ′ (0; r) = f ′ (0; r) , 0 ≤ r ≤ 1 (76)

we get

− f (0)u2 −
f ′ (0)
u Θ S [f (x)]−u2 =

[
S
[
f ′′ (x; r)

]
, S
[
f ′′ (x; r)

]]
(77)

− f (0)u2 − f
′ (0)
u Θ S [f (x)]−u2 = S

[
f ′′ (x; r) , f ′′ (x; r)

]
(78)

− f (0)u2 − f
′ (0)
u Θ S [f (x)]−u2 = S

[
f ′′ (x)

]
(79)

Next proving Eq. (64) for arbitrary �xedr ∈ [0, 1) we have

− f (0)u2 Θ f
′ (0)
u Θ S [f (x)]−u2

=

− f (0; r)u2 − f
′ (0; r)
u +

S
[
f (x; r)

]
u2

 ,

{
−
f (0; r)
u2 −

f ′ (0; r)
u +

S
[
f (x; r)

]
u2

}]
(80)

since

S
[
f ′′ (x; r)

]
= S
[
f ′′ (x; r)

]
=
S
[
f (x; r)

]
u2 −

f (0; r)
u2 −

f ′ (0; r)
u

S
[
f ′′ (x; r)

]
= S
[
f ′′ (x; r)

]
=
S
[
f (x; r)

]
u2 − f (0; r)u2 − f

′ (0; r)
u

(81)
and,

f ′ (0; r) = f ′ (0; r) , 0 ≤ r ≤ 1 (82)

f ′ (0; r) = f ′ (0; r) , 0 ≤ r ≤ 1 (83)

we get

− f (0)u2 Θ f
′ (0)
u Θ S [f (x)]−u2 =

[
S
[
f ′′ (x; r)

]
, S
[
f ′′ (x; r)

]]
(84)

− f (0)u2 Θ f
′ (0)
u Θ S [f (x)]−u2 = S

[
f ′′ (x; r) , f ′′ (x; r)

]
(85)

− f (0)u2 Θ f
′ (0)
u Θ S [f (x)]−u2 = S

[
f ′′ (x)

]
(86)

Now proving Eq. (65) for arbitrary �xed r ∈ [0, 1) we have

S [f (x)]
u2 Θ f (0)u2 − f

′ (0)
u

=

 S
[
f (x; r)

]
u2 − f (0; r)u2 − f

′ (0; r)
u

 ,

{
S
[
f (x; r)

]
u2 −

f (0; r)
u2 −

f ′ (0; r)
u

}]
(87)

since
S
[
f ′′ (x; r)

]
= S
[
f ′′ (x; r)

]
=
S
[
f (x; r)

]
u2 −

f (0; r)
u2 −

f ′ (0; r)
u

S
[
f ′′ (x; r)

]
=S
[
f ′′ (x; r)

]
=
S
[
f (x; r)

]
u2 − f (0; r)u2 − f

′ (0; r)
u

(88)

and,
f ′ (0; r) = f ′ (0; r) , 0 ≤ r ≤ 1 (89)

f ′ (0; r) = f ′ (0; r) , 0 ≤ r ≤ 1 (90)

then, we get

S [f (x)]
u2 Θ f (0)u2 − f

′ (0)
u =

[
S
[
f ′′ (x; r)

]
, S
[
f ′′ (x; r)

]]
(91)
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S [f (x)]
u2 Θ f (0)u2 − f

′ (0)
u = S

[
f ′′ (x; r) , f ′′ (x; r)

]
(92)

S [f (x)]
u2 Θ f (0)u2 − f

′ (0)
u = S

[
f ′′ (x)

]
(93)

prove completed.

3.4 Convolution of Fuzzy-valued Functions

The convolution, f * g of two fuzzy-valued functions f and
g is de�ned by,

(f * g) (x) =
x∫

0

f (τ) g (x − τ) dτ (94)

Theorem 3.4.1
Let f and g be fuzzy-valued functions, having fuzzy

Sumudu transforms G (u) and N (u), respectively, then the
fuzzy Sumudu transformof the convolutionof f and g, f *g,
is given by:

S [(f * g) (x)] = uG (u)N (u) (95)

with lower and upper functions

S
[(
f * g

)
(x; r)

]
= uG (u)N (u)

and S
[(
f * g

)
(x; r)

]
= uG (u)N (u) , 0 ≤ r ≤ 1 (96)

