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Abstract: This paper addresses a linearization technique
for a linearizable nonlinear SDOF system based on block
pulse (BP) transform. BP transform method is a useful
tool for giving a solution of di�erence equations with less
computational costs. The main goal of this work is on re-
ducing the costs of linearizing computation. It is neces-
sary to compare the results obtained using this method
with other traditional methods to verify the e�ectiveness
of the proposed method. Therefore, the e�ciency of BP
transform method is compared with the traditional equiv-
alent linearization (EL) method, used to linearize nonlin-
ear systems. Two numerical simulations are applied to the
Du�ng oscillator system to demonstrate the feasibility of
the proposed method based on BP transform. Finally, the
results of comparison between existing approaches that
have applied to the considered problem depicted the pro-
posed method base on orthogonal functions is able to ap-
proximate the nonlinear system’s behavior and shows the
superiority of the proposed approach in the sense that it is
more accurate by computational advantageous.

Keywords: Linearization, block pulse transform, nonlin-
earity, Du�ng oscillator

1 Introduction
Study of nonlinearity in dynamic systems has been a
prominent area of research in last decades. This inherent
phenomenon inevitably occurs in physical systems. Inme-
chanical and structural systems nonlinearities can arise
in various forms and usually becomes progressively more
signi�cant as the motion amplitude increases. The major
sources of nonlinearity arise from misalignment, loose-
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ness, temperature e�ects, impedance mismatching, pre-
load, exciter problems and overloads [1]. Nonlinear sys-
temsmay show complicated behavior, such as limit cycles,
bifurcations and even chaos which are di�cult to predict.
Besides in practical applications, due to the high intensity
nature and often complex nature of non-stationary envi-
ronmental loads such as wind loads, sea waves and earth-
quakes, the systems subjected to these loadings may ex-
perience excessive stress or displacements that results in-
elastic behavior [2]. To describe real observed processes
in �eld of engineering, researchers often use mathemati-
cal models. For dynamic processes, these models contain
many di�erent types of equations such as ordinary or par-
tial di�erential equations, di�erence equations, and alge-
braic equations. In general case, due to the nature of the
considered problems are nonlinear, there is no exact so-
lution for such equations. Except for some special cases,
the solutions are approximate [3]. There are diverse ap-
proaches which have been developed over the years to
treat the nonlinear problems. Most commonly used meth-
ods includePerturbation,Monte Carlo simulation andwell
knownharmonic balancemethodwhich is one of themain
techniques for obtaining approximate analytic solutions to
nonlinear ordinary di�erential equations. Also there are
the semi-analytical methods, such as the high order har-
monic balance (HOHB)methodwhich has been developed
to avoid the tedious algebraic calculations involved in the
classical harmonic balancemethod in processing the non-
linear term in the nonlinear dynamical system [4], the high
dimensional harmonic balance (HDHB) method and the
time domain collocation (TDC) method [5]. Meanwhile,
among many methods dealing with a nonlinear system,
linearizationmethods are the oldest and themost popular
methods of approximation. To approximate the nonlinear
problems a powerful linearization technique is required
to analyze and predict nonlinear system’s behavior in or-
der to design an accurate and desirable scheme of a sys-
tem during its operation under any excitations. One of the
linearization methods is the Lyapunov linearization tech-
nique used to approximate a nonlinear system by a linear
one that is around the equilibriumpoint, and it is expected
the behavior of the linear systemwill be the same as that of
nonlinear one [6]. The other one is feedback linearization
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method which is a common approach used in nonlinear
control systems. This method is based on the idea of trans-
forming original system model into equivalent linear one
which is changed to the state variables and a suitable in-
put instead [7, 8]. Describing Function is another method
for system linearization which is an extension of the fre-
quency response method of linear control can be used
as the approximate analysis to predict some important
characteristics of nonlinear system including systemswith
hard nonlinearities [9]. Statistical equivalent linearization
(EL) technique is commonly used approach in nonlinear
problems. The statistical EL method is based on the idea
that the nonlinear system is replaced by an equivalent lin-
ear equation by minimizing the di�erence between the
two systems in some appropriate sense. In order to pre-
dict the response of this kind of system or to get an ap-
proximation solution of nonlinear equation this method
is applied to estimate the accurate equivalent linear pa-
rameters. This method was proposed by Caughey [10] as
a way to solve nonlinear vibration problems. Statistical EL
method has proven to be very useful approximation tech-
nique in structural dynamics and earthquake engineering.
All methods of statistical and EL can be considered in dif-
ferent �elds such as state space, frequency domain, distri-
bution space and characteristic functions space. Usually
they consist of twomain steps. In the �rst step, deal to �nd
explicit or implicit analytical formulas for linearization co-
e�cients based on the linearization criterion which is de-
pend on unknown response characteristics such as mean
value, variance, and higher-order moments. In the second
step, deal to replace the unknown characteristics by the
corresponding ones determined for linearized systems. It
is worth mentioning that accuracy and feasibility of these
solutions dependent on the type of nonlinearity and am-
plitude of external excitation forces. Thismethodhas been
widely used [11, 12]. Discrete-time (data sampled) systems
have resulted in corresponding demand for designing and
understanding these systems. These systems are governed
by di�erence equations in which members are coupled
to each other. One source of di�erence equations is the
numerical evaluation of integrals. Also we could use the
conventional Laplace transform to solve these di�erence
equations [13].

