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Abstract: In this paper, we applied the functional vari-
able method for four famous partial di�erential equations
with power lawnonlinearity. These equations are included
the Kadomtsev-Petviashvili, (3+1)-Zakharov-Kuznetsov,
Benjamin-Bona-Mahony-Peregrine and Boussinesq equa-
tions. Various exact traveling wave solutions of these
equations are obtained that include the hyperbolic func-
tion solutions and the trigonometric function solutions.
The solutions shown that this method provides a very ef-
fective, simple and powerful mathematical tool for solving
nonlinear equations in various �elds of applied sciences.

Keywords: functional variable method; partial di�erential
equation; power-law nonlinearity

1 Introduction
Nonlinear partial di�erential equations (NLPDEs) are very
important in various �elds of science and technology,
especially in biology, solid state physics, �uid mechan-
ics, plasma physics, optical �bers, chemical kinematics,
and chemical physics. In the research of the theory of
NLPDEs, searching for more explicit exact solutions to
NLPDEs is one of the most fundamental and signi�cant
studies in recent years. With the help of computerized
symbolic computation, much work has focused on the
various extensions and applications of the known alge-
braic methods to construct the solutions to NLPDEs. A
special class of analytical solutions, the so-called travel-
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ing waves, for NLPDEs is of fundamental importance be-
cause lots of mathematical-physical models are often de-
scribed by such wave phenomena. Therefore, the investi-
gation of traveling wave solutions is becoming more and
more attractive in nonlinear sciences nowadays. In re-
cent years, many approaches have been utilized for �nd-
ing the traveling wave solutions of nonlinear partial dif-
ferential equations, for example, the tanh method [1, 2],
the extended tanh-function method [3, 4], the general-
ized hyperbolic function method [5, 6], the �rst inte-
gral method [7], the (G′/G)-expansion method [8, 9], the
Exp-function method [10-11] and so on. In [12, 13], Zer-
arka et al. introduced the so-called functional variable
method to �nd the exact solutions for a wide class of
linear and nonlinear wave equations. This method was
further developed by many authors [14–16]. The advan-
tage of this method is that one treats nonlinear problems
by essentially linear methods, based on which it is easy
to construct in full the exact solutions such as soliton-
like waves, compacton solutions and noncompacton so-
lutions, trigonometric function solutions, pattern soliton
solutions, black solitons or kink solutions, and so on.
The aim of this paper is to apply the functional vari-
able method to �nd the exact solutions of Kadomtsev-
Petviashvili, (3+1)-Zakharov-Kuznetsov, Benjamin-Bona-
Mahony-Peregrine and Boussinesq equations with power
law nonlinearity. We will present a useful remark of the
functional variable method for �nding traveling wave so-
lutions of nonlinear partial di�erential equations, namely,
Remark 2. Then, by using the Remark 2, two kinds of ex-
act solutions for the equations with power law nonlinear-
ity are obtained in a uni�ed way.

The rest of this paper is organized as follows. In Sec-
tion 2, a description of the functional variable method is
given in detail. In Section 3, the application of our method
to the Kadomtsev-Petviashvili equation with power law
nonlinearity is illustrated. In section 4 we will use this
method to the Zakharov-Kuznetsov equation with power
law nonlinearity. In section 5 and 6 we will solve the
Benjamin-Bona-Mahony-Peregrine and Boussineq equa-
tions with power law nonlinearity sequently with same
method. Conclusions are presented in Section 7.
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2 The functional variable method
In this Sectionwedescribe themain steps of the functional
variable method for �nding exact solutions of nonlinear
PDEs.

Consider a general nonlinear PDE in the form

P(u, Dtu, Dxu, Dyu, Dzu, D2
t u, ...) = 0, (1)

where u = u(x, y, z, t) is the solution of nonlinear PDE (1),
the subscript denotes partial derivative and Pis a polyno-
mial in its arguments. Zerarka et al. in [12] has summarized
the functional variable method in the following. Using a
wave transformation ξ=l1x + l2y + l3z − λt so that

u(x, y, z, t) = U(ξ ), (2)

where l1, l2, l3 and λ are constant to be determined later.
This enables us to use the following changes

Dt(.) = −λ d
dξ (.),

Dx(.) = l1 d
dξ (.),

Dy(.) = l2 d
dξ (.)

