
Nonlinear Engineering 2016; 5(4): 277–285

Jagdev Singh*, M.M. Rashidi, Devendra Kumar, and Ram Swroop

A fractional model of a dynamical Brusselator
reaction-diffusion system arising in triple collision
and enzymatic reactions

DOI 10.1515/nleng-2016-0041
Received July 22, 2016; accepted September 30, 2016.

Abstract: In this paper, we study a dynamical Brussela-
tor reaction-diffusion system arising in triple collision and
enzymatic reactions with time fractional Caputo deriva-
tive. The present article involves a more generalized effec-
tive approach, proposed for the Brusselator system say q-
homotopy analysis transform method (q-HATM), provid-
ing the family of series solutionswithnonlocal generalized
effects. The convergence of the q-HATM series solution
is adjusted and controlled by auxiliary parameter � and
asymptotic parameter n. The numerical results are demon-
strated graphically. The outcomes of the study show that
the q-HATM is computationally very effective and accurate
to analyze nonlinear fractional differential equations.

Keywords: Fractional reaction-diffusion Brusselator sys-
tem; Laplace transform method; q-homotopy analysis
transform method; �and n-curves

1 Introduction

Fractional order differential equations have been proved
to be an important and useful tool to show the hidden as-
pects inmany phenomena occurring from real world, such
as physical sciences, signal processing, electromagnetic,
earthquake, traffic flow, measurement of viscoelastic ma-
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terial properties and many more processes [1–7]. The con-
cept of fractional differential coefficients is considered as
the history and nonlocal distributed effects, an excellent
literature of this can be found in various monographs [8–
11].

In this article, we consider a fractional dynamical
Brusselatormodel is a simple reaction-diffusion equations
occurring in various physical problems, referred to the for-
mation of ozone by atomic oxygen via triple collision and
enzymatic reactions. This dynamical system holds a piv-
otal role in study of chemical kinetics, or biochemical re-
actions, and biological systems. The dynamical Brussela-
tor reaction-diffusion system involves controlled concen-
tration of paired variables intermediates with reactants
and product chemicals with nonlinear oscillations [12–
15]. Considerable significant investigations of solutions of
the Brusselator model have been done earlier with vari-
ous schemes [16–25] which have their local point effects.
The present research entails a more generalized effec-
tive approach, proposed for the Brusselator system say q-
HATM, providing the family of series solutionswith nonlo-
cal generalized effects. The q-HATM basically shows how
the Laplace transform can be employed to find the ap-
proximate series solutions of the time fractional Brusse-
lator reaction-diffusion equations by manipulating the q-
homotopy analysis method. The q-HAM initially given by
El-Tavil and Huseen [26, 27], is more generalized com-
putational approach then the classical homotopy anal-
ysis method (HAM) introduced by Liao in his PhD the-
sis in 1992 [28–31] and contains the HAM as a special
case. The comparisons between both the approaches are
shown by graphically. The HAM is an analytical algorithm
to solve various kinds of nonlinear problems of integer
and fractional order and is free from any restriction, per-
turbations, complicated integrals calculations and poly-
nomials, uniformly valid for both large/small physical pa-
rameters [32–35]. In recent scenario analytical techniques
have also been employed to investigate various scien-
tific and technological problems such as unsteady two-
dimensional and axisymmetric squeezing flows between
parallel plates [36], three-dimensionalNavier Stokes equa-
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tions [37], magneto-hemodynamic flow in a semi-porous
channel [38], micropolar flow in a porous channel with
mass injection [39], unsteady MHD flow past a stretching
permeable surface in nano-fluid [40], Jeffery-Hamel flow
with high magnetic field and nano-particle [41], squeez-
ing unsteady nanofluid flow [42], three-dimensional prob-
lem of condensation film on inclined rotating disk [43],
nanofluid flow and heat transfer between parallel plates
considering Brownian motion [44], effects of heat trans-
fer in flow of nanofluids over a permeable stretching wall
in a porous medium [45]. In now a days numerical tech-
niques has also been discussed such as numerical simu-
lation of two dimensional hyperbolic equations with vari-
able coefficients [46], numerical solution of Burgers’ equa-
tion [47], numerical simulation of two-dimensional sine-
Gordon solitons [48], etc.