Block pulse (BP) transform provides a useful tool to
solve di�erence equations of any order with less compu-
tational costs. The BP transform originated from BP func-
tions. The BP functions are a set of orthogonal functions
with piecewise constant values and are usually applied
as a useful tool in the analysis, synthesis, identi�cation
and other problems of control and systems science. This
set of functions was �rst introduced to electrical engineers

by Harmuth [14]. Some papers discussed the BP functions
and their operational matrix for integration in order to
reduce the complexity of expressions in solving certain
control problems via Walsh functions. PurnachandraRao
and RanganathaRao [15] used BP functions to determine
the piecewise constant feedback controls for a �nite lin-
ear optimal control problem of a power system that the
proposed method is simple and computationally advan-
tageous. Sannuti showed that the application of BP func-
tions results in an enormous reduction of computational
e�ort over Walsh functions in control system applications
[16]. In active control problem a new method proposed
based on BP functions evolves minimizing computational
costs of analytical approaches [17, 18].

The main objective of this study is the using of BP
transform in linearization procedure through its easy and
simple operation. The input - output relationships for a
linearized system and nonlinear system are obtained us-
ing the BP transform. Following the basic procedure of
the traditional EL approach, one can �nd the least mean
square error between the linearized and nonlinear equa-
tions. The e�ectiveness of the proposed method is val-
idated on nonlinear Du�ng oscillator system. Di�erent
simulations used to verify the accuracy and feasibility of
the proposed method, the traditional EL results of dis-
placement have been compared with those obtained by
this method. Results from this study presented that this
method can approximate the nonlinear systems behav-
ior for stationary excitation better than the traditional EL
method.

Frequency response function (FRF) summarizes es-
sential information to specify the dynamics of a structure.
The FRF of linear and nonlinear system that is linearized
by existing methods have been compared. This compari-
son con�rmed the accuracy of proposed method.

The remaining of this paper is organized as follows.
Section 2 presents the BP transform formulation. In sec-
tion 3 linearization method based on BP transform is pro-
posed. The simulations have been carried out to compare
with the traditional EL method in Section 4 and followed
by the conclusion in Section 5.

2 Block pulse transform
The block pulse transform method provides a technique
for transforming a di�erence equation into an algebraic
equation. The BP transform method is very similar to z-
transform method that can greatly facilitate the analy-
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sis [19]. The BP transform of function f (t) is de�ned by:

F(z) =
∞∑
i=0

f −ii (1)

where fi are the coe�cients of the terms z−i (i = 0, 1, 2, ...)
in the power serieswhich are the values of the sampled sig-
nal f (t) at the corresponding time instants h.Where h is the
sampling period. The summery of BP transform properties
are following [20]:

For addition and subtraction of function x(t) = f (t) ±
g(t), we have:

X(z) = F(z) ± G(z) (2)

For multiplied by a scalar x(t) = kf (t), we have:

X(z) = kF(z) (3)

For multiplication of function x(t) = f (t)g(t), we have:

X(z) =
∞∑
i=0

figiz−i (4)

For division of function x(t) = f (t)/g(t) with g(t) ≠ 0,
we have:

X(z) =
∞∑
i=0

(fi/gi)z−i (5)

For derivation of function x(t) = df (t)
dt , we have:

X(z) = 2
h
1 − z−1
1 + z−1 F(z) − f

(0)
0

2
h

1
1 + z−1 (6)

where f (0)0 is the initial value of f (t).

