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Abstract:Nonlinear Schrödinger type equations arise from
awide variety of fields, suchasfluids, nonlinear optics, the
theory of deep water waves, plasma physics, and so on. In
this paper, two integration schemes are employed to ob-
tain solitons, periodic waves and other forms of solutions
of the coupled nonlinear Schrödinger type equations. The
two schemes that are studied in this paper are the Bäck-
lund transformation of Riccati equation and the trial solu-
tion method.

Keywords: Nonlinear evolution equations, Exact solution,
The Bäcklund transformation of Riccati equation, Trial so-
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1 Introduction

The Nonlinear Schrödinger (NLS) equation has been de-
rived as a model for weakly nonlinear wave packets in a
wide variety of physical systems by means of the pertur-
bative algorithm known as the method of multiple scales.
This equation is widely used in many branches of physics
and dynamics that it forms a separate class of equations
investigated thoroughly bymany researchers. Inoué [1] de-
rived coupled nonlinear Schrödinger equations with the
same group velocities for the interaction of two wave-
packets in an isotropic dielectricmaterial. In hydrodynam-
ics, the coupled NLS equations describe the propagation
of two wave packets along a direction in which the group
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velocity projections overlap. In optics, the propagation of
short pulses in birefringent fibers. In atmosphere, the pres-
sure pulses in artery vessels and nonlinear Rossby waves.
In a plasma, for instance, the interaction between the
high-frequency Langmuir and low-frequency ion-acoustic
waves is governed by the coupled NLS equation of the fol-
lowing form

iut + p1uxx =
(
q1|u|2 + q12|v|2

)
u, (1)

ivt + p2vxx =
(
q2|v|2 + q21|u|2

)
v. (2)

These equations also appear in nonlinear optics and geo-
physical flows [2–11]. In Eqs. (1) and (2), u and v are the
complex amplitudes or envelopes of wave packets in two
different degrees of freedom of the underlying physical
systems, x and t are the spatial and temporal variables,
p1 and p2 are the dispersion coefficients, q1 and q2 are
the Landau constants which describe the self-modulation
of the wave packets, while q12 and q21 are the wave-
wave interaction coefficients which describe the cross-
modulations of the wave packets. The cross-modulation
terms are the glue that holds coupled-mode solitary waves
together. When both cross-modulation coefficients q12
and q21 are positive, however, the coupled-mode solitary
wave is stable. But when both or even just one of the cross-
modulation coefficients is negative, however, the solitary
waves fission and separate into two single-mode solitons
travelling independently in different modes at different
speeds. They are all real parameters and their values vary
for different polarizations in nonlinear optics or for differ-
ent kinds of basic flows in geophysical fluid dynamics.

Recently, a new coupled NLS equation

uxt = uxx +
2

1 − β2 |u|
2u + u(v − w), (3)

vt = −

(
|u|2

)
t

1 + β + (1 + β) vx , (4)

wt =

(
|u|2

)
t

1 − β + (1 − β)wx , (5)

was proposed by Ma and Geng via a spectral problem and
its auxiliary one [12], where v and w are the real functions
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of spatial variable x and temporal variable t , while u is a
complex one and β is a real constant with |β| ≠ 1.

In order to understand the mechanisms of those phenom-
ena, it is necessary to explore their solutions and proper-
ties. Solutions for these equations can not only describe
the designated problems, but also give more insights on
the physical aspects of the problems in the related fields.
In recent years, various powerful methods have been pre-
sented for finding exact solutions of the NLEEs in math-
ematical physics, such as transformed rational function
method [13, 14], multiple exp-function method [15], ex-
tended tanh method [16], trial equation method [17–22],
(G′/G) -expansion method [23–25], modified simple equa-
tion method [26–28], Q-function method [29, 30] and so
on. Lu [31] has introduced a reliable and effective method
called the Bäcklund transformation method of Riccati
equation to look for new exact solutions of nonlinear
fractional PDEs. The Bäcklund transformation method
of Riccati equation [20] is based on the assumptions that
the exact solutions of NLEEs can be expressed by a poly-
nomial in ψ, such that ψ = ψ(ξ ) satisfies the Bäcklund
transformation of Riccati equation. In this paper, we ap-
ply the Bäcklund transformation of Riccati equation and
the trial function approach to obtain exact and soliton
solutions of Eqs. (3)–(5).

2 The governing equation

In order to solve Eqs. (3)–(5), the following solution struc-
ture is selected [32]

u(x, t) = U(ξ )eiϕ(x,t), v(x, t) = V(ξ ), w(x, t) = W(ξ ),
(6)

where the wave variable ξ is given by

ξ = k(x − vt), (7)

and the phase component ϕ(x, t) is defined as

ϕ(x, t) = κx − ωt + θ (8)

where κ is the frequency of the solitons while ω represents
thewave number and θ is the phase constant. Substituting
Eq. (6) into Eqs. (3)–(5), we obtain the following equations

(1 + c)U ′′ − κ(κ + ω)U + 2
1 − β2 U

3 + U(V −W) = 0, (9)

V = −c
(β + 1)(β + c + 1)U

2, (10)

W = c
(β − 1)(β − c − 1)U

2, (11)

where
ω = −κ(c + 2). (12)

Substituting Eqs. (10),(11) and (12) into Eq. (9), we obtain
the following ordinary equation

U ′′ + κ2U − 2
β2 − (c + 1)2

U3 = 0, (13)

3 Integration Schemes:

In this section, we outline the description of the Bäcklund
transformationofRiccati equationmethodand the trial so-
lution method.

