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Abstract: In the present work a wavelets approximation
method is employed to solve fuzzy boundary value differ-
ential equations (FBVDES). Essentially, a truncated Legen-
dre wavelets series together with the Legendre wavelets
operational matrix of derivative are utilized to convert FB-
VDE into a simple computational problem by reducing
it into a system of fuzzy algebraic linear equations. The
capability of scheme is investigated on second order FB-
VDE considered under generalized H-differentiability. So-
lutions are represented graphically showing competency
and accuracy of this method.
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1 Introduction

Fuzzy boundary value differential equations have become
focus of interest for many researchers in different disci-
plines of science and technology because of the fact that
while modeling a physical phenomenon some quantities
for instance, boundary values can be uncertain thus fuzzy
numbers or fuzzy functions are then measured to deal with
these uncertainties. The numerical solution of FBVDEs
is an important problem in numerical analysis, therefore
several research works are brought out on the develop-
ment of numerical and analytical methods for the solu-
tions of FBVDESs [1-4].
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In recent years, wavelet analysis has gained special
attention for its wide applications in science and engi-
neering. Its conventional applications are not only found
in signal and image processing, but also in dealing with
integral and differential equations. The main advanta-
geous characteristic of wavelet is the ability of convert-
ing the differential and integral equations into a sys-
tem of linear and nonlinear system of algebraic equa-
tions with the aid of its operational matrices of deriva-
tives and integration. Wavelet analysis mainly approxi-
mates the functions through family of orthogonal func-
tions. These functions are achieved through the dilation
and translation of mother wavelet function. Some of the
most frequently used orthogonal functions are sine-cosine
functions, Chebyshev, Laguerre and Legendre functions.
Recently, different types of wavelets according to their or-
thogonal functions have been utilized for the solution of
integral and differential problems of integer and fractional
order, for instance, B-spline [5], Chebyshev wavelets [6-9],
Haar wavelets method [10-13] and Legendre wavelets [14—
17]. For the reason of simplicity and having good interpo-
lating properties, Legendre wavelets method (LWM) has
received considerable attention in dealing with various
problems. LWM uses Legendre polynomials as their basis
functions and has the remarkable property of giving ac-
curate solution for small number of collocation points. In
several research papers [18-21] the operational matrix of
integration and derivative of Legendre wavelets have been
developed and applied on different problems.

In view of successful and increasing applications of
LWM together with its operational matrix of derivative
and operational matrix of integration in numerical solu-
tion of integral and differential equations, we hold that
it should be applicable to solve FBVDEs as well. Thus in
this paper our aim is to elaborate applications of LWM in
solving linear second order FBVDE under generalized H-
differentiability. The main advantage of this approach is
that it reduces the differential equations to system of alge-
braic equations, hence greatly simplifies the problem and
makes the computation easy. Here, fuzzy function and its
derivatives are approximated by employing truncated se-
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ries of Legendre wavelets and operational matrix of deriva- p < 1, H ({ , K (§), «' (§))is linear fuzzy function, y and v

tive of Legendre wavelets, respectively. Further, the paper
is structured as follows: In Section 2, some significant def-
initions of fuzzy theory and mathematical notations of FB-
VDE are described. Section 3, demonstrates formulation
of Legendre wavelets and Legendre polynomials, details
of function approximation by Legendre wavelets and the
Legendre operational matrix of derivative. In Section 4,
scheme of the proposed method is illustrated in detail. So-
lutions of a second order FBVDE for all the cases of H-
differentiability are discussed graphically in Section 5. Fi-
nally, conclusion is drawn in Section 6 on the basis of facts
and figures from Section 5.

2 Preliminaries

Basic definition of fuzzy number and its detailed proper-
ties are found in many research papers such as [22, 23].
Here, we introduce definitions and some notations which
are prerequisite of this paper.

Let R be set of all real numbers, a mapping w : R —
[0, 1]is said to be a fuzzy number if w is upper semi contin-
uous, fuzzy convex, normal and compact. The parametric
form of a fuzzy number w is an ordered pair of functions
w (p) and w (p) called lower and upper branch of w, respec-
tively. It can also be represented as [w]’ = [w (p); W ()]
for 0 < p < 1, with the properties that, w(p) < w(p)
where w (p) and w (p) are bounded non-decreasing and
non-increasing functions, respectively, left continuous in
p € (0, 1] and right continuous at p = 0. Any functiong (§)
is said to be a fuzzy valued function, if for all £ € R,
g : R — E where E is the space of all fuzzy numbers on
R.