3 Linearization based on BP
transform

Consider a SDOF nonlinear system subject to external sig-
nal f (t) with the equation motion:

mẍ(t) + g(x, ẋ) = f (t) (7)

Where m is mass of system and g(x, ẋ) is the nonlin-
ear function. Performing the BP transform both sides of (7)
yields:

mẌ(z) + G(z) = F(z) (8)

Where, X′′(z), F(z) and G(z) are BP transform of , x′′(t),
g(x, x′) and f (t) respectively. Regarding to equation (7), the

equation of an equivalent linearized system can be found
as follows:

mẍ(t) + ceq ẋ(t) + keqx(t) = f (t) (9)

where ceq and keq are unknown damping and sti�ness co-
e�cients to be determined by EL to replace the nonlin-
ear term. By using the BP transform on both sides of the
Eq. (9), the following form can be obtained:

mẌ(z) + ceq Ẋ(z) + keqX(z) = F(z) (10)

In which X′(z) and X(z) are BP transform of x′(t) and
x(t), respectively. The replacement of a nonlinear system
by a linear system is in some probabilistic sense and it will
yield the error. The error may be de�ned as:

e = ceq Ẋ(z) + keqX(z) − G(z) (11)

By using the basic procedure of the EL approach the
solution of the nonlinear system is approximated. Equiva-
lent parameters should be selected such that error ewould
be as small as possible by �nding themean square least er-
ror between the original equation and equivalent one [21].

e2 = [ceq Ẋ(z) + keqX(z) − G(z)]2 (12)

To determine the unknown coe�cients from equation
(12), the expected value of the error is derived and its
derivations in respect of unknown coe�cients are written.
It should be noted that the expected value of the error has
been considered for having generality. This is true where
the error to be assumed as a random variable. The coe�-
cients ceq and keq are determined by the following equa-
tion:

∂E[e2]
∂ceq

= ∂E[e
2]

∂keq
= 0 (13)

Noting E[xẋ] = 0 due to displacement and the veloc-
ity are uncorrelated and by using BP transform properties
from section (2), the Eq. (13) leads to the following equa-
tions:

ceq =
∂E
[(

2
h
1−z−1
1+z−1

)
X(z)G(z)

]
E
[(

2
h
1−z−1
1+z−1

)
X(z)

] (14)

and

keq =
∂E[X(z)G(z)]
E[X(z)]2 (15)

In practical applications involving numerical algo-
rithms all parameters are computing at discrete grid
points. In discrete domain the minimization conditions
are:

∂
∂ceq

T∑
i=0

E[e2] = 0 (16)



80 | Hosein Gha�arzadeh and Amir Younespour, Block pulse transform method for linearization

and

∂
∂keq

T∑
i=0

E[e2] = 0 (17)

where Tis the �nal time-instants in simulation.
In fact, the equivalent coe�cients are calculated nu-

merically. The parameters are to be discretized over all the
time steps. In order to �nd the equivalent parameters the
Eqs. (16) and (17) can be de�ned as follow:

ceq =

∑T
i=0

[(
2
h
1−z−1
1+z−1

)
xigiz−i

]
∑T

i=0

[(
2
h
1−z−1
1+z−1

)
xiz−i

] (18)

and

keq =
∂
∑T

i=0 xigiz
−i∑T

i=0(xiz−i)2
(19)

Fig. 1. Nonlinear SDOF system.

4 Linearization results
To implement the proposed methodology for �nding
equivalent damping and sti�ness coe�cients of a system
we consider a nonlinear SDOF systemas shown in Figure 1.
The nonlinear equation is Du�ng equation i.e. an oscil-
lator with nonlinear sti�ness subjected to external signal
f (t):

mẍ(t) + cẋ(t) + g(x) = f (t) (20)

wherem is themass, c is thedamping coe�cient, f (t) is the
external excitation and x(t) is the displacement response
of the system. g(x) is the nonlinear restoring force that
could depend on displacement de�ned as follows [22]:

g(x) = kx + αk3x3 (21)

Fig. 2. External excitations.