2 A dynamical Brusselator
reaction-diffusion system

In thiswork,weanalyze the followingdynamical Brussela-
tor fractional reaction-diffusion equations with time frac-
tional derivative

∂αu
∂tα = u2v − (A + 1)u + μ

(
∂2u
∂x2 + ∂2u

∂y2

)
+ B,

∂βv
∂tβ

= −u2v + Au + μ
(
∂2v
∂x2 + ∂2v

∂y2

)
,

0 < α, β ≤ 1, (x, y) ∈ Ω, t > 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(1)

with the appropriate initial conditions

u(x, y, 0) = ξ (x, y)
v(x, y, 0) = ζ (x, y)

}
(x, y) ∈ Ω. (2)

In the above equations u(x, y, t) and v(x, y, t) represent di-
mensionless concentrations of two reactants, A and B be
constants concentrations of the two reactants, Ω ⊂ �2 de-
notes the domain set and ∂Ω indicates the boundary of
the domain set Ω, 0 < α, β ≤ 1 are parameters represent-
ing the order of the time fractional derivatives. It is well
known that for small values of the diffusion coefficient μ,
the steady state solution of the Brusselator system (1) con-
verges to equilibrium point (B, A/B), if 1 − A + B2 ≥ 0 [49].
In this article we select the constant values of A = 1, B = 0
and μ = 0.25.

3 Basic definitions

Definition 1. The fractional derivative of f (t) in the Caputo
sense is defined and represented in the following man-
ner [50]:

Dαf (t) = Jn−αDnf (t) = 1
Γ(n − α)

t∫
0

(t − τ)n−α−1f n(τ)dτ,

(3)

for n − 1 < α ≤ n, n ∈ N, t > 0, f ∈ Cn−1.
Lemma: If n − 1 < α ≤ n, n ∈ N, f ∈ Cnμ , μ ≥ −1, then

DαJαf (t) = f (t) −
n−1∑
r=0

f (r)(0+) tr
Γ(r + 1) , t > 0. (4)

The fractional derivative given by Caputo is employed
here because it permits traditional initial and bound-
ary conditions to be included in the modelling of the
problem.
Definition 2. For r to be the smallest integer that exceeds
α, the Caputo-fractional derivative operator of order α > 0
is explained as

Dαv(x, t) = ∂αv(x, t)
∂tα

=

⎧⎪⎪⎨
⎪⎪⎩

1
Γ(r − α)

t∫
0
(t − γ)r−α−1 ∂

rv(x, t)
∂γr dγ, for r − 1 < α < r

∂rv(x, t)
∂tr , for α = r ∈ N

(5)

Definition 3. The Laplace transform (LT) of a function f (t),
denoted by F(s), is defined by the equation

L
{
f (t), s

}
= F(s) =

∞∫
0

e−st f (t) dt. (6)

If n ∈ N, then Laplace transform is given as

L
{

dn
dxn ; f ; s

}
= sn F(s) −

n−1∑
r=0

sn−r−1f (r)(0+), (7)

and the LT of fractional order, the Caputo derivative is
given by [50] see also [51] in the form

L
[
Dαf (t)

]
= sαL

[
f (t)

]
−

n−1∑
r=0

sα−r−1f (r)(0+), n − 1 < α ≤ n.

(8)
Definition 4. The Laplace transform of the Riemann-
Liouville fractional derivative is defined and explained as

L
[
Iαt f (t)

]
= s−αF(s). (9)
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4 Basic idea of q-HATM

To present the basic idea and concept of this scheme, we
consider a general nonlinear non-homogeneous partial
differential equation of fractional order written in the fol-
lowing form:

Dα
t u(x, y, t) + R u(x, y, t) + N u(x, y, t) = w(x, y, t),
n − 1 < α ≤ n. (10)

In the above equation Dα
t u(x, y, t) is the famous Caputo

fractional derivative of the function u(x, y, t), R is repre-
senting the linear differential operator, N is depicting the
general nonlinear differential operator and w(x, y, t) is in-
dicating the term occurring from source.

By operating with the well known LT on both sides of
equation (10), we arrive at the following result

L [Dα
t u] + L [R u] + L [N u] = L [w(x, y, t)]. (11)

Making use of the differentiation property of the LT, we
have

sαL[u]−
n−1∑
k=0

sα−k−1u(k)(x, 0)+L [R u]+L[N u] = L[w(x, y, t)].

