
Nonlinear Engineering 2015; 4(1): 31–37

S. Arora and Nagma Irfan*

Numerical Solution of a Plane Jet Impingement on
an In�nite Flat Surface
Abstract: In this paper numerical solution of the unsteady
plane incompressible viscous jet impinging on to an in�-
nite �at surface are presented for Re=450. In the present
study, all calculations have been done by using Dufort
Frankel scheme and over relaxation scheme. Result and
graphs have been obtained by using MATLAB program-
ming. The obtained results explain the �ow of water after
exhaling from nozzle and the streamlines and vorticity of
�owofwater after strikingwith �at in�nite surface. The so-
lutions obtainedbyproposedmethod indicate that this ap-
proach is easy to implement and computationally very at-
tractive and the results of our investigation are in qualita-
tive agreement with those available in the literature [1, 9].
This method is capable of greatly reducing the size of cal-
culations while still maintaining high accuracy of the nu-
merical solution.
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NOMENCLATURE
K = heat conductivity
ρ = density of �uid
µ= dynamic viscosity
Cpµ = viscous di�usion rate
ψ = stream function
ω = vorticity function
Xi = free jet thickness at a distance
ν = Kinematic viscosity ν = (µ/ρ)
Re = Reynolds no.
Pr = Prandlt no.
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L = characteristic linear dimension
Ti = ambient temperature
Tm = max temp values of the velocity on the axis
Vm = max values of the velocity on the axis

1 Introduction
When the development of a free jet �ow is interrupted by
the presence of a surface, an impinging jet is created. Im-
pinging jets are characterized by a rapid deceleration of
the discharged �uid as it reaches the surface, which re-
sults in an exchange of momentum between the �uid and
the impingement surface that leads to high rates of heat
and mass transfer. The impingement of a jet on a solid
surface is of interest in many practical problems, such as
paint sprays, curtain coating in paper industries, shielded-
arc welding and jet blast, particularly in connection with
current schemes for vertical take-o� aircrafts. Also with
its e�ectiveness of localized heating or cooling, jet im-
pingement has been widely applied in cooling of elec-
tronic package, cooling of turbine blade, drying of textile,
and many other engineering areas. The regimes for which
these base �ow characteristics have to be determined are
the cases of conventional subsonic and supersonic jet im-
pingement on the �at surface. Fromanumericalmodelling
perspective, the study of impinging jets can be incorpo-
rated into the development of turbulence models as most
are tested on �ows, which are parallel to the wall and
are, therefore not equipped to deal with �ows on which
the streamlines change orientation and become computa-
tional models have been made, they are being held back
the lack of detailed experimental data, as a large quantity
of the research on impinging jets is still directed toward
understanding the heat transfer characteristics of imping-
ing jets at the high Reynolds numbers, because they lead
to the highest rates of heat transfer.

The �ow �eld of an impinging jet is typically charac-
terized by three distinct regions 1) the potential region 2)
the impinging decaying or decelerating region 3) the wall
jet region. The �ow characteristics for each of these re-
gions are clearly distinct from each other. There is a con-
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siderable literature available concerning the �ow in the
potential jet region and wall jet region while the impinge-
ment region is not yet completely investigated. Experimen-
tal and analytical data from literature has also been in-
cluded in comparison. Some experimental results for the
impingement region were obtained but they were not veri-
�ed by theoretical investigations [1–4]. Numerical solution
was obtained to the problem for inviscid �uid, impinging
normally on to a plate by power series expansion [5].Some
interesting numerical solutionswere obtained for a steady,
plane incompressible jet using �nite-di�erence technique,
leaving the heat transfer problem untouched [6]. The heat
transfer of swirling and conventional CO2-air submerged
jet impingement was experimentally studied with thermo-
chromic crystal liquid technique [7].Theheat transfer char-
acteristics of a planar free water jet normally or obliquely
impinging onto a �at substrate were investigated experi-
mentally by Ibuki et al. [8]. Numerical study of normal im-
pingement of a plane jet on a �at surface was proposed
in [9–11]. Michael obtained results of jet impingement heat
transfer at high Reynolds number and large temperature
di�erence [10]. Recently, a systematic study of the e�ect
of the Reynolds number on the �uid dynamics and turbu-
lence statistics of pulsed jets impinging on a �at surface is
presented in [14].