Fig. 3. Displacement response of linearized system; linear system
(solid line), linearized system by proposed method (dotted line),
linearized system by traditional EL method (dashed line); (a) α =1.0.
(b) α =1.05. (c) α =1.1. (d) α =1.2.

where α is the non-linear factor that shows the rate of non-
linearity in the nonlinear system.

The system parameters are chosen as follows, m = 2,
c = 20, k = 104 and k3 = 3.8 × 109. The system excited
by two signal. First test signal is the sine excitation which
contain di�erent frequencies f (t) = sin(2t) + 6 sin(4t) +
4 sin(6t), and the second one is a chirp signal which in-
creases linearly with time from 0.1 Hz to 1.5 Hz with a sam-
pling period of 0.01. Figure 2 shows the schemes of exci-
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tation signals. It should be noted that the nonlinear Du�-
ing system subjected to two stationary excitations. Using
equation (18) and (19) for the stationary excitation may
make some con�iction. For the cases inwhich excitation is
not stochastic the computed error is not random variable.
It is obvious that in such cases expected value of error is
replaced with sum of square errors and derivation of it in
respect to unknown parameters is performed.

The nonlinear Du�ng system subjected to two cho-
sen stationary excitations. Figures 3 and 4 for α =
1, 1.05, 1.1, 1.2, show the displacement response of lin-
earized system by proposed method and traditional EL
method. As illustrated in Figures 2 and 3, three curves are
plotted in each�gures. a) The response of the linear system
for the system in which K3=0. This one is illustrated only
to show the disparity of the linearized system from linear
response in respect of nonlinearity rate. It named “linear
system” in�gures. b) The response of nonlinear system lin-
earized by the proposed method. c) The response of non-
linear system linearized by EL method.

The numerical results on SDOF nonlinear system re-
veal that the proposed linearization method based on BP
transform is a promising tool in linearizing nonlinear sys-
tems and this method by less computational expenses is
more accurate than traditional EL method. But the re-
sults demonstrate that the errors between linear and lin-
earized systems increase in high rate of nonlinearity. Fig-
ure 5 presents this fact for excitations.

Fig. 4. Displacement response of linearized system; linear system
(solid line), linearized system by proposed method (dotted line),
linearized system by traditional EL method (dashed line); (a) α =1.0.
(b) α =1.05. (c) α =1.1. (d) α =1.2.

In the �eld of structural dynamics, one of the most
widely-used method of visualizing the properties of a sys-
tem is to build the frequency response function (FRF). The

Fig. 5. Displacement errors; α =1.0. (solid line), α =1.05. (dotted
line), α =1.1. (dashed line), α =1.2. (dash-dotted line).

FRF summarizes most of the necessary information such
as resonances, anti-resonances, modal density and phase
are directly visible to specify the dynamics of a structure.
In addition, the FRF can rapidly provide an indication of
whether a system is linear or nonlinear. Figure 6 presents
a comparison of FRF of nonlinear system linearized by two
methods.

5 Conclusion
This paper deals with linearization of nonlinear SDOF
system. The proposed method based on BP transform
compared with traditional EL approach. This technique
permits to avoid solving complicated nonlinear algebraic
equations. In order to investigate the performance of the
proposed linearizationmethod, the Du�ng oscillator sub-
jected to two stationary signals and the feasibility of
the proposed method is demonstrated. The results and
comparisons reveal that for any rate of nonlinearity in
nonlinear system, the displacement response of the pro-
posed method is well-approximated than the traditional
EL method. The frequency response function of linear
and linearized systems have compared and this fact is
also observed that the approximated nonlinear system by
proposed method is well-behaved than the approximated
nonlinear system by traditional EL approach. Lastly it
should be pointed out that the error rises with the nonlin-
earity, but theproposedmethod errors are smaller than the
use of the traditional EL approach.
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Fig. 6. Linearized FRF of system; linear system (solid line), lin-
earized system by proposed method (dotted line), linearized system
by traditional EL method (dashed line); (a) α =1.0. and (b) α =1.2.
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