(12)
Now simplifying Eq. (12), we get the following result

L [u] − 1
sα

n−1∑
k=0

sα−k−1u(k)(x, 0)

+ 1
sα

[
L [Ru] + L[N u] − L[w(x, y, t)]

]
= 0. (13)

We define the nonlinear operator

N[θ(x, y, t; q)] = L [θ(x, y, t; q)]

− 1
sα

n−1∑
k=0

sα−k−1θ(k)(x, y, t; q)(0+)

+ 1
sα

[
L [Rθ(x, y, t; q)] + L[N θ(x, y, t; q)] − L[w(x, y, t)]

]
,

(14)

here q ∈ [0, 1/n] and θ(x, y, t ; q) is indicating a real func-
tion of x, t and q. The homotopy is constructed as follows

(1 − nq) L [θ(x, y, t ; q) − u0(x, t)]
= � qH(x, y, t)N [u(x, y, t )], (15)

where L is denoting the LT operator, n ≥ 1, q ∈ [0, 1
n ] is the

embedding parameter, H(x, y, t) denotes a nonzero auxil-
iary function, � ≠ 0 is an auxiliary parameter, u0(x, y, t) is
an initial guess of u(x, y, t) and θ(x, y, t ; q) is a unknown

function.Obviously,when the embeddingparameter q = 0
and q = 1

n , it holds

θ(x, y, t ; 0) = u0(x, y, t), θ(x, y, t ; 1n ) = u(x, y, t),
(16)

respectively. Thus, as q increases from 0 to1
n , the solution

θ(x, y, t ; q) varies from the initial guess u0(x, y, t) to the
solution u(x, y, t). Expanding θ(x, y, t ; q) in Taylor series
with respect to q, we have

θ(x, y, t ; q) = u0(x, y, t) +
∞∑
m=1

um(x, y, t) qm , (17)

where
um(x, t) =

1
m !

∂mθ(x, y, t ; q)
∂qm

∣∣q=0. (18)

If we select the auxiliary linear operator, the initial guess,
the auxiliary parameter n, � and the auxiliary function,
the series (17) converges at q = 1

n , then we have the follow-
ing equation

u(x, y, t) = u0(x, y, t) +
∞∑
m=1

um(x, y, t)(
1
n )

m , (19)

which must be one of the solutions of the original nonlin-
ear equations. According to the definition (19), the control-
ling equation can be obtained from the zero-order defor-
mation equation (15).

We take the vectors as

�um = {u0(x, y, t), u1(x, y, t), ..., um(x, y, t)}. (20)

The Differentiation on the zeroth-order deformation Equa-
tion (15) m-times with respect to q and then division by m!
and finally letting q = 0, it gives the mth-order deforma-
tion equation of the form:

L [um(x, y, t) − kmum−1(x, y, t)] = �H(x, y, t)�m(�um−1).
(21)

Applying the inverse LT, we have

um(x, y, t) = kmum−1(x, y, t) + � L−1[H(x, y, t)�m(�um−1)],
(22)

where �m(�um−1) is presented as

�m(�um−1) =
1

(m − 1)!
∂m−1 N [θ(x, y, t ; q)]

∂qm−1
∣∣q=0, (23)

and km is given as

km =
{

0, m ≤ 1,
n, m > 1.

(24)

The convergence analysis of this type of series solution has
already been done by Abbaoui and Cherruault [52].
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5 Implementation of the method

Example 1. In this example, we analyze the following sys-
tem of fractional reaction-diffusion Brusselator equations

∂αu
∂tα = u2v − (A + 1)u + μ

(
∂2u
∂x2 + ∂2u

∂y2

)
+ B,

∂βv
∂tβ

= −u2v + Au + μ
(
∂2v
∂x2 + ∂2v

∂y2

)
,

⎫⎪⎪⎬
⎪⎪⎭
(25)

subject to the initial conditions

u(x, y, 0) = u0 = χ1(x, y) = e−(x+y),

v(x, y, 0) = v0 = χ2(x, y) = e(x+y), (26)

where 0 < α, β ≤ 1 are parameters describing the order of
the time fractional derivatives, xis the space domain and t
is time.