The key parameters determining the heat transfer
characteristics of a single impinging jet are the Re, Pr
and jet diameter. Nozzle geometry can also have a signif-
icant in�uence on heat transfer. Numerous studies have
been conducted to investigate the in�uence of each of
these parameters. For a constant jet diameter, heat trans-
fer increases with increasing Reynolds number. For a con-
stant Reynolds number, decreasing the jet diameter yields
higher stagnation and average heat transfer coe�cients.

The objective of present study is to investigate the heat
transfer characteristics of aplanarwater jet impingingnor-
mally of obliquely on an in�nite �at surface. The impinge-
ment region has been divided into mesh with equal step
size which has been solved using Matlab programming
with the help of boundary conditions to obtain results.
This paper is written to understand the hydrodynamics
and heat transfer of the impingement process, particularly
the complexities attributable to the asymmetric geometry
of an oblique liquid plane jet. However, unsteady problem
with heat transfer has been studied here in impingent re-
gion using Dufort Frankel scheme [14] and over relaxation
techniques with Matlab programming.

Fig. 1 shows a schematic diagram of a planar imping-
ing jet. The liquid jet issues from a slot nozzle into the air,
and then impinges on the in�nite �at surface. The heat
transfer characteristics of the interaction between the jet

and the �at surface depend on the liquid �ow rate and the
impingement angle.

Fig. 1. Schematic diagram of a planar jet impinging on a solid sur-
face.

2 Mathematical study
Consider the problem of two-dimensional viscous Incom-
pressible impinging Jet upon a �at surface. The governing
parameters are:

ω = ∂u2∂X −
∂u1
∂Y , Re = vLv ,

Pr = Cpµk , θ = T − Tw
Te − Tw

Cpµ is viscous di�usion rate Te and v are also assumed as
constant. Stream function ψψ is connected with the vor-
ticity function ω by the Equation

ω = −
[
∂2ψ
∂X2 + ∂

2ψ
∂Y2

]
(1)

2.1 Boundary conditions

Fig. 2 describes the jet impingement system. We de�ne the
boundaries as

Y0 = 1 , X0 = Xi (2)

Where Xi is the free jet thickness at a distance from the
nozzle equal to (Y − Y0)

From Schauer and Eustis’s data (1963) on free jets, Xi
is given by

Xi = 0.22(Y − Y0) (3)

Thus boundary values of impinging region are:

0 ≤ Y ≤ Y0 = 1 , 0 ≤ X ≤ X0 = 2.Xi = 0.44(Y − Y0) (4)
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Fig. 2. Diagram of Impinged jet on Flat Surface.

The boundary conditions have been de�ned for the dy-
namical and heat transfer Problems separately for a hot
jet impinging on a �at surface.

2.2 Dynamical Problem

On AB : ψ = 0 , ω = 0 , ∂ψ∂Y = 0 at t ≥ 0

On AE : ψ = 0 , ω = 0 ψ = 0, at t = 0
ψ = 0 , ω0 = ∇2ψ at t > 0

On BC : ∂ψ∂X −
∂ω
∂X = 0 at t ≥ 0,

On CD : ∂ψ∂Y = 0 , ω = 0 for t ≥ 0

On BC : ψ = −
∫
V∞dX , ω = ∂V∞∂x

ψ = −
∫

V∞dX, for all t ≥ 0 (5)

Let V∞ be determined from the well-known known
Schlichting’s pro�le for a free jet

Thus

V∞
V∞m

=

1 −( XXi
) 3

2
2 (6)

Where V∞m is the maximum velocity on the jet axis given
by

V∞m = 2.35
(Y − Y0)

1
2

(7)

From equation (6) V∞ = V∞m

[
1 −
(
X
Xi

) 3
2
]2

From equation (5), (6) and (7),

ψ = −V∞m
∫ 1 −( XXi

) 3
2
2 dX

ψ = −V∞m
∫ 1 −( XXi

)3
− 2
(
X
Xi

) 3
2
 dX ,

ψ = −V∞m

X + 1
4

(
X
Xi

)4 1
Xi
− 2 × 25

(
X
Xi

) 5
2 1
Xi



ψ = −V∞mXi

 X
Xi

+ 0.25
(
X
Xi

)4 1
Xi
− 0.8

(
X
Xi

) 5
2
 (8)