2.1 Generalized H-differentiability of FBVDE

In this paper, we propose boundary value problem for
second order FDE considered under strongly generalized
Hukuhara differentiability. Hukuhara derivative has been
followed by many authors for ordinary as well as frac-
tional fuzzy differential equations of initial and bound-
ary value problems. Theorems related to generalized H-
differentiability of fuzzy-valued functions are found in
many papers [4, 24, 25]. Consider the following FBVDE,

K" (&) =H(&x(&),x &), k(b)=v. (1)

Where ¢ € [0, b), k () is fuzzy valued function with para-
metric representation [k (&;p)] = [k (&;p), K (&;p)] for O <

k(0) =,

are fuzzy numbers such that [y (p)] = [E ), ﬁ(p)} and
v ()] = [v (o), V (0)].

Let Eq. (1) be strongly generalized H-differentiable
then we have following four cases of FBVDE.
Case 1: When « (£) andx’ (¢) are (1)-differentiable. Then

K" (&) = [ (&), k7 (& p)] ©))
= [H(&x(&p), K (&), H(§, % (E50), K (£50))]

with [x(0:p), K(0:p)] = k(). ()] O
and [k (b; p), K (b; p)] = [v(0), V(p)]
Case 2: When « (¢) and «’ () are (2)-differentiable. Then

K" (&) = [K" (& p), K" (&5p)) (4)
= [H(&,x(&p), 6 (65p)) , H(E,%(&5p), K (&5p))]

with [x(0:p), K(Q:p)] = (1 (). E ()| ©)
and [k (b; p), X (b; p)] = [v(p), V ()]
Case 3: When x (&) is (1)-differentiable and x’ (¢) is (2)-
differentiable. Then
K" (&) = [K" (& p), K" (& p)] (6)
= [H (&, x(&p), K (&0)  H(E, K (E5p), K (&30))]

with [x (03 p), % (0:p)] = [1(0) . H ()] @)
and [ (b; p) . % (b p)] = [V (0) , V (0)]

Case 4: When « (&) is (2)-differentiable and x’ (&) is (1)-
differentiable. Then

K (@) = [ (&), K (& )] ®
= [H(&x(&0), € (5p)  H(E,%(&5p), K (&50))]

with [x(0:p), K(Q:p)] = [k (). E ()| ©)
and [x (b p), % (b3p)] = [v (), ¥ (0)]

3 Legendre Wavelets

Wavelets constitute a family of functions constructed from
dilation parameter a and the translation parameter 8 of a
single function called the mother wavelet and on continu-
ous variation of a and S the family of continuous wavelets
are obtained, that is

tes @l n (). aperazo. 0o
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If parameters a and f§ are restricted to discrete values as
a = agk and B = nPoagk, ap > 1, Bo > O where n and k
are positive integers we get the following family of discrete
wavelets:

Mion (§) = la| ™ n (ab& — nBo ) (11)
Where 1y, (§) form a basis of L2 (R). In particular, when
ao = 2 and Bo = 1, 1, (§) forms an orthonormal basis.

Legendre wavelets nnm (£) = 17 (k, 71, m, &) are defined
on the interval [0, 1) and have four arguments: s = 2n-1,
n=1,2,3...,25 kis any positive integer, m is order for
Legendre polynomials and ¢ is the normalized time, which
are formulated as:

m+125L, (2K — 1), for Aol < & < i1
nnm(5)={ p2iin (24-) AR

otherwise
(12)

wherem =0, 1, ... M-1, Mis a positive integer. The coeffi-
cient \/m + 1/2 is for orthonormality, the dilation param-
eter a = 27, and the translation parameter f§ = fi27%. Here
Lm (&) is well-known Legendre polynomials of order m de-
fined on the interval [-1, 1]. In order to obtain orthogonal
wavelets, Ly, (¢) is dilated and translated as Ly, (2%¢ - fz) .
It is determined with the recurrence formulae of Legendre
polynomials for (2"{ - ﬁ), that is

Lo (zkf——ﬁ) -1, I (zkf——ﬁ> =2ke-n 13)

Lo (6-4) - (223) (6-8) b ()

(14)
- (325) Lo (26-7),
m=1,2,3...