3.1 The Bäcklund transformation of Riccati
equation

3.1.1 Description of the method

Recall that the Riccati equation:

ϕ′(ξ ) = σ + ϕ2(ξ ), (14)

which has the following exact solutions

ϕ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
√
−σ tanh

(√
−σ ξ

)
, σ < 0,

−
√
−σ coth

(√
−σ ξ

)
, σ < 0,√

σ tan
(√
σ ξ

)
, σ > 0,

−
√
σ cot

(√
σ ξ

)
, σ > 0,

− 1
ξ+ϖ , ϖ = const. σ = 0.

(15)

Next, let us consider the nonlinear evolution equation
(NLEE):

F (u, ut , ux , uxx , uxt , ...) = 0, (16)

where u = u(x, t) is an unknown function, F is a poly-
nomial in u and its various partial derivatives ut , ux with
respect to t, x respectively, in which the highest order
derivatives and nonlinear terms are involved.

By using the traveling wave transformation

u(x, t) = U(ξ ), ξ = k(x − ct), (17)

where k, c are constant to be determined later, we can
reduce Eq. (16) to a nonlinear ordinary differential equa-
tion (NLODE) of the form

P
(
U, U ′ , U ′′ , ...

)
= 0. (18)

Step 1: Suppose that Eq. (18) has the following solution

u(ξ ) =
N∑
l=0

alψl(ξ ), (19)
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where al(l = 0, ..., N) are constants to be determined and
ψ(ξ ) comes from the following Bäcklund transformation
for the Riccati equation:

ψ(ξ ) = −σB + D ϕ(ξ )
D + B ϕ(ξ ) , (20)

that is ψ(ξ ) satisfies the Riccati equation

ψ′(ξ ) = σ + ψ2(ξ ), (21)

where B, D are arbitrary parameters, σ is a constant to be
determined and B ≠ 0, ϕ(ξ ) are the well-known solutions
(15).
Step2 : Balancing the highest order derivatives and non-
linear term in (18) to determine the positive integer N in
(19).
Step3 : Substituting the explicit formal solution (19) with
(20) into Eq. (18) and setting the coefficients of the powers
of ϕ(ξ ) to be zero, we obtain a system of algebraic equa-
tions which can be solved by the Maple or Mathematica
to get the unknown constants al(l = 0, ..., N),σ, k and c.
Consequently, we obtain the exact solutions of Eq. (16).

3.1.2 Application to the governing equation

In this subsection, the Bäcklund transformation of the Ric-
cati equation is applied to obtain the exact solutions of the
governing equation.
Balancing U ′′ with U3 in Eq. (13), we obtain N = 1. Then
the solution has the form

U(ξ ) = a0 + a1
(
−σB + D ϕ(ξ )
D + B ϕ(ξ )

)
. (22)

Substituting (22) along with (21) into (13) and then setting
the coefficients of ϕ(ξ ) to be zero, we can obtain a set of
algebraic equations

2a30B3
−β2 + c2 + 2c + 1 + a0B3c2k2

−β2 + c2 + 2c + 1 + 2a0B3ck2
−β2 + c2 + 2c + 1

+ a0B3k2
−β2 + c2 + 2c + 1 − a0β2B3k2

−β2 + c2 + 2c + 1

+ 6a20a1B2D
−β2 + c2 + 2c + 1 + a1B2Dk2 + 2a1B2Dσ

+ 6a0a21BD2

−β2 + c2 + 2c + 1 + 2a31D3

−β2 + c2 + 2c + 1 + 2a1D3 = 0,

(23)

− 6a20a1B3σ
−β2 + c2 + 2c + 1 − a1B3k2σ

− 2a1B3σ2 −
12a0a21B2Dσ

−β2 + c2 + 2c + 1 + 6a30B2D
−β2 + c2 + 2c + 1

+ 3a0B2c2Dk2
−β2 + c2 + 2c + 1 + 6a0B2cDk2

−β2 + c2 + 2c + 1 + 3a0B2Dk2
−β2 + c2 + 2c + 1

− 3a0β2B2Dk2
−β2 + c2 + 2c + 1 − 6a31BD2σ

−β2 + c2 + 2c + 1 + 12a20a1BD2

−β2 + c2 + 2c + 1

+ 2a1BD2k2 − 2a1BD2σ + 6a0a21D3

−β2 + c2 + 2c + 1 = 0, (24)