ω = ∂V∞∂X = ∂
∂X V∞m

1 −( XXi
) 3

2
2

ω = V∞m2

1 −( XXi
) 3

2
−32

(
X
Xi

) 1
2 1
Xi


ω = −3V∞mXi

[(
X
Xi

)0.5
−
(
X
Xi

)2
]

ω = 3V∞m
Xi

[(
X
Xi

)2
−
(
X
Xi

)0.5
]

(9)

2.3 Heat Transfer Problem

For a free two-dimensional jet we have [2]

T − Ti
Tm − Ti

=
(
V
Vm

) 1
2

(10)

Where Ti is the ambient temperature, Tm and Vm are the
maximum values of the Temperature and velocity on the
axis. Tm is a function of the distance from the exit section
of the nozzle and the exit temperature. Hence equation (6)

T∞ − Ti
T∞m − Ti

=

1 −( XXi
) 3

2
 (11)

Following [2], we have

T∞m − Ti =
2.02(Te − Ti)
(Y − Y0) 12

(12)

Thus the new variable ϑ at Y = Y0 is denoted by ϑ∞ with
the help of equations (11) and (12) is given by

ϑ∞ = T∞ − TwTe − Tw
= T∞ − Ti
Te − Tw

+ Ti − Tw
Te − Tw

(13)

From (11), (12) and (13) [2, 9]

T∞ − Ti = (T∞m − Ti)

1 −( XXi
) 3

2

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T∞ − Ti =
2.02(Te − Ta)

(Y − Y0)
1
2

1 −( XXi
) 3

2


ϑ∞ = T∞ − TwTe − Tw
= Te − Ti
Te − Tw

2.02

(Y − Y0)
1
2

1 −( XXi
) 3

2
 + Ti − Tw

Te − Tw

for 0 ≤ X ≤ Xi

and
ϑ∞ = Ti − Tw

Te − Tw
ϑ∞=

Ti−Tw
Te−Tw

for X > Xi (14)

Wall temperature has been determined from the consideration of the heat balance on the wall surface and it varies
from surface to surface. Thus, for a hot jet and a cold plate; Ti = Tw.

Boundary conditions for heat transfer problem are:

On BC :ϑ∞ = 2.02(Te − Ti)

(Y − Y0)
1
2

1 −( XXi
) 3

2
 0 ≤ X ≤ Xi

On CD : ϑ∞ = 0 for t ≥ 0
On AE : T = Tw , ϑ = ϑ∞ = 0 for t ≥ 0

On AB : Assume ∂ϑ∂X = 0 for all t ≥ 0 (15)

In present study, Dufort Frankel numerical technique [14] has been used by dividing the region ABCDEA into
meshes.

ψi,j(t) =
[
(ψi−1,j + ψi+1,j)∆Y2 + (ψi,j−1 + ψi,j+1)∆X2 + ωi,j∆X2∆Y2

2(∆X2 + ∆Y2)

]
ψi,j (t) (16)

vorticity transport equation is : (
∂ω
∂t + u ∂ω∂X + υ ∂ω∂Y

)
= 1
Re

(
∂2ω
∂X2 + ∂

2ω
∂Y2

)
In above equation both time and space derivatives are replaced with their central di�erence approximation:

∂ω
∂t =

ωn+1i,j − ωn−1i,j
2∆t , ∂ω∂X =

ωn+1i,j − ωn−1i,j
2∆X , ∂ω∂Y =

ωn+1i,j − ωn−1i,j
2∆Y

u1 =
∂ψ
∂Y =

ψn+1i,j − ψn−1i,j
2∆Y , u2 = −

∂ψ
∂X =

−ψn+1i,j + ψn−1i,j
2∆X

From vorticity transport equation

ωn+1i,j − ωn−1i,j
2∆t +

(
ψn+1i,j − ψn−1i,j

2∆Y

)(
ωn+1i,j − ωn−1i,j

2∆X

)
+
(
−ωn+1i,j + ψn−1i,j

2∆X

)(
ωn+1i,j − ωn−1i,j

2∆Y

)
=

1
Re

(ωni−1,j − 2ωni,j + ωni+1,j
∆X2 +

ωni,j−1 − 2ωni,j + ωni,j+1
∆X2

)
=

1
Re

(
ωni−1,j − (ωn+1i,j + ωn−1i,j ) + ωni+1,j

∆X2 +
ωni,j−1 − (ωn+1i,j + ωn−1i,j ) + ωni,j+1

∆Y2

)

