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Abstract: The capacity and effectiveness of a modified vari-
ational approach, namely global error minimization (GEM)
is illustrated in this study. For this purpose, the free oscil-
lations of a rod rocking on a cylindrical surface and the
Duffing-harmonic oscillator are treated. In order to vali-
date and exhibit the merit of the method, the obtained
result is compared with both of the exact frequency and
the outcome of other well-known analytical methods. The
corollary reveals that the first order approximation leads to
an acceptable relative error, specially for large initial con-
ditions. The procedure can be promisingly exerted to the
conservative nonlinear problems.

Keywords: Analytical approximate solution; nonlinear os-
cillation; frequency—amplitude relation; global error min-
imization

1 Introduction

The accurate prediction of nonlinear oscillations in many
areas of physics, applied mathematics and structural dy-
namics has been a significant subject. Surveys of the lit-
erature expose that there are different approximate an-
alytical techniques for dealing with the nonlinear prob-
lems. Among them, one may allude to the variational it-
eration method [1, 2], the energy balance method [3-5],
the harmonic balance method [6, 7], the parameter expan-
sion method [8, 9], the multiple scales method [10], the ho-
motopy analysis method [11, 12], Max—Min approach [13,
14], Hamiltonian approach [15-17], the iteration perturba-
tion method [18-21], the variational approach [22, 23], the
homotopy perturbation method [23, 24], the frequency-
amplitude formulation [25-28] and so on [29, 30].
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This study intends to extend the reliability and appli-
cability of the global error minimization [31-33] by con-
sidering the governing equation of a uniform rod rocking
on the cylindrical surface without slipping [34] and the
Duffing-harmonic oscillator [35-37]. The algorithm trans-
forms the nonlinear differential equation into an equiva-
lent optimization problem. After substitution of the trial
function into the functional, unknown parameters of it is
acquired using a Ritz—like method. It should be mentioned
that the construction of the functional in this method is
similar to the least squares approach. More details about
the technique can be found in the literature [31].

The rest of the manuscript is organized as follows. The
outline of the method is presented in section 2. The ap-
proach is applied to the governing equation of the uniform
rod rocking on the cylindrical surface in section 3. The rela-
tionship between the frequency and the initial amplitude
of the Duffing-harmonic oscillator is provided for either
first- and second-order approximations in section 4. Sec-
tion 5 ends this study with a brief conclusion.

2 The global error minimization

This section gives the basic idea of the global error min-
imization. Consider a general nonlinear oscillator as fol-
lows:

it+F(u)=0, u@©)=A4, u@)=0. (1
By defining a functional as follows:
T
E (u)= / (it + F(w)?dt, T=2nw™, @)
0

and assuming F (u) is an odd function. One may utilize an
approximate trial function in the form of

oo

u(t)= Z (a@nspycos (2n+ Dwt)) . 3)

n=0

The unknown parameters (i.e., a1y & w) can be find
through the following conditions:

OF (u OE (u
6€u>:0’ & aa(z(m?)=0 for n=1.  (4)
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To demonstrate the practicality and effectiveness of the
aforementioned method, the governing equation of a
uniform rod rocking on the cylindrical surface and the
Duffing-harmonic oscillator are taken into consideration
in the present study. The results are illustrated in next sec-
tions.

3 Casel

Fig. 1 depicts the schematic of the uniform bar rocking on
a cylindrical surface. The general equation of the motion
is [34]:

(fz + (r9)2> 0+ <<ré)2 +grcos (9)) 6=0,
6(0)=B, 6(0)=0,

where parameters [, r and g are the rod’s length, the ra-
dius of cylindrical surface and the acceleration of gravity,
respectively. Eq. (5) can be rewritten as:

®)

(1 + (/19)2) b+ ((/19)2 + 02 cos (9)) 0=0, (6

[NIE

where A = V12 (}) and Q=12 (%)2.
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Fig. 1: Thin uniform bar rocking on a cylindrical surface [34].