Proof:
Starting the prove with the product of fuzzy Sumudu

transforms of f and g:

uG (u)N (u) = u
∞∫
0

e−η f (uη; r) dη
∞∫
0

e−ϕg (uϕ; r) dϕ,

0 ≤ r ≤ 1 (97)

and

uG (u)N (u) = u
∞∫
0

e−η f (uη; r) dη
∞∫
0

e−ϕg (uϕ; r) dϕ,

0 ≤ r ≤ 1 (98)

Using exponential property we obtain:

uG (u)N (u) =
∞∫
0

∞∫
0

e−(η+ϕ)f (uη; r) g (uϕ; r) udηdϕ,

0 ≤ r ≤ 1 (99)

and

uG (u)N (u) =
∞∫
0

∞∫
0

e−(η+ϕ)f (uη; r) g (uϕ; r) udηdϕ,

0 ≤ r ≤ 1 (100)

let x = η + ϕ, since η is �xed in the interior integrals so
dx = dϕ, hence above equations will reduce to:

uG (u)N (u) =
∞∫
0

x∫
0

e−x f (uη; r) g (u (x − η) ; r) udηdx,

0 ≤ r ≤ 1 (101)

and

uG (u)N (u) =
∞∫
0

x∫
0

e−x f (uη; r) g (u (x − η) ; r) udηdx,

0 ≤ r ≤ 1 (102)

or

uG (u)N (u) =
∞∫
0

e−x
x∫

0

f (uη; r) g (u (x − η) ; r) udηdx,

0 ≤ r ≤ 1 (103)

and

uG (u)N (u) =
∞∫
0

e−x
x∫

0

f (uη; r) g (u (x − η) ; r) udηdx,

0 ≤ r ≤ 1 (104)

taking, τ = uη and dτ = udη, uη ∈ [0, ux] when η ∈ [0, x],
therefore:

uG (u)N (u) =
∞∫
0

e−x
 x∫
0

f (τ; r) g ((ux − τ) ; r) dτ

dx
= S
[(
f * g

)
(x; r)

]
(105)

and

uG (u)N (u) =
∞∫
0

e−x
 ux∫
0

f (τ; r) g ((ux − τ) ; r) dτ

dx
= S
[(
f * g

)
(x; r)

]
(106)

For 0 ≤ r ≤ 1.
Lemma 3.4.1.1

Let f and g be fuzzy-valued function and g (x) = 1,
then convolution theorem yields the fuzzy Sumudu trans-
form of the anti-derivative of f (x). i.e.

S [f (x)] = S

 x∫
0

f (τ) dτ

 = uG (u) . (107)
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with lower and upper functions are:

S
[
f (x; r)

]
= S

 x∫
0

f (τ; r) dτ

 = uG (u) ,

S
[
f (x; r)

]
= S

 x∫
0

f (τ; r) dτ

 = uG (u) , 0 ≤ r ≤ 1

(108)

4 Applications of Fuzzy Sumudu
transformation on Fuzzy
Di�erential Equations

In this section, applications of fuzzy Sumudu transform is
elaborated by solving some fuzzy di�erential equations,
taken from [28].

4.1 Example

Let
y′′ (x) = σ0, σ0 = (r − 1, 1 − r) (109)

be second order fuzzy di�erential equation with initial
conditions

y (0; r) = (r − 1, 1 − r) , y′ (0; r) = (r − 1, 1 − r) (110)

To solve this equationwe consider the following four cases
of strongly generalized H-di�erentiability:
Case I:

Let y (x) and y′ (x) are (1)-di�erentiable. Then apply-
ing fuzzy Sumudu transform on both sides of Eq. (109) we
obtain:

S
[
y′′ (x)

]
= S [σ0] , (111)

with lower and upper functions,

S
[
y′′ (x; r)

]
= S [σ0] , S

[
y′′ (x; r)

]
= S [σ0] , 0 ≤ r ≤ 1

(112)
Using Theorem 3.7, we get:

S
[
y (x; r)

]
u2 Θ

y (0; r)
u2 Θ

y′ (0; r)
u = σ0,

S [y (x; r)]
u2 Θ y (0; r)u2 Θ y

′ (0; r)
u = σ0 (113)

After some simpli�cation:

S
[
y (x; r)

]
= y (0; r) + uy′ (0; r) + u2σ0,

S [y (x; r)] = y (0; r) + uy′ (0; r) + u2σ0 (114)

Taking inverse fuzzy Sumudu transform on both sides of
Eq. (114), we get

y (x; r) = y (0; r) S−1 [1] + y′ (0; r) S−1 [u] + σ0S−1
[
u2
]
,

(115)

y (x; r) = y (0; r) S−1 [1] + y′ (0; r) S−1 [u] + σ0S−1
[
u2
]
.