ωn+1i,j

[
1
Re +

1
∆X2 + 1

∆Y2

]
= ωn−1i,j

[
1
Re +

1
∆X2 + 1

∆Y2

]
+ Re
∆X∆Y

[
ψni,jωni,j − ψni,jωni,j

]
+
(ωni+1,j + ωni−1,j)

∆X2 +
(ωni,j−1 + ωni\,j+1)

∆Y2
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Using �nite di�erence scheme

ωn+1i,j

[
1
Re +

1
∆X2 + 1

∆Y2

]
=ωn−1i,j

[
1
Re +

1
∆X2 + 1

∆Y2

]
+ Re
4∆X∆Y

[
(ψni+1,j − ψni−1,j)(ωni,j+1 − ωni,j−1)

−(ψni,j+1j − ψni,j−1)(ωni+1,j − ωni−1,j
]
+
(ωni+1,j + ωni−1,j)

∆X2 +
(ωni,j−1 + ωni\,j+1)

∆Y2 (17)

The Energy equation is: (
∂ϑ
∂t + u1

∂ϑ
∂X + u2

∂ϑ
∂Y

)
= 1
Re Pr

(
∂2ω
∂X2 + ∂

2ω
∂Y2

)
In above equation both time and space derivatives are replaced with their central di�erence approximation:(

∂ϑ
∂t =

ϑn+1i,j − ϑn−1i,j
2∆t , ∂ϑ∂X =

ϑn+1i,j − ϑn−1i,j
2∆X , ∂ϑ∂Y =

ϑn+1i,j − ϑn−1i,j
2∆Y

)

u1 =
∂ψ
∂Y =

ψn+1i,j − ψn−1i,j
2∆Y , u2 = −

∂ψ
∂X =

−ψn+1i,j + ψn−1i,j
2∆X

From energy equation:

ϑn+1i,j − ϑn−1i,j
2∆t +

(
ψn+1i,j − ψn−1i,j

2∆Y

)(
ϑn+1i,j − ϑn−1i,j

2∆X

)
+
(
−ψn+1i,j + ψn−1i,j

2∆X

)(
ϑn+1i,j − ϑn−1i,j

2∆Y

)
=

1
Re

( ϑni−1,j − 2ϑni,j + ϑni+1,j
∆X2 +

ϑni,j−1 − 2ϑni,j + ϑni,j+1
∆X2

)
=

1
Re

(
ϑni−1,j −

(
ϑn+1i,j + ϑn−1i,j

)
+ ϑni+1,j

∆X2 +
ϑni,j−1 −

(
ϑn+1i,j + ϑn−1i,j

)
+ ϑni,j+1

∆Y2

)

Therefore

ϑn+1i,j

[
1
Re +

1
∆X2 + 1

∆Y2

]
= ϑn−1i,j

[
1
Re +

1
∆X2 + 1

∆Y2

]
+ Re
∆X∆Y

[
ψni,jϑni,j − ψni,jϑni,j

]
+
ϑni+1,j + ϑni−1,j

∆X2 +
ϑni,j−1 + ϑni,j+1

∆Y2

Using �nite di�erence scheme

ϑn+1i,j

[
1
Re +

1
∆X2 + 1

∆Y2

]
=ϑn−1i,j

[
1
Re +

1
∆X2 + 1

∆Y2

]
+ Re
4∆X∆Y

[(
ψni+1,j − ψni−1,j

) (
ϑni,j+1 − ϑni,j−1

)
−
(
ψni,j+1 − ψni,j−1

) (
ϑni+1,j − ϑni−1,j

)]
+
ϑni+1,j + ϑni−1,j

∆X2 +
ϑni,j−1 + ϑni,j+1

∆Y2 (18)

Here, the subscripts i and j correspond to the x and y coordinates, while the Superscriptnindicates the time index and
not a power. This discretization scheme has been discussed in Dufort frankel method [14].