Using the q-HATM algorithm, we define the nonlinear
operator as

N1[ψ1(x, y, t; q), ψ2(x, y, t; q)] = L[ψ1(x, y, t; q)]

−
(
1 − km

n

)
1
s χ1(x, y) −

1
sα L[ψ

2
1(x, y, t; q)ψ2(x, y, t; q)

− (A + 1)ψ1(x, y, t; q)

+ μ
(
∂2ψ1(x, y, t; q)

∂x2 + ∂2ψ1(x, y, t; q)
∂y2

)
+
(
1 − km

n

)
B],

(27)

N2[ψ1(x, y, t; q), ψ2(x, y, t; q)] = L[ψ2(x, y, t; q)]

−
(
1 − km

n

)
1
s χ2(x, y)

− 1
Sβ

L
[
− ψ2

1(x, y, t; q)ψ2(x, y, t; q) + Aψ1(x, y, t; q)

+ μ
(
∂2ψ2(x, y, t; q)

∂x2 + ∂2ψ2(x, y, t; q)
∂y2

)]
, (28)

and the Laplace operator as

L
[
um (x, t) − kmum−1(x, t)

]
= �R1,m[−→u m−1,−→v m−1],

L
[
vm (x, t) − kmvm−1(x, t)

]
= �R2,m[−→u m−1,−→v m−1],

}
(29)

where

R1,m[−→u m−1,−→v m−1] = L{um−1(x, t)} −
(
1 − km

n

)
1
s e

−(x+y)

− 1
sα L

{m−1∑
k=0

um−k−1
k∑
i=0

uk−i vi − (A + 1)um−1

+μ(∂
2um−1
∂x2 + ∂2um−1

∂y2 ) + B
(
1 − km

n

)}
. (30)

R2,m[−→u m−1,−→v m−1] = L{vm−1(x, t)} −
(
1 − km

n

)
1
s sin x

− 1
sβ
L
{
−
m−1∑
k=0

um−k−1
k∑
i=0

uk−i vi + Aum−1

+μ(∂
2vm−1
∂x2 + ∂2vm−1

∂y2 )
}
. (31)

It is obvious, that the solution of the mth-order defor-
mation equations (29) for m ≥1 becomes

um (x, t) = kmum−1(x, t) + �L−1{R1,m[−→u m−1,−→v m−1]}
vm (x, t) = kmvm−1(x, t) + �L−1{R2,m[−→u m−1,−→v m−1]},

}
(32)

On solving the above equations, it gives

u0 = e−(x+y), v0 = e(x+y),

u1 = −�(−A + 2μ + Be(x+y))e−(x+y) tα
Γ (α + 1)

,

v1 = −�(−1 + A + 2μe2(x+y))e−(x+y) tβ
Γ (β + 1)

,

u2 = (n + �)u1 + �
2((A2 + 2μ(1 + 2μ) − A(1 + 4μ)

+ B(1 − A)e(x+y))e−(x+y) t2α
Γ(2α + 1)

+ (−1 + A + 2μe2(x+y))e−3(x+y) tα+β
Γ(α + β + 1) ),

v2 = (n + �)v1 − �
2((−2 + A)(A − 2μ)e−(x+y)

− B(2 − A)) tα+β
Γ (α + β + 1)

+ �
2(−1 + 2μe2(x+y))(−1 + A + 2μe2(x+y)) t2β

Γ(2β + 1) ,

... (33)

and so on, in this manner the rest of the iterative compo-
nents can be derived. Therefore, the family of q-HATM se-
ries solutions of the system (25) is given as pair of equa-
tions in the following form

u(x, y, t) = u0(x, y, t) +
∞∑
m=1

um(x, y, t)( 1n )
m ,

v(x, y, t) = v0(x, y, t) +
∞∑
m=1

vm(x, y, t)( 1n )
m .

⎫⎪⎪⎬
⎪⎪⎭ (34)

If we set α = β = 1 and � = −1, n = 1 then clearly,

we can observed that the solution
N∑

m=0
um(x, y, t)( 1n )

m and

N∑
m=0

vm(x, y, t)( 1n )
m when N → ∞ it converges to the ex-

act solution of standard reaction-diffusionBrusselator sys-
tem. The values of � is selected corresponding to arbitrary
selected n(n ≥ 1), from �-curve, we compare some values
of � and n(n ≥ 1) with exact and HAM solution, showing
the validity of these parameters.
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(a) Exact solution u(x, y, t) (b) Approximate solution
u(x, y, t)