In the following, the global error minimization is ap-
plied to the Eq. (6). As can be seen, a good agreement with
exact ones is achieved for the first-order approximation.

Based on the the basic idea of the algorithm, the min-
imization problem of Eq. (6) is:

E (9)=/T<(1+(A9)2) b+ ((w)2+92 cos(9)> 9)
0

2
dt,
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T=2nw .

@)

To determine the approximate frequency, the following
trial function is employed:

6 (t) = B cos (wt) 8)
Substituting Eq. (8) into Eq. (7) yields:
£ (8) =%(ﬁ((2 £ 2807 + B A
+ 0+ 0%*(8(-1+ ,lelz)wzh B
+8B(1 + (-6 + BN )w’ T2 (B) + Q°(J1(2B)
=2B12(2B))), )
where Jq(z) is the Bessel function of the first kind. by ap-

oE(9)

plying —-

= 0, the frequency is obtained as:

=% <<ﬁ 2+ 2ﬁ21/\2 + BA%)
(42211 (B - 48?211 (B) - 4P2°T2 (B)
+24BA2Q%]5 (B) - 4B7A*Q%T> (B)
+ (Q‘* (16 ((—1 N ﬁ2A2> 11 (B)
o (1+ (-6+8) 1) 1 B)’
+38 (2 + 2B + /3‘*/1‘*) B+ 2B)
2pneo”))")

To illustrate the validity and accuracy of the global error
minimization, with assumption r = /4 the Eq. (10) is re-
duced to:

(10)

_ 1 _3p2
(UGEM—Z(ﬁ(32 Y 24p7 + O (4(4 - 3B7)yI1(B)

+4B(14 - 387)y]>(B) + (> (16((~4 + 382)]1(B)
+B(=14 + 3BH](B)* + 3B(32 + 24p% + 9B*)(B + J1(2B)
- 2B1,2B))N )2, (11

where y = g/l . For the first order approximation, Wu et
al. [6] acquired:

24y(Jo(B) - fz(ﬁ)))l/z

8+ 32 ’ 12)

qu:(

where the exact frequency for this condition is given as:

(Bz cos (1)? (4 +3B%sin (T)Z) /(cos (B)

O\N\:

we =71(6y)? (

- cos (Bsin (1)) + B (sin (B) - sin (1) sin (B sin (1))))) : dT) !
(13)
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Table 1 compares the approximate frequencies with re-
spect to the exact ones for different initial conditions when
y = 1. For more convenience, the result is presented
in Fig. 2. Moreover, the relative error of both methods is
demonstrated in Fig. 3. In contrast to the linearized har-
monic balance method (the combination of the lineariza-
tion of the governing equation with the method of har-
monic balance), the relative error of the global error min-
imization does not increase continuously, and its rate is
variable in the domain. As can be seen, the accuracy of the
global error minimization is better in some sections, and
Eq. (12) gives a lower relative error for small amplitudes.

—— w (Exact)

—6— w (Wuetal)

—— w (GEM)

Frequency (a)

@
Degree (£)

Fig. 2: The value of frequency in the domain (y = 1).

—6— Wuetal. — GEM

Relative error %

2
Degree ()

Fig. 3: Comparison between relative errors of the first order approxi-
mation for Case I.
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4 Case?2

This section investigates accuracy of a the approach by the
Duffing-harmonic oscillator. This nonlinear model has a
rational form for the restoring force. The governing equa-
tion of motion for this type oscillator is:

. 3 2 -1 .

ii+u (1+u> =0, u(0)=A4, u(0)=0. (14)
Equation (14) is a mathematical model of a conservative
system. for small and large values of u, it is a Duffing os-
cillator (i.e., it + u> ~ 0) and a linear harmonic oscillator
(i.e., it + u = 0), respectively. The exact frequency of this
oscillator is given as:

T
2A

0/1(,42 (1) o (10 2) /(1 47))) o

We =

-1

(15)

The first- and second-order approximations for this non-
linear model are given in the following context.

