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Abstract: In this paper we investigate the control of three-
dimensional non-autonomous fractional-order model of
a permanent magnet synchronous motor (PMSM) and PI
controlled fractional order Induction motor via recursive
extended back stepping control technique. A robust gen-
eralized weighted controllers are derived to suppress the
chaotic oscillations of the fractional order model. As the
direct Lyapunov stability analysis of the controller is dif-
ficult for a fractional order first derivative, we have de-
rived a new lemma to analyze the stability of the system.
Numerical simulations of the proposed chaos suppression
methodology are given to prove the analytical results.

Keywords: PermanentMagnet SynchronousMotor; Induc-
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1 Introduction

Permanent magnet synchronousmotor (PMSM) is increas-
ingly used in efficient AC servo driving control system due
to its simple dynamics, high efficiency, high power density
and high torque-current ratio. The investigation of chaos
in PMSM is a field of active research due to its direct ap-
plications in many areas especially for industrial applica-
tions in low-medium power range. However, the perfor-
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mance of the PMSM is sensitive to system parameter and
external load disturbance in the plant. Some investiga-
tions, for example, by Li et al. [1] and Jing et al. [2] show
that with certain parameter values, the PMSM displays
chaotic behavior. This chaotic behavior of PMSM can lead
to performancedegradationby causing torque ripples, low
frequency oscillations and low performance to speed con-
trol. Ataei et al. [3] characterized the complex dynamics of
the permanent-magnet synchronousmotor (PMSM)model
with a non-smooth-air-gap. Harb and Zaher [4] studied
chaotic behaviors in PMSM for a certain range of its param-
eters, and itwas eliminated by using optimal Lyapunov ex-
ponent methodology. Zribi et al. [5] proposed to use a Lya-
punov exponent control algorithm to control the PMSM.
Dynamical equations of three time scale brushless DCmo-
tor system were presented by Ge and Cheng [6].

In the recent years, the research on fractional order
dynamical systems has been receiving increasing atten-
tion. It is found that with the help of fractional derivatives,
many systems in interdisciplinary fields can be elegantly
described [7–9]. Furthermore many integer order chaotic
systems of fractional order have been studied widely [10–
14]. All the physical phenomena in nature exist in the form
of fractional order[15], integer order (classical) differen-
tial equation is just a special case of fractional differen-
tial equation. The importance of fractional-order models
is that they can yield a more accurate description and give
a deeper insight into the physical processes underlying a
long range memory behavior.

Chaos modelling have applications in many areas in
science and engineering [15–17]. Some of the common
applications of chaotic systems in science and engineer-
ing are chemical reactors, Brusselators, Dynamos, Toka-
mak systems, biology models, neurology, ecology models,
memristive devices, etc. An analysis of saddle-node and
Hopf bifurcations in indirect field-oriented control (IFOC)
drives due to errors in the estimate of the rotor time con-
stant provides a guideline for setting the gains of PI speed
controller in order to avoid Hopf bifurcation [18]. An ap-
propriate setting of the PI speed loop controller permits to
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keep the bifurcations far enough from the operating con-
ditions in the parameter space [8]. It has been proven the
occurrence of either co-dimension one bifurcation such
as saddle node bifurcation and Hopf bifurcation or co-
dimension two such as Bogdanov-Takens and zero-Hopf
bifurcation in IFOC induction motors [19–21].

2 Problem formulation and
preliminaries

2.1 Fractional order PMSM model

The Non-Linear dynamical dimensionless model of the
Permanent Magnet Synchronous Motor (PMSM) is given
in [2, 3].

ẋ(t) = −x(t) + y(t)z(t)
ẏ(t) = −y(t) − x(t)z(t) + az(t)
ż(t) = b ·

[
y(t) − z(t)

] (1)

The system shown in (1) shows chaotic behavior when the
parameters are a = 20; b = 5.46.

The fractional order model of the PMSM dimension
less model shown in (1) can be defined as

Dq1 · x(t) = −x(t) + y(t)z(t)
Dq2 · y(t) = −y(t) − x(t)z(t) + az(t)
Dq3 · z(t) = b

[
y(t) − z(t)

] (2)

where q1, q2 and q3 are the fractional orders of the respec-
tive states.

For studying the state portraits of the fractional or-
der system (2), the system parameters are chosen as a =
20 & b = 5.46. Figure 1 shows the 3D state portrait of sys-
tem (2).