If the variable of Legendre polynomial is changed to ¢p =
2¢ - 1, the shifted Legendre polynomials Qm (¢) are ob-
tained, that is Qo (¢) = 1, Q1 (¢) = 2¢ - 1 so on and in
general

!
(m+ k)! ; o~ (15)

_ & _q\ym+k
Qm($)= (-1) R

k=0

These polynomials are defined on the interval [0, 1] and
satisfy the orthogonality relation as:

for m=n (16)

for m#n

p 1
/ Qm () Qn () dE = {;"”1
0
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Any function f (§) € L? ([0, 1)) can be expanded by series
of Legendre wavelets described in Eq. (12) as:

+oo +oo

F& =" enmiam (&)

n=1 m=0

17)

where enm = (f (&), nnm (&§)) and (., .) denotes the inner
product. Eq. (17) contains infinite terms if it is truncated
then it can be written as

2kt p-1

FE=> enmnum (@) =En (&)

n=1 m=0

(18)

where ET and 7 (&) are 2K~ M x 1 matrices defined as

E=[ei0,€11,---5€1M-1,€205 - -5 €211, 19)
e e s €k-1gy e e ey ezk—lM_l]T
n ('{) = [’110 ({) > 11 (5) s oo NiM-1 (é') » M20 (é') ’ (20)

ey (O

The operational matrix of derivative of Legendre wavelets
have been derived in [21]. To be precise, the derivative of
the vector 1 (§) can be expressed by:

dn () _
d§

where D is the 2¥" M x 2%~1 M operational matrix of deriva-
tive elucidated as:

o Mam-1(§) s e Mok (§) 5 -

D7 () (1)

F O 0
0 F 0

D- . 22)
0O 0 0 F

in which F is M x M matrix and its (p, q) th element is ob-
tained as:

p=2,..., M,
Fy o - */@p-1)(29-1)  g=1,...,p-1
and (p +q) odd
0, otherwise

(23)

Similarly, operational matrix of derivative DV of v-time
derivative of 1 (¢) can be constructed.

4 Legendre Wavelet Scheme for
FBVDE

In this section, Legendre wavelet approach is illustrated
for FBVDE defined in Section 2.1. This method is based
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on operational matrix of derivative of Legendre wavelets.
Following the discussion mentioned in [21], consider the
parametric form of Eq. (1) and approximate lower and up-
per functions as:

21 M1
KEP) =D > caminm (§) = C'n (§) and K (§5p) (24)
n=1 m=0

21 M1

- Z Z TnmNnm (&) = RTrl €3)

n=1 m=0

where CT and RT are the discrete form of unknown coef-
ficients of lower and upper functions, respectively, as de-
scribed in Eq. (19). In the same way, using operational ma-
trix of derivative Eq. (21), ¥’ (£) and x” (£) can be approxi-
mated as:

K (&p)=C"Dn(), ¥ (&p)=R'DnE) (25
K (&p)=C"D’n(&), ¥ (&p)=R'D’n(&) (26)
Along with the boundary conditions
k(0;0) = C"'n(0) = u(p) @7)
and X (0;p) = R (0) = 1 (p)
k(b;p)=C'n(0)=v(p) (28)

and x (b; p) = R"n (0) = v (p)
Substitute Eq. (24)—(26) in parametric form of Eq. (1) we get

D1 ©, R'D*n @] = [H (4 n@. o @),
(29)

H(§ R @, R'Dn@)]

Simplify Eq. (29) at the first 2”1 M — 2 roots of shifted Leg-
endre polynomials Q,«1, (). A system of fuzzy algebraic
linear equations are obtained. Solve these equations using
Newton’s iterative method to calculate values of Legendre
wavelet coefficients cnm and rpm. On substitution of these
values in Eq. (24) the desired approximated values of lower
and upper functions of « (£) are obtained.

The simplicity of this method is mainly due to the con-
version of the derivatives to matrix form, therefore once
constructed is advantageous for approximation of all the
derivatives of FBVDE considered under strongly general-
ized H-differentiability.