(116)
Using inverse values from Table A.1 in Belgacem et al. [2],
we obtain

y (x; r) = y (0; r) + y′ (0; r) x + σ0
x2
2 , (117)

y (x; r) = y (0; r) + y′ (0; r) x + σ0
x2
2 . (118)

Using Eq. (110) we obtain solutions as:

y (x; r) = (r − 1)
[
1 + x + x

2

2

]
,

y (x; r) = (1 − r)
[
1 + x + x

2

2

]
(119)

Case II:
Let y (x) and y′ (x) be (1)-di�erentiable and (2)-

di�erentiable, respectively. Considering lower and upper
functions of Eq. (109) and applying fuzzy Sumudu trans-
form on both sides we get:

−
y (0; r)
u2 −

y′ (0; r)
u Θ

S
[
y (x; r)

]
−u2 = σ0,

− y (0; r)u2 − y
′ (0; r)
u Θ S [y (x; r)]−u2 = σ0 (120)

Following similar manipulation done in Case I, we get:

y (x; r) = (r − 1)
[
1 + x − x

2

2

]
,

y (x; r) = (1 − r)
[
1 + x − x

2

2

]
(121)

Case III:
Let y (x) is (2)-di�erentiable and y′ (x) is (1)-di�erentiable.
Taking lower and upper functions of Eq. (109) and apply-
ing fuzzy Sumudu transform on both sides,

−
y (0; r)
u2 Θ

y′ (0; r)
u Θ

S
[
y (x; r)

]
−u2 = σ0,

− y (0; r)u2 Θ y
′ (0; r)
u Θ S [y (x; r)]−u2 = σ0 (122)

Similarly, following Case I, after some manipulation we
obtain the solutions of lower and upper functions as:

y (x; r) = (r − 1)
[
1 − x − x

2

2

]
,

y (x; r) = (1 − r)
[
1 − x − x

2

2

]
(123)
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Case IV:
Consider y (x) and y′ (x) of Eq. (109) are (2)-

di�erentiable. Applying fuzzy Sumudu transform on both
sides of its lower and upper functions we get:

S
[
y (x; r)

]
u2 Θ

y (0; r)
u2 −

y′ (0; r)
u = σ0,

S [y (x; r)]
u2 Θ y (0; r)u2 + y

′ (0; r)
u = σ0 (124)

Similar to Case I, after some simpli�cation we get the solu-
tions of lower and upper functions as:

y (x; r) = (r − 1)
[
1 − x + x

2

2

]
,

y (x; r) = (1 − r)
[
1 − x + x

2

2

]
(125)

4.2 Example

Considering another example of fuzzy di�erential equa-
tion with fuzzy initial conditions as

y′′ (x) + y (x) = σ0, σ0 = (r, 2 − r) (126)

y (0; r) = (r − 1, 1 − r) , y′ (0; r) = (r − 1, 1 − r) (127)

As in Example 4.1, we have the following four cases:
Case I:

Let y (x) and y′ (x) are (1)-di�erentiable. Then on ap-
plying fuzzy Sumudu transform on both sides of Eq. (126)
we get:

S
[
y′′ (x)

]
+ S [y (x)] = S [σ0] , (128)

with lower and upper functions

S
[
y′′ (x; r)

]
+ S
[
y (x; r)

]
= S [σ0] ,

S
[
y′′ (x; r)

]
+ S [y (x; r)] = S [σ0] , 0 ≤ r ≤ 1 (129)

Using Theorem 3.7

S
[
y (x; r)

]
u2 Θ

y (0; r)
u2 Θ

y′ (0; r)
u + S

[
y (x; r)

]
= σ0 (130)

and

S [y (x; r)]
u2 Θ y (0; r)u2 Θ y

′ (0; r)
u + S [y (x; r)] = σ0 (131)

After some simpli�cation:

S
[
y (x; r)

] (
1 + u2

)
= y (0; r) + uy′ (0; r) + u2σ0,

S [y (x; r)]
(
1 + u2

)
= y (0; r) + uy′ (0; r) + u2σ0 (132)