2.2 Fractional order induction motor model

In this section we will derive the dimensionless fractional
order model of the inductionmotor. The dimensionless in-
teger order model of a PI speed regulated Current Driven
induction motor is given by [18],

ẋ = −c1x + c2w − kc1
u02
yw

ẏ = −c1y + c2u02 + kc1
u02
xw

ż = −c3z − c4
[
c5(yw − zu02) − TL − c3

c4wref

]
ẇ = (ki − kpc3)z − kpc4

[
c5(yw − xu02) − TL − c3

c4wref

]
(3)

where c1 = 13.67; c2 = 1.56; c3 = 0.59; c4 = 1.76; c5 =
2.86; u02 = 4; kp = 0.001; ki = 1; k = 1.5; TL = 0.5;wref =

Fig. 1: 3D State portrait of the Fractional order System (2).

181.1 and initial conditions are x1 = 0; x2 = 0.4; x3 =
−200; x4 = 6.

The fractional order model of the PI controlled induc-
tion motor (3) can be given as,

Dq1x = −c1x + c2w − kc1
u02
yw

Dq2y = −c1y + c2u02 + kc1
u02
xw

Dq3 z = −c3z − c4
[
c5(yw − xu02) − TL − c3

c4wref

]
Dq4w = (ki − kpc3)z − kpc4

[
c5(yw − x1u02) − TL − c3

c4wref

]
(4)

Where q1, q2, q3 and q4 are the fractional orders of the re-
spective states. Figure 2 shows the 3d state portraits of the
system (4).

Fig. 2: 3D state portraits of the fractional order induction motor
(A-XYZ Plane, B-YZW Plane).
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3 Chaos suppression of the
fractional order systems using
extended back stepping

In this section we propose a recursive extended back step-
ping controller for controlling the chaotic oscillations of a
PMSM system (2) and PI controlled induction motor sys-
tem(4).

3.1 Fractional order chaos suppression of
PMSM system

First, Let us define the fractional order PMSM model (2)
with the proposed controllers as,

Dq1x(t) = −x(t) + y(t)z(t) + ux(t)
Dq2y(t) = −y(t) − x(t)z(t) + az(t) + uy(t)
Dq3 z(t) = b

[
y(t) − z(t)

]
+ uz(t)

(5)

where ux(t), uy(t), uz(t) are the controllers.
The control errors for the chaos suppression of PMSM

system(2) are defined as,

ex = x − xd
ey = y − yd
ez = z − zd

(6)

where xd = fx(t), yd = kxex , zd = kyex + kzey and f (t) is a
smooth periodic function of time.

Therefore

ex = x − fx(t)
ey = y − kxex
ez = z − kyex − kzey

(7)

The fractional derivatives of (7) gives the fractional order
error dynamics,

Dq1ex = Dq1x − Dq1 fx(t)
Dq2ey = Dq2y − kxDq1ex
Dq3ez = Dq3 z − kyDq1ex − kzDq2ey

(8)

Substitute (2) in (6)

Dq1ex = −x(t) + y(t)z(t) + ux(t) − Dq1 fx(t)
Dq2ey = −y(t) − x(t)z(t) + az(t) + uy(t) − kxDq1ex
Dq3ez = b

[
y(t) − z(t)

]
+ uz(t) − kyDq1ex − kzDq2ey

(9)

Let us define the controllers for chaos suppression of the
PMSMmodel (2) as,

ux(t) = x(t) − y(t)z(t) − Dq1 fx(t) − k1ex
uy(t) = y(t) + x(t)z(t) − az(t) − k2ey
uz(t) = −b

[
y(t) − z(t)

]
− k3ez

(10)

3.1.1 Stability of the controller

In order to analyze the stability of the designed control al-
gorithm we use Lyapunov stability theory. The Lyapunov
function for the controller (10) and system (2) can be given
by (11)

V = 1
2

(
e2x + e2y + e2z

)
(11)

Differentiating (11) along the trajectories of (2) we will get
the Lyapunov first derivative (12).

dV
dt = 1

2[ex(t)ėx(t) + ey(t)ėy(t) + ez(t)ėz(t)] (12)

By definition of fractional calculus [22, 23],

ẋ(t) = D1−q
t · Dq

t x(t) (13)

By solving (12) with respect to (13) and (2), we get (14).

dV
dt = ex(t)caD1−q1

t
c
aDq1

t [x − fx(t)]+
ey(t)caD1−q2

t
c
aDq2

t [y − kxex]+
ez(t)caD1−q3

t
c
aDq3

t [z − kyex − kzey]
(14)

From (14) it is clear that the calculation of the sign of the
first Lyapunov derivative is very difficult. Hence we derive
a new lemma to find the sign of the Lyapunov first deriva-
tive.