4.1 First-order approximation

Based on the section 2, the modified variational approach

is exerted. The equation (14) can be rewritten as:
(1+u2) ii+u’=0. (16)

The minimization problem is:

T
E(u)=/<(1+u2> i1+u3)2dt, T=2nw", (17)
0

for the first order approximation, the trial function is:
uq (t) = ay cos (wt) . (18)

Where a; = A, substituting Eq. (18) into Eq. (17) yields:
E (a ) A 124202 (@ - 1) + 544 (P - 1))
1 8w b

(19)
. aE(ﬁl)
by applying —;
tained as:

= 0, the approximate frequency is ob-

w1

2 2 A
A \/6+5A +2v/39 + 60A2 + 25A 20)

=\7E 8+ 12A2 + 5A4
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Table 1: Comparison of approximate frequencies with exact ones (Case I).

B (Degree)  wgem (RE %)

wwuy [6] (RE %)

we (Eq. 13)

5 1.7271065591268644 (0.0004)
10 1.7123006522375672 (0.01)
15 1.687723383986749 (0.03)

1.7271127875434222 (0.0000003)
1.7123979618568987 (0.00002)
1.6881969036559472 (0.0002)

1.7271127818492038
1.7123976031210428
1.6881929232337736

20 1.6535547330682832 (0.08)
25  1.6100984795905333 (0.19)
30 1.557812599993792 (0.38)

35  1.4973246338641835 (0.65)
40  1.4294245459508197 (1.01)
45  1.3550338337819872 (1.45)
50 1.2751562381380954 (1.96)
55 1.190820400643789 (2.49)

60 1.1030273049757937 (2.97)
65 1.0127162975457542 (3.29)
70  0.9207659649820763 (3.23)
75 0.8280556886595868 (2.33)
80 0.7356390479943411 (0.58)

1.6549710318127808 (0.001)
1.6133212470119473 (0.005)
1.5639492479882797 (0.01)
1.5076154205171215 (0.04)
1.4450968213435502 (0.08)
1.3771478484815676 (0.16)
1.3044649090836247 (0.29)
1.227654936034564 (0.53)
1.147205997567743 (0.91)
1.0634562779649626 (1.55)
0.9765547140194191 (2.63)
0.8864008582021395 (4.56)
0.7925386096868637 (8.35)

1.6549494461907537
1.613242407046901

1.5637253179110349
1.5070808958109516
1.4439726688902643
1.3749984571501832
1.3006439386772928
1.2212304561528435
1.1368444002767581
1.047220857582407

0.9515157322021774
0.8477781234901954
0.7314320558826457

4.2 Second-order approximation

To illustrate the capacity of the approach, the second-
order approximation of the algorithm is applied to the
Duffing-harmonic oscillator. Substituting (16) into (2), by
using the following trial function:

U, (t) = ay cos (wt) + az cos Gwt) , (21)
where a, + a3 = A, gives:
E (ﬁz) =$n(8A2w4+12A4w2(—1+w2)
+ 5A6(—1+a12)2+(—16Aa/‘+32A3 w*
+5A°(-3 - 20w’ +5w*))as+(656w*+8A% w? (21 + 97 w?)
+A%(45 - 13002 +277w™)ad-4A(Bw?(-12 + 53w?)
+A%(25 - 130w?+201w™)a3+2(12w?(-13 + 77w?)
+A%(75 - 550w?+1051w™))a3

- 5A(27 - 254w*+611w™)a3+5(11 - 126w*+371w™)al).
22

OE(u
by employing <u 2) = 0, yields to:

ow

w(21)=—13y (-8A2—6A“+y — 4A(-4 + 8A%+5A%)a;

~4(164 + 173A%+53A%)a3+32A(47 + 17A%)a3
~4(423 + 388A%)a%+2420Aa3-1540a5

+2 <A8(39 + 60A2+25A%) + 50A7 (-3+A%)a;
+3A%(1054 + 1120A%+365A%)a2

~6A°(1516 + 2660A°+1025A")a3
+3A%(8824 + 18480A°+8915A%)a%

-6A%(9979 + 25420A%+14895A)a3

+6A%(15253 + 54700A%+39230A%)a$

~24A(3419 + 21100A%+20435A%)a]