Dz(.) = l3 d
dξ (.),

D2
t (.) = λ2 d2

dξ2 (.),
...

Using Eq. (2), the PDE (1) can be converted to a nonlinear
ordinary di�erential equation (ODE) as

G (U, Uξ , Uξξ , Uξξξ , . . .) = 0, (3)

where G is a polynomial in U = U(ξ ). If all terms con-
tain derivatives, then Eq. (3) is integrated where integra-
tion constants are considered zeros. Thenwemake a trans-
formation in which the unknown function U is considered
as a functional variable in the form

Uξ = F(U), (4)

and some successive derivatives of U are

Uξξ = 1
2 (F

2)′,
Uξξξ = 1

2 (F
2)′′

√
F2,

Uξξξξ = 1
2 [(F

2)′′′F2 + (F2)′′(F2)′],
...

(5)

where “′” stands for d
dU .

The ODE (3) can be reduced in terms of U, F and its
derivative upon using the expressions of Eq. (5) into Eq.
(3) gives

Q(U, F, F′, F′′, F′′′, . . .) = 0. (6)

The key idea of this particular form Eq. (6) is of special
interest because it admits analytical solutions for a large
class of nonlinear wave type equations. After integration,
Eq. (6) provides the expression of F, and this, togetherwith
Eq. (4), give appropriate solutions to the original problem.
Remark 1. The functional variable method de�nitely
can be applied to nonlinear PDEs which can be converted
to a second-order ordinary di�erential equation (ODE)
through the travelling wave transformation.
Remark 2. Consider the following second-order ordinary
di�erential equation

Uξξ = k 1U − k 2Un+1, n ≠ 0, (7)

where k 1 and k 2 are constants and U is a functional vari-
able in the form (4). Then using (5) transformation, the ex-
act solutions of the Eq. (7) are obtained as
Type I.When k1 > 0, the solutions of Eq. (7) are

U1(ξ ) =
{
(n + 2)k1
2k 2

cech2(n2
√
k1ξ )

} 1
n

, (8)

U2(ξ ) =
{
−(n + 2)k12k 2

sech2(n2
√
k1ξ )

} 1
n

, (9)

Type II.When k1 < 0, the solutions of Eq. (7) are

U3(ξ ) =
{
(n + 2)k1
2k 2

csc2(n2
√
−k1ξ )

} 1
n

, (10)

U4(ξ ) =
{
(n + 2)k1
2k 2

sec2(n2
√
−k1ξ )

} 1
n

. (11)

Proof. According to Eq. (4), we get from (7) an expression
for the functionF(U)

1
2

(
F2(U)

)′
= k 1U − k 2Un+1, (12)

where the prime denotes di�erentiation with respect to ξ .
Integrating Eq. (12) with respect to U and after the mathe-
matical manipulations, we have

F(U) = ±U
√
k 1 −

2k 2
n + 2U

n , (13)

or

F(U) = ±
√
k 1U

√
1 − 2k 2

(n + 2)k1
Un . (14)

After changing the variables

Z = 2k 2
(n + 2)k1

Un , (15)
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or (
(n + 2)k1
2k 2

Z
) 1

n

= U, (16)

with di�erentiation from Eq. (16)

1
n

(
(n + 2)k1
2k 2

) 1
n

Z
1−n
n dZ = dU(ξ ). (17)

s We use (17) transformation to the Eq. (14)

dZ
Z
√
1 − Z

= ±n
√
k1dξ , (18)

with integrating fromEq. (18) andwith setting the constant
of integration as zero

ln
∣∣∣∣1 −√1 − Z
1 +

√
1 − Z

∣∣∣∣ = ±n√k1ξ . (19)

In this case we have∣∣∣∣1 −√1 − Z
1 +

√
1 − Z

∣∣∣∣ = e±n√k1ξ . (20)

If θ = ±n
√
k1ξ , two cases will be considered separately.