3.1.2 Lemma-1

As defined by if e (t) be a time continuous and derivable
function. Then for any time instant t ≥ t0,

1
2D

α
t e2(t)≤ e(t) × D

α
t e(t) ∀α ∈ (0, 1) (15)

Proof. To prove expression (15) is true we start with,

e(t)Dα
t e(t) −

1
2D

α
t e2(t) ≥ 0 ∀α ∈ (0, 1) (16)

By definition

Dα
t e(t) =

1
Γ(1 − α)

t∫
t0

ė(τ)
(t − τ)α dτ (17)

1
2D

α
t e2(t) =

1
Γ(1 − α)

t∫
t0

e(τ) · ė(τ)
(t − τ)α dτ (18)

Modifying (18),

1
Γ(1 − α)

t∫
t0

e(t) · ė(τ) − e(τ)ė(τ)
(t − τ)α dτ ≥ 0 (19)
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Let us assume,

E(τ) = e(t) − e(τ) & Ė(τ) = −ė(τ) (20)

Substitute (20) in (19)

1
Γ(1 − α)

t∫
t0

E(τ)Ė(τ)
(t − τ)α dτ ≥ 0 (21)

Integration (21) by parts

1
Γ(1 − α) (t− τ)

−α · 12E
2(τ)−

t∫
t0

1
2E

2(τ) ·
(
α(t − τ)−α−1
Γ(1 − α)

)
≤ 0

(22)[
E2(τ)

2Γ(1 − α)(t − τ)α

]
τ=t

−
[

E2(t0)
2Γ(1 − α)(t − t0)α

]

− 1
2

α
Γ(1 − α)

t∫
t0

E2(τ)
(t − τ)α+1 dτ ≤ 0 (23)

Solving first term of (23) for τ = t

lim
τ→t

E2(τ)
2Γ(1−α)(t−τ)α =

1
2Γ(1−α) limτ→t

⎡
⎣ e2(t) + e2(τ)
−2e(t) · e(τ)

⎤
⎦
2

(t−τ)α

= 1
2Γ(1−α) limτ→t

⎡
⎢⎢⎢⎣

−2e(t)ė(τ)+
2e(τ) · ė(τ)
−α(t−τ)α−1

⎤
⎥⎥⎥⎦ = 0

(24)
Equation (24) can be rewritten as

E2(t0)
2Γ(1 − α)(t − t0)α

+ α
2Γ(1 − α)

t∫
t0

E2(τ)
(t − τ)α+1 dτ ≥ 0 (25)

which clearly holds as α lies between 0 ≤ τ ≤ 1, the
r.h.s of the equation (25)will always be apositive value and
hence Proved.

3.1.3 Lyapunov First Derivative using Lemma-1

Applying Lemma-1(15) in equation (10) we get,

V ≤ −k1e2x(t) − k2e2y (t) − k3e2z (t) (26)

Hence (26) is a negative definite function which infers that
the system is stable and is valid for any bounded initial
conditions.

3.1.4 Numerical Simulations using LabVIEW

The Fractional order PMSM system (2) with the extended
back stepping controller (10) are implemented in Lab-
VIEW for numerical analysis and validation. The initial
values of the fractional order system (2) are taken asx(t) =
1, y(t) = 2 & z(t) = 4. The state trajectories of the con-
trolled fractional-order chaotic system (2) are shown Fig-
ure 3, where the controller is switched at t =70 s. The
Smooth function f (t) = 35 sin 0.57t. It can be clearly ob-
served that the state trajectories follow the smooth peri-
odic function as soon as the controller is introducedwhich
clearly shows that the fractional order system (2) is con-
trolledby the extendedback stepping controller. Fig. 3 also
shows the evolution of the states of the system (2) with
controller (10), with the fractional orders q1 = 0.95, q2 =
0.9 5& q3 = 0.95 .

Fig. 3: State trajectories with control in action at t = 70 s.

3.2 Fractional order chaos suppression of PI
controlled induction motor

Let us define the fractional order PI controlled Induc-
tion motor (4) with recursive extended back stepping con-
trollers as,
Dq1x = −c1x + c2w − kc1

u02
yw + ux(t)

Dq2y = −c1y + c2u02 + kc1
u02
xw + uy(t)

Dq3 z = −c3z − c4
[
c5(yw − xu02) − TL − c3

c4wref

]
+ uz(t)

Dq4w = (ki − kpc3)z − kpc4
[
c5(yw − x1u02) − TL − c3

c4wref

]
+uw(t)

(27)
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where ux(t), uy(t), uz(t) are the controllers.
The chaos control errors of the system (4) are defined

as,
ex = x − xd
ey = y − yd
ez = z − zd
ew = w − wd

(28)

where xd = fx(t), yd = kxex , zd = kyex + kzey , wd = kwex +
kuey + kvey.