(c) Exact solution v(x, y, t) (d) Approximate solution
v(x, y, t)

(e) E3 = |uex. − uappr.|

(f) E3 = |vex. − vappr.| (g) Comparative approximate
solutions at α = β = 1

(h) Comparative approximate
solutions at α = β = 0.9

Fig. 1: Shape of 3rd order classical HAM (q-HATM, n = 1) approximate solutions u(x, y, t) and v(x, y, t) of system (25) at y = 0.5, � = −1, α =
β = 1; v/s x and time t: 1(e)–1(f) show the efficiency of proposed method is noticed through the absolute error; 1(g)–1(h) comparisons are
made, show the efficiency of fractional order shape solution.

(a) Approximate solution
u(x, y, t)

(b) Approximate solution
v(x, y, t)

(c) E3 = |uex. − uappr.| (d) E3 = |vex. − vappr.| (e) Comparative approxi-
mate solutions

(f) Comparative approxi-
mate solutions

Fig. 2: Shape of family of 3rd order q-HATM approximate solutions u(x, y, t) and v(x, y, t) of system (25) with different values of (�, n, α, β) at
y = 0.5 v/s x and time t show the efficiency of auxiliary parameters � and n(n ≥ 1): 2(c)–2(d) represented the absolute error at (�, n, α, β) =
(−5.3, 5, 1, 1) with their exact solution; 2(e)–2(f) comparisons are made, show the efficiency of fractional order shape solution.
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(a) (b) (c)

(d)

Fig. 3: Show the 3rd order HAM (q-HATM,n = 1) approximate solutions of system (25) at x = y = 0.5 verses time t 3(a)–3(b) comparative
graphical representation between different values of α. It is clear to see that the solution of fractional order is not only a function of time
but also continuous function for fractional order; 3(c)–3(d) existing the validity of absolute convergence range described in �-curve.

(a) (b) (c)

(d)

Fig. 4: Show the 3rd order q-HATM approximate solutions of system (25) at x = y = 0.5 verses time t: 4(a)–4(b) comparative graphical
representation between different values of α = β at (�, n) = (−37, 37.5), existing the validity of fractional order with auxiliary parameters �

and fractional value of n; 4(c)–4(d) existing the validity of family of proposed method solutions by using different values of � and n at α = 1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 5: 3rd and 2nd order � and n-curves, �-curve show the valid range of �, 2nd order approximate decided the valid range of � at x =
0.5, t = 0.005 for different n of u(x, y, t)and v(x, y, t) of system (25): for 5(a) −1.999 ≤ � < 0; 5(c) −2.003 ≤ � < 0; 5(e) −75.01 ≤ � < 0;
5(g) −75.03 ≤ � < 0; 5(i) −39.65 ≤ � < 0; 5(j) −40.4 ≤ � < 0 and the nearly horizontal line segments which guaranteed the convergence of
related series; 5(i)–5(j) show the validity of Brownian motion i.e. α = 0.9, 0.8, 0.7, �-curves. It is depicted that all the �-curve, seem to the
same values of u(x, y, t) and v(x, y, t) for same order and different arbitrary selected n(n ≥ 1), proved the validity of auxiliary parameters
� and n which provided the multiple approximate trusty solutions. The asymptotic n-curves, show the validity of valid range of �, it seem
to the same values of u(x, y, t) and v(x, y, t) correspondingly 2nd order approximate �-curve. It is observed that the valid range of � directly
proportion to n(n ≥ 1).

6 Conclusions

In thiswork, q-HATM is used to examine fractional dynam-
ical Brusselator reaction-diffusion systemwith initial con-
ditions. The main power of proposed algorithm is the �

and asymptotic n-curves, that provide the valid large con-
vergence range. We can observed that the solution series
N∑

m=0
um(x, y, t)( 1n )

m and
N∑

m=0
vm(x, y, t)( 1n )

m when N → ∞,

converge to the exact solution. Notably significant inves-

tigations of solutions of the Brusselator model have been
doneearlierwith various schemes [16–25]whichhave their
local point effects. The present article involves a more
generalized effective approach, proposed for the Brusse-
lator system say q-HATM, providing the family of series
solutions with nonlocal generalized effects. The outcomes
show that the proposed computational algorithm is very
efficient and user friendly to handle nonlinear fractional
differential equations.
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