Case 1. Suppose that k1 > 0, then

1 −
√
1 − Z

1 +
√
1 − Z

= eθ , (21)

thus, according to (21), we have

Z = 4
e−θ + eθ + 2

= 2
cosh θ + 1 = 1

cosh2
(
θ
2

)
+ 1

= sec h2
(
θ
2

)
,

so

Z = sech2(n2
√
k1ξ ). (22)

Now, suppose that k1 < 0, then

1 −
√
1 − Z

1 +
√
1 − Z

= eiθ , (23)

thus, according to (23), we have

Z = 4
e−iθ + eiθ + 2

= 2
cos θ + 1 = 1

cos2
(
θ
2

)
+ 1

= sec2
(
θ
2

)
,

hence

Z = sec2(n2
√
−k1ξ ). (24)

Case 2. Suppose that k1 > 0, then

1 −
√
1 − Z

1 +
√
1 − Z

= −eθ , (25)

therefore, according to (25), we have

Z = − 4
e−θ + eθ + 2

= 2
cosh θ − 1 = 1

sinh2
(
θ
2

)
+ 1

= − csc h2
(
θ
2

)
,

so

Z = −csch2(n2
√
k1ξ ). (26)

Now, assume that k1 < 0, then

1 −
√
1 − Z

1 +
√
1 − Z

= −e−iθ , (27)

thus, according to (27), we have

Z = − 4
e−iθ + eiθ − 2

= 2
1 − cos θ = 1

sin2
(
θ
2

) = csc2
(
θ
2

)
,

so

Z = csc2(n2
√
−k1ξ ). (28)

Now, using the relations (7), (22), (24), (26) and (28), the
solutions of Eq. (7) are in the following forms:

When k1 > 0, the solutions of Eq. (7) are

U1(ξ ) =
{
(n + 2)k1
2k 2

csch2(n2
√
k1ξ )

} 1
n

,

U2(ξ ) =
{
−(n + 2)k12k 2

sech2(n2
√
k1ξ )

} 1
n

.

When k1 < 0, the solutions of Eq. (7) are

U3(ξ ) =
{
(n + 2)k1
2k 2

csc2(n2
√
−k1ξ )

} 1
n

,

U4(ξ ) =
{
(n + 2)k1
2k 2

sec2(n2
√
−k1ξ )

} 1
n

.

3 The Kadomtsev-Petviashvili
equation with power law
nonlinearity

In this section, we have applied functional variable
method to obtain the exact solutions of the Kadomtsev-
Petviashvili equation with power law nonlinearity in the
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form [17]
∂
∂x

(
∂u(x, y, t)

∂t + aun(x, y, t)∂u(x, y, t)∂x + ∂
3u(x, y, t)
∂x3

)
+ b ∂

2u(x, y, t)
∂y2 = 0, t> 0. (29)

Here in Eq. (29) a and b are real valued constants. The �rst
term represents the evolution term while the coe�cient of
a is the nonlinear term with the power law dictated by the
exponent n while the third term represents the dispersion
in the x-direction. Finally, the coe�cient of b represents
dispersion in the y direction. This equation studied in [17]
by the ansatz method for 1-soliton solution. Arbabi [18]
used the sine-cosine methods to obtain exact solutions of
Eq. (29). The special case n = 2 is known as the modi�ed
Kadomtsev-Petviashvili equation. It needs to benotedhere
that if b < 0, Eq. (29) is known as the KP-I equation while
if b > 0, (29) is known as the KP-II equation [19].

Using the traveling wave transformationu(x, y, t) =
U(ξ ), ξ=l1x + l2y − λt, Eq. (29) can be reduced to the fol-
lowing nonlinear ODE

l1(−λUξ + al1UnUξ + l31Uξξξ )ξ + l22bUξξ = 0. (30)

Integrating Eq. (30) twice with respect to ξ and setting the
integration constants as zero yields

−l1λU + al21
n + 1U

n+1 + l41Uξξ + l22bU = 0, (31)

or

Uξξ =
l1λ − l22b

l41
U − a

l21(n + 1)
Un+1. (32)

Substituting Eq. (5) into Eq. (32) we obtain

(F(U)2)′ = 2(l1λ − l22b)
l41

U − 2a
l21(n + 1)

Un+1, (33)

where the prime denotes di�erentiation with respect to ξ .
Integrating Eq. (33) and after the mathematical manipula-
tions, we have

F(U) = ±

√
(l1λ − l22b)

l41
U ×

√
1 −

2al21
(n + 1)(n + 2)(l1λ − l22b)

Un .