The fractional derivatives of (28) yields the fractional
order error dynamics (29),

Dq1ex = Dq1x − Dq1 fx(t)
Dq2ey = Dq2y − kxDq1ex
Dq3ez = Dq3 z − kyDq1ex − kzDq2ey
Dq4ew = Dq4w − kwDq1ex − kuDq2ey − kvDq3ez

(29)

Substitute (27) in (29),

Dq1ex = −c1x + c2w − kc1
u02
yw + ux(t) − Dq1 fx(t)

Dq2ey = −c1y + c2u02 + kc1
u02
xw + uy(t) − kxDq1ex

Dq3ez = −c3z − c4
[
c5(yw − xu02) − TL − c3

c4wref

]
+ uz(t)

−kyDq1ex − kzDq2ey
Dq4ew = (ki − kpc3)z − kpc4

[
c5(yw − x1u02) − TL − c3

c4wref

]
+uw(t) − kwDq1ex − kuDq2ey − kvDq3ez

(30)
Let us define the recursive extended back stepping con-
trollers as,

ux(t) = c1x − c2w + kc1
u02
yw + Dq1 fx(t) − k1ex

uy(t) = c1y − c2u02 − kc1
u02
xw − k2ey

uz(t) = c3z + c4
[
c5(yw − xu02) − TL − c3

c4wref

]
− k3ez

uw(t) = −(ki − kpc3)z + kpc4
[
c5(yw − x1u02) − TL − c3

c4wref

]
−k4ew

(31)

3.2.1 Stability of the controller

In order to analyze the stability of the designed control al-
gorithm we use Lyapunov stability theory. The Lyapunov
function for the controller (31) and system (4) can be given
by (32),

V = 1
2

(
e2x + e2y + e2z + e2w

)
(32)

Differentiating (32) along the trajectories of (4) we will get
the Lyapunov first derivative (33).
dV
dt = [ex(t)ėx(t)+ ey(t)ėy(t)+ ez(t)ėz(t)+ ew(t)ėw(t)] (33)

By definition of fractional calculus [22, 23],

ẋ(t) = D1−q
t · Dq

t x(t) (34)

By solving (33) with respect to (34),

dV
dt = [ex(t)D1−q

t · Dq
t ex(t) + ey(t)D

1−q
t · Dq

t ey(t)
+ez(t)D1−q

t · Dq
t ez(t) + ew(t)D

1−q
t · Dq

t ew(t)]
(35)

From (35) it is clear that the calculation of the sign of the
first Lyapunovderivative is very difficult. Henceweuse (15)
to find the sign of the Lyapunov first derivative.

Using (15) to solve (32),

dV
dt = −k1e2x − k2e2y − k3e2z − k4e2w (36)

Hence (36) is a negative definite function which infers that
the system is stable and is valid for any bounded initial
conditions.

3.2.2 Numerical simulations using LabVIEW

The fractional order induction motor (4) with the robust
adaptive controller (31) is implemented in LabVIEW for nu-
merical analysis and validation. The initial conditions are
chosen as x1 = 0; x2 = 0.4; x3 = −200; x4 = 6 and the pa-
rameter values are chosen as c1 = 13.67; c2 = 1.56; c3 =
0.59; c4 = 1.76; c5 = 2.86; u02 = 4; kp = 0.001; ki = 1; k =
1.5;wref = 181.1 and the Fractional orders of the system
q1, q2, q3 and q4 are taken as 0.9.The initial condition for
the uncertain load is selected as TL = 0.1. The state tra-
jectories of the controlled fractional-order chaotic system
(5) are shown Figure 9, where the controller is switched at
t = 85 s . It can be clearly observed that the state trajec-
tories converges to zero as soon as the controller is intro-
duced which clearly shows that the fractional order sys-
tem (4) is controlled by the controller and the states follow
the smooth trajectorty of the function f (t) = 35 cos 0.57t.
Fig. 4 also shows the evolution of the states of the sys-
tem (4) with controller (31). As proved from the analytical
analysis already presented, the origin of the system for any
bounded initial conditions is asymptotically stable.

4 Conclusion and Discussions

This paper investigates control of three-dimensional non-
autonomous fractional-order uncertain model of a PMSM
and PI controlled fractional order induction motor system
using recursive extended back stepping controllers. The
chaotic oscillations in both the systems are shown with
the respective 3D state portraits. To suppress such chaotic
oscillations, we have derived an extended back stepping
control technique. The direct Lyapunov stability analysis
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Fig. 4: State trajectories with control in action at t = 32.5 s.

of the robust controller is difficult and hence we have de-
rived a new lemma to analyze the stability of the system.
The proposed lemma is introduced in the Lyapunov first
derivative and thus the parameter estimates are derived.
We have also proved with numerical simulations that for
the derived controller is asymptotically stable about the
origin of the system for any bounded initial conditions.
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