3 Results
Since �ow starts from rest, the initial values ofω, ϑω and ψ have been set to zero at all mesh points except on BC.Where
ω, ϑω and ψ are computed using above discussed equations

ψ = −V∞mXi

[
X
Xi + 0.25

(
X
Xi

)4
− 0.8

(
X
Xi

) 5
2
]
, ω = 3V∞m

Xi

(
X
Xi

)2
−
(
X
Xi

)0.5
V∞m = 2.35

(Y−Y0)
1
2
, Take (Y − Y0) = 16

V∞m = 2.35

(16)
1
2
= 0.5875 , Xi = 0.22(Y − Y0) , Xi = 0.22(16) = 3

Then
ψ = −0.5875 × 3.52

[
X

3.52 + 0.25
( X
3.52
)4 − 0.8 ( X

3.52
) 5
2
]
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ψ = −0.5873X + 1.2863X2.5 − 0.002068X4

ω = 3V∞m
Xi [ XXi

2 − X
Xi

0.5], ω = 3×0.5875
3.52 [( X

3.52 )
2 − ( X

3.52 )
0.5]

ω = 0.04035X2 − 0.2665X0.5

From equation (15) θ = constant.

On BCϑ∞ = 2.02(Te − Ti)

(Y − Y0)
1
2

1 −( XXi
) 3

2
 , ϑ∞ = 2.02.

(13)
1
2

1 −( X
3.52

) 3
2


ϑ∞ = 0.505X − 0.332X1.5

4 Calculations
Equation (16) has been solved by using over-relaxationmethod to obtain improved stream function values at all interior
points.

ψi,j(t) =
[
(ψi−1,j + ψi+1,j)∆Y2 + (ψi,j−1 + ψi,j+1)∆X2 + Ωi,j∆X2∆Y2

2(∆X2 + ∆Y2)

]
Over relaxation factor:

ψk+1i,j = Wψ*i,j + (1 −W)ψki,j

Take ψ*i,j = ψi,j(t)ψ*i,j=ψi,j (t) in equation (16)

ψk+1i,j = W
[
(ψi−1,j + ψi+1,j)∆Y2 + (ψi,j−1 + ψi,j+1)∆X2 + Ωi,j∆X2∆Y2

2(∆X2 + ∆Y2)

]
+ ψki,j −Wψki,j

ψk+1i,j = ψki,j +W
[
(ψi−1,j + ψi+1,j)∆Y2 + (ψi,j−1 + ψi,j+1)∆X2 + Ωi,j∆X2∆Y2

2(∆X2 + ∆Y2) − ψki,j
]

(19)

HereW is the relaxation factor and superscripts (k) and (k+1) indicate the values at the (k) th and (k+1)th iteration respec-
tively; superscripts * indicates the most recent corrected value. After some preliminary tests by using below equation,
value of W has been �xed at 1.32.

Wopt =
4

2 +
√
4 − C2

(20)

Where C = Cos πp + Cos
π
q .

Where p= mesh division along x-axis and q= mesh division along y-axis.
So p=10 (∆x = 0.5) and q=5 (∆y = 0.2).

1. The non-dimensional time has been advanced by ∆t and at this new time t= ∆t, the vorticity ω is computed at all
interior points using equation (18).stream function ψ has been computed at di�erent time steps using equation (17)
and (20).

2. Steps (ii) to (iv) has been repeated. These time steps have been further repeated at latter times.
3. All above procedure has been done using programming language MATLAB. In which Re=450, ∆t = 0.02, ∆x = 0.5,

∆y = 0.2

Fig. 3 illustrates the geometry and boundary conditions of impinged jet on �at surface. Graph computes the streamlines
in the impingement region at t=6.0.these values have been calculated by doing programming in MATLAB.

Graphical results of impinging jet problem has been discussed by using Reynolds number Re=450, ∆t = 0.02, ∆x =
0.5 , ∆y = 0.2, (Y − Y0) = 16.

In Fig. 3, Reynolds number Re=450, ∆t = 0.02, ∆x = 0.5, ∆y = 0.2 (Y − Y0) = 16, L=1.0 (Diameter of nozzle).
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5 Conclusion
Graphs has been obtained by doing Programming in MAT-
LAB by using Dufort Frankel scheme [14] and over relax-
ation scheme. In this paper Re=450, ∆t = 0.02, ∆x = 0.5,
∆y = 0.2, (Y − Y0) = 16, L =1.0 which provides us ap-
proximate results but near to given problems required re-
sults. Results explains us the �ow of water after exhaling
from nozzle. It explains us the streamlines and vorticity of
�ow of water after striking with �at in�nite surface. This
method is capable of greatly reducing the size of calcula-
tions while still maintaining high accuracy of the numer-
ical solution. The implementation of current approach in
analogy to existedmethods ismore convenient and the ac-
curacy is high.

(a)

(b)

Fig. 3. (a) Contour Graph 1; (b) Contour Graph 2.
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