(34)

Now, using the relations (5), (8), (9), (10) and (11), we
deduce the following exact solutions of the Kadomtsev-
Petviashvili equation with power law nonlinearity.

When (l1λ−l22b)
l41

> 0, we have

u1(x, y, t) =
{
−(n + 1)(n + 2)(l1λ − l

2
2b)

2al21
×

csch2(n2

√
(l1λ − l22b)

l41
(l1x + l2y − λt))

} 1
n

,

(35)

u2(x, y, t) =
{
(n + 1)(n + 2)(l1λ − l22b)

2al21
×

sech2(n2

√
(l1λ − l22b)

l41
(l1x + l2y − λt))

} 1
n

,

(36)

and for (l1λ−l22b)
l41

< 0, we obtain the periodic wave solutions

u3(x, y, t) =
{
(n + 1)(n + 2)(l1λ − l22b)

2al21
×

csc2(n2

√
−
(l1λ − l22b)

l41
(l1x + l2y − λt))

} 1
n

,

(37)

u4(x, y, t) =
{
(n + 1)(n + 2)(l1λ − l22b)

2al21
×

sec2(n2

√
−
(l1λ − l22b)

l41
(l1x + l2y − λt))

} 1
n

.

(38)

Let us comparebetweenour results obtained in thepresent
article with the well-known results obtained by other au-
thors using di�erent methods as follows: our results of
the Kadomtsev-Petviashvili equation with power law non-
linearity are a few di�erent from those obtained in [17]
and [18].

4 The (1+3)-Zakharov-Kuznetsov
equation with power law
nonlinearity

In this part we are trying to �nd exact solution of the (1+3)-
Zakharov-Kuzetsov equation with power law nonlinearity
in the form of [20]

∂u(x, y, z, t)
∂t + aun(x, y, z, t)∂u(x, y, z, t)∂x

+ b ∂∂x

(
∂2u(x, y, z, t)

∂x2 + ∂
2u(x, y, z, t)

∂y2 + ∂
2u(x, y, z, t)

∂z2

)
= 0. (39)

In Eq. (39), a and b are real valued constants. The �rst
term is the evolution term, while the coe�cients of a and
b, respectively, are the nonlinearity and dispersion. Also
the parameter n is the power law nonlinearity parame-
ter. Solitons are the result of a delicate balance between
dispersion and nonlinearity. Eq. (39) typically appears in
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the study of plasma physics. B. T. Matebese et al. in [21]
solved the (3+1)-dimensional Zakharov-Kuzetsov equa-
tion by G′

/
G−expansionmethod, extended tanh-function

method and ansatz metod. The special case where n =
1 gives the (3+1)-dimensional Zakharov-Kuzetsov equa-
tion [22]. Let

U(ξ ) = u(x, y, z, t), ξ = l1x + l2y + l3z − λt, (40)

with puting the relation (40) and its derivatives in to the
Eq. (39)

−λUξ + al1UnUξ + bl1(l21Uξξ + l22Uξξ + l23Uξξ )ξ = 0. (41)

Integrating Eq. (41) once with respect to ξ and setting the
integration constants as zero yields

−λU + al1
n + 1U

n+1 + bl1(l21Uξξ + l22Uξξ + l23Uξξ ) = 0, (42)

or

Uξξ =
2λ

bl1(l21 + l22 + l23)
U − 2a

(n + 1)b(l21 + l22 + l23)
Un+1.

(43)

Let use transformation (5) for Eq. (43)

(F(U)2)′ = 2λ
bl1(l21 + l22 + l23)

U − 2a
(n + 1)b(l21 + l22 + l23)

Un+1,

(44)

where the prime denotes di�erentiation with respect to
ξ .with Integrating Eq. (44) and after the mathematical cal-
culations, we have

F(U) = ±
√

λ
bl1(l21 + l22 + l23)

U
√
1 − 2l1a

λ(n + 1)(n + 2)U
n .