+6(5524 + 88120A%+131575A%)a8

~20A(16842 + 47219A%)a3+5(20160 + 158429A%)a3®

1 .1
—413850Aa§1+101325a§2) : ) : (23)

. OE(u) )
and the condition —j el 0 gives:

aﬁféﬁ (5A5+2A2(84 +65A%)a3—-12A(48 + 65A%)a3

+8(78 + 275A%)a3-3175Aa3+1890a3

+4(5A%(=3 + 6A%+5A%) + 20A°(66 + 69A%+23A%)a;
-2A%(2958 + 5265A%+2170A%)a}

+4A%(3276 + 9525A%+4900A%)a3

-5A%(3207 + 16266A%*+10954A%)a}

+4A(2688 + 27075A%+25600A%)a3

-2(1362 + 41985A%+67360A")a$

+20A(1653 + 6428A%)a]-5(1008 + 17083A%)a}

1
+34500Aa§—6300a§°)%) ’ 4)

where y = (A%(8 + 1242 + 5A%) + A(-16 + 32A% +
25A")a3+(656+776A%+277A*)a%-4A(424+201A%)a3 +
2(924 + 1051A%)a% - 3055Aa3 + 18554$) and =
(A (-16+32A% + 25A%) + 2 (656 + 7T76A% + 277A%) a;
~12A (424 + 201A%) a3 + 8 (924 + 1051A%) a3
-15275Aa3 + 11130a3), in the other words, (7 = a%)'
By setting w'!) = w{? and with assumption |a3| < 4,
the parameter of as can be determined for a known am-
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plitude. Consequently the value of frequency is achieved.
Table 2 presents the ratio of the approximate frequency for
different amplitudes. Moreover, Fig. 4 compares the rel-
ative error of the first- and second-order approximations
with other well-known methods such as harmonic balance
and energy balance procedures. Fig. 5 exhibits the phase
space trajectory of the Duffing-harmonic oscillator when
the initial amplitude is one. As can be seen, the accuracy
of the approach is excellent for whole of domain in the
second-order approximation.

—— — First—order approximation (GEM)

Harmonic balance (Mickens, 2001)

/ \\ —— — Energy balance (Ozis and Yildirim, 2007)

\ —e— Second —order approximation (GEM)

s

Relative error %

o

Amplitude

Fig. 4: Comparison between relative errors for Case .

Table 2: Comparison of approximate frequencies with exact ones for
the second-order approximation (Case ).

A as w72 %ﬁ

0.05 0.002104 0.042470 1.003571
0.1 0.004200 0.084682 1.003482
0.5 0.019571 0.387844 1.001235
1 0.030982 0.636696 0.999868
5 0.013949 0.971407 1.004583
10 0.007104 0.992643 1.001742
50 0.001428 0.999703 1.000095
100 0.000714 0.999926 1.000025
500 0.000143 0.999997 1.000001

The achieved results using the second-order approx-
imation of this straightforward approach show that the
technique is easy, convenient and accurate for conserva-
tive nonlinear oscillators that the restoring force has a ra-
tional form.

M. Kalami Yazdi and P. Hosseini Tehrani, Frequency analysis of nonlinear oscillations = 91

® Exact solution

O Second —order approximation

Fig. 5: Phase space diagram of the second-order approximation for
Case Il (A=1).

5 Conclusions

This study scrutinizes the accuracy of the global error min-
imization (GEM) by examining two nonlinear equations
which arise from the free oscillations of a rigid rod rock-
ing on the cylindrical surface without slipping and the
Duffing-harmonic oscillator. The reliable results are val-
idated by the exact solutions. This applicable technique
provides a satisfactory approximate frequency for the first
order approximation. Higher order estimations using this
method should be more accurate for other resembling non-
linear problems with odd and rational restoring forces. At
last, The GEM method is a simple and powerful algorithm
that can be easily implemented to similar nonlinear sys-
tems.
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