5 Illustrative Example

In order to elaborate LWM as a simple computational tool
to solve FBVDE, the scheme is applied on a second order
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FBVDE. The outcomes are presented graphically for differ-
ent values of ¢ and p.

Example

Consider the following parametric non homogeneous FB-
VDEforO<p <1,

(W’ (&), u” (§3p)] = [ (§30) +3u(&:p) (30)
+h(&p), W (§p) +3u(é;p)
+h(Ep)|

with boundary conditions

(P 7Pl - |5 0-1.5-p)|  GD
and (1), 5(1ip) - 3 (0 =1). 5 (1-p)

Where

R =(-DG-20-3 (97 -9+2) (p-1) (2

REP)=(1-p)B-2§)-5 (982 -9¢+2) (1-p) (3)

and the exact solutions [u (¢;p), U (§30)] = [& (962 - 9¢
+2)(p-1), 3 (962 -9¢£+2) (1-p)].

Since, u (&; p) is strongly generalized H-differentiable,
therefore we apply the proposed scheme to obtain the so-
lution for all the four cases defined in Section 2.1.

Following the approximations defined in Section 4,
Eq. (30) becomes

c'D’n (&) =C"Dn (&) +3C (&) +(p-1)(3-28) (34)
-3 (982 -9642) 0~ 1)

R'D’n (&) =R™Dn (&) +3R™n (&) +(1-p)(3-2&) (35)
-3 (982 -9¢+2)(1-p)

Together with Eq. (31) we get

o). kO] = |3 e-1.50-p)s GO

and (¢, R ()] = |5 0-1. 5 1-p)]

From Eqgs. (34)—(36) we attain a system of linear fuzzy alge-
braic equations, which are further solved to calculate the
values of unknown coefficients c,m and rnm. The numeri-
cal solutions of lower function u (¢; p) and upper function
u(é;p)fork = 1and M = 3 are shown in Figs. 1-4 for Cases
[-1V, respectively. From each Figure different intervals are
depicted where the solutions are found valid for0 < p < 1
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and ¢ € [0, 1]. Fig. 1 presents the comparison of the exact
solution and approximated solution which are found to be
in a perfect agreement. The valid regions of the solution
for CaseIare ¢ < % and ¢ = % For Case II solutions exists
for £ < 0.1262 and ¢ = 0.8738, as shown in Fig. 2. While
Figs. 3 and 4 display invalid solution for the Cases III and
IVfor & € [0, 1].

Fig. 1: Comparison of exact solutions versus approximate solutions
of Case | obtained by LWM for p = 0.2.

02F

Approx Lower

0.1F

Approx Upper

o.0f

ufgiel

-01F ]

-02F 4]

0.0 0.2 0.4 0.6 0.8 1.0

£

Fig. 2: The approximate solutions of Case Il for p = 0.2.

6 Closing Remarks

In this paper, we approximated fuzzy functions and their
derivatives using Legendre wavelets series and opera-
tional matrix of derivative, respectively. Further, using ap-
proximated values solutions of FBVDE was obtained, suc-
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Fig. 3: The invalid region of Case Il in the interval [0, 1] for p = 0.2.
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Fig. 4: The invalid region for & € [0, 1] of Case IV for p = 0.2.

cessfully. Consequently, on basis of the findings demon-
strated in Section 5, we picked out the following outcomes:

- Advantageous ability of LWM to reduce the fuzzy dif-
ferential equations to system of fuzzy algebraic equa-
tions made the problem easily computable to attain
the solutions more rapidly than the other existing
methods in literature.

—  Legendre wavelets and operational matrix of deriva-
tive once calculated can be utilized for various sub-
sequent problems repeatedly which decreases the
working time.

—  Small number of M and k is required to generate
accurate solutions of FBVDE, which lead to an ef-
ficient approximation method to solve fuzzy initial
and boundary value problems.

—  Due to strongly generalized H-differentiability, four
possible cases of the proposed FBVDE was consid-
ered, but only first two cases, Case I and Case II, pro-
vided valid regions of solution for £ € [0, 1]. While
for Case III and Case IV, valid regions lie outside the
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interval [0, 1], which are considered to be invalid for
&elo,1].

For rapid convergence and simple applicability of LWM, in
future, we seek to apply it on other fuzzy differential mod-
els with initial and boundary conditions.
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