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Abstract: This paper applied the idea of block pulse (BP)
transform in the equivalent linearization of a nonlinear
system. The BP transform gives effective tools to approx-
imate complex problems. The main goal of this work is
on using BP transform properties in process of lineariza-
tion. The accuracy of the proposed method compared with
the other equivalent linearization including the stochas-
tic equivalent linearization and the regulation lineariza-
tion methods. Numerical simulations are applied to the
nonlinear Van der Pol oscillator system under Gaussian
white noise excitation to demonstrate the feasibility of the
present method. Different values of nonlinearity are con-
sidered to show the effectiveness of the present method.
Besides, by comparing the mean-square responses for
divers values of nonlinearity and excitation intensity de-
picted the present method is able to approximate the be-
havior of nonlinear system and is in agreement with other
methods.

Keywords: Equivalent Linearization, block pulse trans-
form, Van der Pol oscillator, Gaussian white noise

1 Introduction

Study of nonlinearity in dynamic systems has been an im-
portant area of researches in last decades. In structural
dynamics nonlinearities can arise in various forms and
usually become progressively more significant as the mo-
tion amplitude increases. Nonlinearity may result due to
boundary conditions for instant, looseness, clearances,
temperature effects [1]. Nonlinear systems may exhibit in-
teresting and complex behavior, such as limit cycles, bi-
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furcations and even chaos which are difficult to predict.
Besides in practical applications, due to the high inten-
sity nature and often complex nature of non-stationary
environmental loads such as wind and earthquakes, the
systems subjected to these loadings may experience large
stress or displacement that results inelastic behavior. To
describe real observed processes in any field of engineer-
ing, researchers often use mathematical models. Its role
is to provide a better understanding and characterization
of the system. For dynamic processes, these models con-
tain many different types of equations such as ordinary
or partial differential equations and algebraic equations.
In general case, due to the nature of the considered prob-
lems are nonlinear, there is no exact solution for such
equations unless for some special cases [2]. Therefore the
solutions are approximate. There are diverse approaches
which have been developed over the years to treat the non-
linear problems such as harmonic balance, averaging, per-
turbation, Monte Carlo simulation and normal form trans-
formation [3-7]. Also there are the semi-analytical meth-
ods, such as the high order harmonic balance (HOHB)
method which has been developed to avoid the tedious
algebraic calculations involved in the classical harmonic
balance method in processing the nonlinear term in the
nonlinear dynamical system [8], the high dimensional har-
monic balance (HDHB) method and the time domain col-
location (TDC) method [9]. Meanwhile, among methods
dealing with nonlinear problems, linearization techniques
are the oldest and the most popular methods of approxi-
mation. One of the linearization method is the Lyapunov
linearization technique used to approximate a nonlinear
system with a linear one that is around the equilibrium
point, and it is expected the behavior of the linear sys-
tem will be the same as that of nonlinear one. Feedback
linearization is another approach, which is a common ap-
proach used in nonlinear control systems. This method is
based on the idea of transforming original system model
into equivalent linear one which is changed to the state
variables and a suitable input instead [10]. The stochas-
tic equivalent linearization method of dynamical system is
one of the common approaches to the approximate analy-
sis. The methods can be considered in different fields such
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as state space, frequency domain, distribution space and
characteristic functions space. Usually they consist of two
main steps, in the first step, deal to find explicit or implicit
analytical formulas for linearization coefficients based on
the linearization criterion which is depend on unknown
response characteristics such as mean value, variance,
and higher-order moments. In the second step, deal to re-
place the unknown characteristics by the corresponding
ones determined for linearized systems. It should be con-
sidered that accuracy and feasibility of these solutions de-
pendent on the type of nonlinearity and intensity of ex-
ternal excitation forces. The original version of stochas-
tic equivalent linearization present by Caughey the pio-
neer person in the development of the stochastic equiva-
lent linearization procedure for estimating the mean and
variance of the response of a non-linear system to ran-
dom excitation. He investigated the Van der Pol oscillator
and a system with bilinear hysteresis under random exci-
tation in 1956 and 1960 respectively [11, 12]. This method
is based on replacing an original nonlinear system un-
der Gaussian random excitation by a linear one under the
same excitation for which the coefficients of the equiva-
lent system can be found from a specified optimization
criterion, such as the mean-square criterion [12], energy
criteria [13], spectral criteria [14, 15], and probability den-
sity criteria [16] in some probabilistic sense. The method
then has been generalized to random vibration of multi-
degree-of-freedom systems by Iwan and Yang and Ata-
lik and Utku [17, 18]. The other similar procedures devel-
oped by operating directly on the equations of motion.
Usually associated in the literature with the statistical lin-
earization technique introduced by Kazakov [19], but as
discussed by Socha and Pawleta the methods proposed
by Caughey and Kazakov are not the same approach [20].
Many developments have been present since the funda-
mental work of Caughey and a comprehensive treatment
of the subject can be found in [21]. In 1986, Briickner and
Lin [22] generalized the method of equivalent linearization
such that the response of a nonlinear oscillator subjected
to both parametric and external random white noise ex-
citations can be determined approximately. In 1993, Cas-
ciati and Faravelli [23] introduced a novel philosophy for
stochastic equivalent linearization and then they studied
Duffing and hysteretic oscillators in detail. In 2006, Cran-
dall described some of interesting episodes in the past half
century [24]. Some extensions of equivalent linearization
were present in [25-28]. In [29] also studied systems under
both type of excitations including harmonic and random
excitations.