(45)

Using the relations (5), (8), (9), (10) and (11), we have the
following traveling wave solutions of the (1+3)-Zakharov-
Kuzetsov equation with power law nonlinearity which
contain traveling wave solutions as follows.

So we can obtain following hyperbolic solution for
λ

bl1(l21+l22+l23)
> 0 as

u1(x, y, z, t) =
{
− λ(n + 1)(n + 2)2l1a

×

csc h2(n2

√
λ

bl1(l21 + l22 + l23)
(l1x + l2y + l3z − λt))

} 1
n

,

(46)

u2(x, y, z, t) =
{
λ(n + 1)(n + 2)

2l1a
×

sec h2(n2

√
λ

bl1(l21 + l22 + l23)
(l1x + l2y + l3z − λt))

} 1
n

,

(47)

and for λ
bl1(l21+l22+l23)

< 0,

u3(x, y, z, t) =
{
λ(n + 1)(n + 2)

2l1a
×

csc2(n2

√
− λ
bl1(l21 + l22 + l23)

(l1x + l2y + l3z − λt)
} 1

n

, (48)

u4(x, y, z, t) =
{
λ(n + 1)(n + 2)

2l1a
×

sec2(n2

√
− λ
bl1(l21 + l22 + l23)

(l1x + l2y + l3z − λt))
} 1

n

.

(49)

If we put l1 = αρ, l2 = −(αρ + 1), l3 = 1 and λ = α,our
solution (47) turn out to solution (4) obtained in [21], but
other our solutions of the Eq. (39) are new.

5 Benjamin-Bona-Mahuny-
Peregrine equation with power
law nonlinearity

Our purpose in this section is trying to use functional vari-
ablemethod to obtain the exact solutions of the Benjamin-
Bona-Mahony-Peregrine equation with power law nonlin-
earity in the form [23]

∂u(x, t)
∂t + a ∂u(x, t)∂x + bun(x, t)∂u(x, t)∂x + c ∂

3u(x, t)
∂2x∂t = 0,

(50)

where coe�cients a, b, c and n are real constants. The
exponent n represents the power law nonlinearity param-
eter and it is necessary to have n ≠ 0 since these valueswill
place (50) outside the nonlinear regime. The �rs term rep-
resents the evolution term, while the last term represents
the dispersion term. The third term is the nonlinear term.
Khalique in [23] obtained exact solutions of (50) using Lie
symmetry approach and simplest equation method. The
special case where n = 2, the Benjamin-Bona-Mahony
equation with power law nonlinearity is called the mod-
i�ed Benjamin-Bona-Mahony equation [24]. Let

U(ξ ) = u(x, t), ξ = lx − λt, (51)

from relation (51) and its derivatives we have

−λUξ + alUξ + blUnUξ − λcl2Uξξξ = 0. (52)

Integrating Eq. (52) once with respect to ξ and setting the
integration constants as zero yields

−λU + alU + bl
n + 1U

n+1 − λcl2Uξξ = 0, (53)
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or

Uξξ =
2(al − λ)
λcl2 U + 2b

(n + 1)λcl U
n+1, (54)

Let use transformation (5) for Eq. (54)

(F(U))′ = 2(al − λ)
λcl2 U + 2b

(n + 1)λcl U
n+1, (55)

where the prime denotes di�erentiation with respect to ξ .
Integrating Eq. (55) and after the mathematical calcula-
tions, we have

F(U) = ±
√
al − λ
λcl2 U

√
1 + 2bl

(n + 1)(n + 2)(al − λ)U
n . (56)

Using the relations (5), (8), (9), (10) and (11),when al−λ
λcl2 > 0,

the solution of Eq. (50) is in the following forms

u1(x, t) ={
(n + 1)(n + 2)(al − λ)

2bl csch2(n2

√
al − λ
λcl2 (lx − λt))

} 1
n

,

(57)

u2(x, t) ={
−(n + 1)(n + 2)(al − λ)2bl sech2(n2

√
al − λ
λcl2 (lx − λt))

} 1
n

,

(58)

and for al−λλcl2 < 0,

u3(x, t) ={
−(n + 1)(n + 2)(al − λ)2bl csc2(n2

√
−al − λλcl2 (lx − λt))

} 1
n

,

(59)

u4(x, t) ={
−(n + 1)(n + 2)(al − λ)2bl sec2(n2

√
−al − λλcl2 (lx − λt))

} 1
n

.