Taking inverse fuzzy Sumudu transform on both sides of
Eq. (132):

y (x; r) =y (0; r) S−1
[

1
(1 + u2)

]
+ y′ (0; r) S−1

[
u

(1 + u2)

]
+ σ0S−1

[
u2

(1 + u2)

]
, (133)

y (x; r) =y (0; r) S−1
[

1
(1 + u2)

]
+ y′ (0; r) S−1

[
u

(1 + u2)

]
+ σ0S−1

[
u2

(1 + u2)

]
(134)

Using inverse values from Table A.1 in Belgacem et al. [2]:

y (x; r) = y (0; r) [cos x] + y′ (0; r) [sin x] + σ0 [1 − cos x] ,
(135)

y (x; r) = y (0; r) [cos x] + y′ (0; r) [sin x] + σ0 [1 − cos x] .
(136)

Using initial conditions from Eq. (127), solutions obtained
are:

y (x; r) = r (1 + sin x) − cos x − sin x,

y (x; r) = (2 − r) (1 + sin x) − cos x − sin x (137)

Case II:
Let y (x) is (1)-di�erentiable and y′ (x) is

(2)-di�erentiable. Then applying fuzzy Sumudu transform
on both sides of lower and upper functions of Eq. (126) we
get:

−
y (0; r)
u2 −

y′ (0; r)
u Θ

S
[
y (x; r)

]
−u2 + S

[
y (x; r)

]
= σ0 (138)

− y (0; r)u2 − y
′ (0; r)
u Θ S [y (x; r)]−u2 + S [y (x; r)] = σ0 (139)

After doing manipulation as done in Case I, we obtain the
solutions of lower and upper functions as:

y (x; r) = r (1 + sinh x) − cos x − sinh x,

y (x; r) = (2 − r) (1 + sinh x) − cos x − sinh x (140)

Case III:
Let y (x) and y′ (x) in Eq. (126) be (2)-di�erentiable and

(1)-di�erentiable, respectively. On applying fuzzy Sumudu
transform on both sides of its lower and upper functions,
we obtain:

−
y (0; r)
u2 Θ

y′ (0; r)
u Θ

S
[
y (x; r)

]
−u2 + S

[
y (x; r)

]
= σ0 (141)
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− y (0; r)u2 Θ y
′ (0; r)
u Θ S [y (x; r)]−u2 + S [y (x; r)] = σ0 (142)

Similarly, following manipulation in Case I, we obtain the
solutions of lower and upper functions as:

y (x; r) = r (1 − sinh x) − cos x + sinh x,

y (x; r) = (2 − r) (1 − sinh x) − cos x + sinh x (143)

Case IV:
Let y (x) and y′ (x) are (2)-di�erentiable. Taking lower

and upper functions of Eq. (126) and applying fuzzy
Sumudu transform on both sides we obtain:

S
[
y (x; r)

]
u2 Θ

y (0; r)
u2 −

y′ (0; r)
u + S

[
y (x; r)

]
= σ0 (144)

S [y (x; r)]
u2 Θ y (0; r)u2 + y

′ (0; r)
u + S

[
y (x; r)

]
= σ0 (145)

Similar to Case I, after somemanipulationwe obtain lower
and upper solutions as:

y (x; r) = r (1 − sin x) − cos x + sin x,

y (x; r) = (2 − r) (1 − sin x) − cos x + sin x (146)

5 Conclusions
In this document,we extendedSumudu transform to fuzzy
Sumudu transform for the solution of linear di�erential
models with uncertainty. Presented illustration of its fun-
damental properties and its application on some second
order fuzzy linear di�erential equations considered under
strongly generalized Hukuhara di�erentiability. Thus it is
concluded that:
– The proposed transformation has unit and scale pre-

serving property, which is advantageous for uncertain
physical models.

– Due to analytical duality of fuzzy Sumudu transform
with fuzzy Laplace transform as discussed in Theo-
rem 3.1 each problem solved by fuzzy Laplace trans-
form can also be solved by fuzzy Sumudu transform
method.

– Fromexamples it is depicted that fuzzy Sumudu trans-
form is very e�ective and reliable toolwith less compu-
tation in obtaining exact solutions of fuzzy di�erential
equations.

Further, to study its applications in future we will gener-
alize fuzzy Sumudu transformation to fractional order for
solving fuzzy fractional linear di�erential equations.
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