The idea of transformation is a common procedure
to approximate various problems in mathematics. After
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the transformations are defined appropriately, mathemat-
ical expressions and solutions of many problems can be
simplified. For example, the solutions of certain differen-
tial equations are complicated in the time domain, but af-
ter they are transformed into the corresponding algebraic
equations, their solutions are much easier. The block pulse
(BP) transform provides a useful tool to solve difference
and integral equations of any order with less computa-
tional costs. The BP transform originated from BP func-
tions. The BP functions are a set of orthogonal functions
with piecewise constant values and are usually applied as
a useful tool in the analysis, identification and other prob-
lems of control and systems science. Their extensive ap-
plication to the area of control and systems was started
three decades ago. Some papers discussed the BP trans-
form and BP function in solving certain system and con-
trol problems. Ghaffarzadeh and Younespour proposed an
equivalent linearization method for deterministic excita-
tion based on BP transform [30]. Optimal control for dis-
tributed parameter systems via BP transform discussed
in [31]. In active control problem a new method present
based on BP functions evolves minimizing computational
costs of analytical approaches [32].

The main objective of this study is on using the con-
cept of BP transform in linearization procedure through
its simple and easy operation. The effectiveness of the
present method is validated by simulation on a nonlin-
ear Van der Pol oscillator system under stationary Gaus-
sian white noise excitation. The linearized system by exist-
ing methods have been compared. Numerical simulation
results and comparing mean-square response of existing
methods depicted the present method have good agree-
ment with stochastic equivalent linearization and regula-
tion linearization methods.

The remaining of this paper is organized as follows.
Section 2 presents the BP transform formulation. In sec-
tion 3 linearization methods including proposed method
based on BP transform and stochastic equivalent lin-
earization and regulation linearization are presented. The
simulations have been carried out to compare with the
other methods in Section 4 and followed by the conclusion
in Section 5.

2 Block pulse transform

The aim of transformation in mathematic is to find sim-
ple solution for concrete problems. The idea of transfor-
mations can also be applied in the block pulse function
technique to simplify expressions. Every functions can be
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expanded into their block pulse series, and operations of
functions can be converted to the operations of their block
pulse series. The BP transformation can be introduced to
express the relations between functions and their block
pulse coefficients because block pulse coefficients take in-
formation of the corresponding block pulse series of the
original functions. The BP transformation provides a tech-
nique for transforming a difference equation into an alge-
braic equation. The BP transformation method is very sim-
ilar to z-transform method that can greatly facilitate the
analysis [33]. The BP transform of function f(t) is defined
by:

F(2)=) fiz =) flihz" )
i=0 i=0

where z € R and f; are the coefficients of the terms z7 (i =
0,1, 2,...)in the power series which are the values of the
f(t) at the corresponding time instants h. h is the sampling
period.