(60)

Equations (57)–(58) and (59)–(60) are new types of exact
traveling wave solutions to the Benjamin-Bona-Mahony-
Peregrine equation with power law nonlinearity.

6 Boussinesq equation with power
law nonlinearity

Finaly, we use functional variable method for solving
Boussinesq equationwith power lawnonlinearity as intro-

duce below [25]

∂2u(x, t)
∂t2 − a ∂

4u(x, t)
∂x4 − b ∂

2u(x, t)
∂x2 − c ∂

2(u2n(x, t))
∂x2 = 0,

(61)

which a, b , c and n are real-valued constants and n > 1.
The nonlinear term is generalized to an arbitrary expo-
nent n thus making it into power law nonlinearity. By the
ansatzemethod, Anjan Biswas et al. [4] obtained new soli-
tonary solutions for Eq. (61). The special case where n =
2, the Boussinesq equation with power law nonlinearity
equation is called the (1+1)-dimensional Boussinesq equa-
tion that describes the propagation of long waves on the
surface of water with a small amplitude and plays a vital
part in �uid mechanics [26].

Let

u(x, t) = U(ξ ), ξ=lx − λt, (62)

with using relation (62) and its derivatives in Eq. (61) we
have

λ2Uξξ − al4Uξξξξ − bl2Uξξ − cl2(U2n)ξξ = 0 (63)

Integrating Eq. (63) twice with respect to ξ and setting the
integration constants as zero yields

Uξξ =
(λ2 − bl2)
al4 U − c

al2 U
2n . (64)

Let use transformation (5) for Eq. (64)

(F(U)2)′ = 2(λ2 − bl2)
al4 U − 2c

al2 U
2n . (65)

If integrate once Eq. (65) and do some simple calculates

F(U) = ±
√
λ2 − bl2
al4 U

√
1 − 2cl2

(λ2 − bl2)(2n + 1)U
2n−1.

(66)

Using the relations (5), (8), (9), (10) and (11), when λ2−bl2
al4 >

0, the solution of Eq. (60) is in the following forms

u1(x, t) ={
−(λ

2 − bl2)(2n + 1)
2cl2 csc h2(2n − 12

√
λ2 − bl2
al4 (lx − λt))

} 1
2n−1

,

(67)

u2(x, t) ={
(λ2 − bl2)(2n + 1)

2cl2 sec h2(2n − 12

√
λ2 − bl2
al4 (lx − λt))

} 1
2n−1

,

(68)
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also for λ
2−bl2
al4 < 0,

u3(x, t) ={
(λ2 − bl2)(2n + 1)

2cl2 csc2(2n − 12

√
− λ

2 − bl2
al4 (lx − λt))

} 1
2n−1

,

(69)

u4(x, t) ={
(λ2 − bl2)(2n + 1)

2cl2 sec2(2n − 12

√
− λ

2 − bl2
al4 (lx − λt))

} 1
2n−1

.

(70)

Our exact solutions (67) to (70) of Equation (61) are new.

7 Conclusions
In this work, the functional variable method was applied
successfully for solving four equations with power law
nonlinearity namely theKadomtsev-Petviashvili equation,
the (3+1)-Zakharov-Kuzetsov equation, the Benjamin-
Bona-MahonyPeregrine equation and the Boussinesq
equation. The performance of this method is reliable and
e�ective and gives the exact solitary wave solutions and
periodic wave solutions. This method has more advan-
tages: it is direct and concise. Moreover, we conclude that
presented method is reliable, and yields an e�ective ap-
proach for �nding solutions of nonlinear equations, aris-
ing in applied physics and engineering.
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