By using Tustin integrator (for more details see [33]):

1 _hl+z?

e ©
The BP transform can be defined in other form, as:
1 h1+z1
F(Z)_1—z*1F<§1—z*1> G
where
= 1
i_
2 7= 1-z1 “)

i=0

The summery of BP transform properties are follow-
ing:

For addition and subtraction of function x (t) = f(¢t) ¥
g(t), we have:

X(z) = F(z) ¥ G(2) (5)
For multiplied by a scalar x (t) = kf(t), we have:
X (2) = kF(2) (6)

For multiplication of function x(t) = f(t)g(t), we
have:

X(2) =) figiz" )
i=0

For division of function x (t) = f(t)/g(t) with g(t) # 0,
we have:

X(2)=> (filg)z" )

i=0
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For derivation of function x (t) = %(f), we have:
21-z1 @2 1
X(Z)_Hl+z-1F(Z) 0O h1+z1 ©)

where f(go) is the initial value of f(t).
For special case we need in this study (x (t) = t"), we
have:

h" ni(1 + zH"

X(2) = 21y

(10)

3 Linearization approach based on
BP transform

In this paper a system which is a single degree of freedom
with the nonlinear function only depending on two argu-
ments of displacement and velocity considered. We con-
sider a van der pol oscillator of the form

2

X-Qéw - ayxz))'( +wx = ow(t) (11)

where ¢ and w are damping ratio and natural frequency. x
is the displacement response of nonlinear Van der Pol os-
cillator system and the nonlinear function of considered
system is g (x,X) = aux*x and a is the nonlinear factor
that shows the rate of nonlinearity in nonlinear system. o
is excitation intensity and w(t) is a random excitation and
a stationary zero-mean Gaussian white noise which corre-
lation function is

E[w(®)w(t+1)] = 0*68(1) (12)

where E[.] denotes the expectation of (.). 02 is variance
and 6(7) is Dirac delta function.

It will be assumed that a stationary solution of Eq. (11)
exist. Define the Eq. (13) as a linearized equation with
equivalent linear coefficients to be determined to replace
the nonlinear term aux?x.

X+ (-2éw + ceg)x + (w? + keq)x = ow(t) (13)

The error that yields by replacing equivalent linear
system by nonlinear system can be defined as the differ-
ence of the two systems. Considering Egs. (11) and (13) one
can be define the error as

e = UX’X = CeqX — kegx (14)

As the excitation is random, an apparently sensible
strategy would be to minimize the average difference be-
tween the nonlinear system and the linearized system. In
fact this is not sensible as the differences will generally be
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amixture of negative and positive and could still average to
zero for a wildly inappropriate system. The correct strategy
is to minimize the expectation of the squared differences,
i.e. find the ceq and keq which minimize,

OE[e’] _ oE[e?] _ 0
aCeq akeq -

(15)

Substituting (14) into (15) and performing the partial
differentiations in the resulting equation, yield

yE[x3)’(] - kqu[xz]—cqu [xx] =0 (16)

UE [xzxz} — CeqEli*] - kegE[%x] = 0 (17)

As assumption the excitation is stationary Gaussian
white noise and equivalent linear coefficient determined
under stationary response, As the stationary displacement
and velocity are uncorrelated, i.e., E [xx] = 0, therefore

keq =0 (18)

and Eq. (17) derived

UE [xzxz} — ceqE[x2] =0 (19)
By performing the BP transform both sides of (19)
yields:

E |:3h4(1 +Z_1)4:| - Cqu |:hz (1 +Z_1)2:|

2 (1-z1) 2 (1_2—1)3 =0

(20)

Where % i’_’jj is Tustin integrator. And equivalent lin-

ear coefficient for nonlinear system define as

2 (14271 2
oo = hE {h(z)}

2 (12

(21)

In practical applications involving numerical algo-
rithms all parameters computing at discrete grid points. In
discrete domain the minimization conditions are:

0 TE 2l=0
kg 2 ] -

Where T is the final time-instants in simulation. In
fact, the equivalent linear coefficient is calculated numeri-
cally. The parameters are to be discretized over all the time
steps. In order to find the equivalent parameter Eq. (23) can
be defined as follow:

uh  (h1+z1\°
Ceq = T\ > -1
1-z 21-z
In this section we present procedure of the stochas-
tic equivalent linearization (the method proposed by

(22)

(23)
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Caughey) and the regulation linearization method (includ-
ing one-step regulation procedure which proposed by El-
ishakoff). For stochastic equivalent linearization consider
a nonlinear system subject to random excitation with the
equation motion:

X+ 28wx + w’x + g(x, x) = ow(t) (24)
A linearized system can be find as follows:
X+ (28w + ce)x + (w? + ke)x = ow(t) (25)

where c. and ke are the equivalent linear coefficients to
be determined by equivalent linearization approach to re-
place the nonlinear term.

The replacement of a nonlinear system by a linear sys-
tem is in some probabilistic sense and it will yield the dif-
ference or error. The error defined as

J=8(x,%)— cex — kex (26)

Minimizing the mean square value of ] is the criterion
used here, i.e.

]2 = E[(g (x, X) = ceX - keX)Z] (27)

The coefficients c. and ke are determined by the fol-
lowing equation:

) )

doce ~ ok 0 8

Noting E [xx] = 0 and by considering Eq. (24) for Van
der Pol oscillator we have

ce = FUx8L6 1] [ng,[gcz,]x)] (29)
and
_ Elxg(x, )]
ke = TE] (30)

For more details see [3].

For the one-step regulation linearization procedure,
the nonlinear term ayx’x is replaced by a higher-order
term, cxylx‘*)'(, and then this nonlinear term is replaced
by other nonlinear one, ayzxz)'c, and in the final step, the
nonlinear term ay,x’x is replaced by a linear one, Ccx.
This linearization procedure is illustrated by the following
scheme:

ayxz)'c — ay1x4i( — ayzxz)'( — Cex (31)

For more details see [26].
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4 Linearization Results

The response of nonlinear Van der Pol system can be in-
vestigated numerically by simulation of Eq. (11). The Van
der Pol oscillator motion equation is a two dimensional
stochastic differential equation. The response of this equa-
tion can be find via Milstein scheme [34]. The system pa-
rameters are chosen as follows, ¢ = 0.02, w = 20, p = 103
and 02 = 1. Theinitial conditions are set at the equilibrium
state, namely, x (0) = 0, x = 0. For a = 1, 3,5 and 10,
Figs. 1-4 illustrate the displacement response of original
nonlinear system and the displacement response of equiv-
alent linearized system by existing linearization methods.

""""" Nonlinear
T T

- | Linearized (BP) -=-—= Linearized (SEL) |

Displacement

-0.04 I I 1 o B I I i i I
0 05 1 15 2 25 3 35 4 45 5

Time (sec)

Fig. 1: Displacement response for a = 1.0.

""""" Nonlinear

Linearized (BP) =-=-- Linearized (SEL) |
0.04 T T T T T T T T T

Displacement

I
0.5 1 158 2 25 B 35 4 45 5
Time (sec)

2004 I I i
0

Fig. 2: Displacement response for a = 3.0.

The numerical results on considered system reveal
that the proposed linearization technique based on BP
transform is a promising tool in linearizing nonlinear sys-
tems. The agreement is good as it can be seen from Figs. 1-
4. But the results demonstrate that the errors increase in
high rate of nonlinearity. Also, this fact can be concluded
from velocity response of system. Fig. 5 demonstrated the
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Fig. 3: Displacement response for a = 5.0.
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Fig. 4: Displacement response for a = 10.0.

root mean square (RMS) of velocity response of the consid-
ered system.

For more investigating and better understanding it is
interested in comparing the mean-square displacement re-
sponse E[x?] of the present method with the other ap-
proximate ones. The values of the approximate solutions
including the solutions of the stochastic equivalent lin-
earization method, regulation linearization method and
proposed method based on BP transform are compared
with a Monte-Carlo simulation for various values of non-
linearity factor a are tabulated in Table 1. Also the results
of the approximate mean-square response of the consid-
ered system obtained by present methods are compared in
Table 2 with a = 1 and various values of ¢°.

It is seen that, in general, for different values of a,
the errors of the present method give results better than
other linearization methods. However, the approximated
results get worse for large values of the nonlinearity factor.
The obtained comparison shows a good agreement among
these methods.
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Fig. 5: Root Mean Square of velocity response; Nonlinear system (dashed line), linearized system by proposed method (solid line), lin-
earized system by stochastic equivalent linearization (dotted line).

Table 1: The mean-square responses for different value of nonlinearity.

a El*Iuc E[x*]pp Error(%) E[x*]sgL Error(%) E[x*];e Error(%)
1.0 1.69¢-03 1.62e-03 4.14 1.56e-03 7.80 1.60e-03 5.32
3.0 5.03e-04 4.74e-04 5.76 4.71e-04 6.32 4.73e-04 5.96
5.0 3.06e-04 2.86e-04 6.54 2.71e-04 11.4 2.76e-04 9.80
8.0 1.90e-04 1.68e-04 11.4 1.69e-04 11.1 1.70e-04 10.5
10.0 1.55e-04 1.38e-04 11 1.31e-04 15.5 1.35e-04 12.9
12.0 1.30e-04 1.18e-04 9.22 1.10e-04 15.4 1.12e-04 13.8
15.0 1.04e-04 9.44e-05 9.58 8.90e-05 14.7 8.94e-05 14.3
20.0 7.89e-05 6.89€-05 12.7 6.62e-05 16.1 6.69e-05 15.2

MC Monte-Carlo simulation, BP present linearization method, SEL stochastic equivalent linearization method, re regulation linearization
method



DE GRUYTER

Table 2: The mean-square responses for different excitation intensity.
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02 Ex*]uc E[x*]pp Error(%) E[x*]spL Error(%) E[x*];e Error(%)
0.1 7.893e-04 7.863e-04 0.38 7.804e-04 1.13 7.834e-04 0.75
0.5 1.350e-03 1.321e-03 2.22 1.294e-03 4.15 1.300e-03 3.70
1 1.631e-03 1.648e-03 1.04 1.581e-03 3.07 1.601e-03 1.84
1.5 1.858e-03 1.885€-03 1.45 1.931e-03 3.92 1.911e-03 2.85
2 2.351e-03 2.290e-03 2.55 2.232e-03 5.11 2.250e-03 4.26

MC Monte-Carlo simulation, BP present linearization method, SEL stochastic equivalent linearization method, re regulation linearization

method

5 Conclusion

This paper deals with linearization of nonlinear Van der
Pol oscillator system. The present method based on BP
transform compared with stochastic equivalent lineariza-
tion and regulation linearization method in different ways.
So as to analyze the performance of the present lineariza-
tion approach, the considered system subjected to Gaus-
sian white noise and the feasibility of the present method
is demonstrated. The numerical simulation results and
comparisons reveal that for any rate of nonlinearity in non-
linear system, the displacement response of the present
method is well-approximated than other existing meth-
ods. Lastly it should be pointed out that the errors rise with
the nonlinearity, but the present method errors are smaller
than the utilization of the other approaches.
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