3a0BD2k2
−β2 + c2 + 2c + 1 + 6a0BcD2k2

−β2 + c2 + 2c + 1 + 3a0Bc2D2k2
−β2 + c2 + 2c + 1

− 3a0β2BD2k2
−β2 + c2 + 2c + 1 + 6a30BD2

−β2 + c2 + 2c + 1 + a1D3k2

+ 2a1D3σ − 2a1B2Dk2σ + 2a1B2Dσ2 +
6a20a1D3

−β2 + c2 + 2c + 1

− 12a20a1B2Dσ
−β2 + c2 + 2c + 1 − 12a0a21BD2σ

−β2 + c2 + 2c + 1

+ 6a0a21B3σ2
−β2 + c2 + 2c + 1 + 6a31B2Dσ2

−β2 + c2 + 2c + 1 = 0, (25)

a0D3k2
−β2 + c2 + 2c + 1 + 2a0cD3k2

−β2 + c2 + 2c + 1 + a0c2D3k2
−β2 + c2 + 2c + 1

− a0β2D3k2
−β2 + c2 + 2c + 1 + 2a30D3

−β2 + c2 + 2c + 1 − a1BD2k2σ

− 2a1BD2σ2 − 2a1B3σ3 −
6a20a1BD2σ

−β2 + c2 + 2c + 1

+ 6a0a21B2Dσ2
−β2 + c2 + 2c + 1 − 2a31B3σ3

−β2 + c2 + 2c + 1 = 0. (26)

Solving this systemwith the aid of Mathemtica, we obtain

a0 = 0, a1 = ±
√
β2 − (c + 1)2, σ = − κ

2

2 , (27)

where κ, k, ω, B, D are arbitrary real constants. The solu-
tions of Eqs. (3)–(5) corresponding to Eq. (27) are

u1(x, t) =

± κ

√
β2 − (c + 1)2

2

⎛
⎝ κ√

2
B − D tanh

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]

D − κ√
2
B tanh

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]
⎞
⎠

ei(κx−ωt+θ), (28)
v1(x, t) =

−cκ2(β − c − 1)
2(β + 1)

⎛
⎝ κ√

2
B − D tanh

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]

D − κ√
2
B tanh

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]
⎞
⎠

2

,

(29)

w1(x, t) =

cκ2(β + c + 1)
2(β − 1)

⎛
⎝ κ√

2
B − D tanh

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]

D − κ√
2
B tanh

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]
⎞
⎠

2

,

(30)
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and

u2(x, t) =

± κ

√
β2 − (c + 1)2

2

⎛
⎝ κ√

2
B − D coth

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]

D − κ√
2
B coth

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]
⎞
⎠

ei(κx−ωt+θ), (31)
v2(x, t) =

−cκ2(β − c − 1)
2(β + 1)

⎛
⎝ κ√

2
B − D coth

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]

D − κ√
2
B coth

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]
⎞
⎠

2

,

(32)

w2(x, t) =

cκ2(β + c + 1)
2(β − 1)

⎛
⎝ κ√

2
B − D coth

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]

D − κ√
2
B coth

[
κ√
2

(
x +

(ω
κ + 2

)
t
)]
⎞
⎠

2

.

(33)

3.2 Trial equation approach

3.2.1 Description of the method

In this subsection we outline the main steps of the trial
equation method as following
Step 1. Take the trial equation

(
u′
)2

= F(u) =
s∑
l=0

alul , (34)

where al , (l = 0, 1, ..., s) are constants to be determined.
Substituting Eq. (34) and other derivative terms such as u′′

or u′′′ and so on into Eq. (18) yields a polynomial G(u) of u
. According to the balance principle we can determine the
value of s . Setting the coefficients of G(u) to zero, we get
a system of algebraic equations. Solving this system, we
shall determine c, k and values of a0, a1, ..., as .
Step 2. Rewrite Eq. (34) by the integral form

±(ξ − ξ0) =
∫

1√
F(u)

du. (35)

According to the complete discrimination system of the
polynomial, we classify the roots of F(u), and solve the in-
tegral equation (35). Thus we obtain the exact solutions to
Eq. (16).

3.2.2 Application to the governing equation

The trial equationmethod is applied to obtain the exact so-
lutions of the governing equation. BalancingU ′′ withU3 in

Eq. (13), then we get s = 4. Using the solution procedure of
the trial equation method, we obtain the system of alge-
braic equations as follows:

a1
2 = 0, (36)

a2 + κ2 = 0, (37)

3a3
2 = 0, (38)

2a4 −
2

β2 − (c + 1)2 = 0. (39)

Solving the above systemof algebraic equations,weobtain
the following results:

a1 = 0, a2 = −κ2, a3 = 0, a4 =
1

β2 − (c + 1)2 . (40)

Substituting these results into Eqs. (34) and (35), we get

±(ξ − ξ0) =
∫

dU√
a0 − κ2U2 + 1

β2−(c+1)2 U4
. (41)

where a0 is an arbitrary real constant. Now,wediscuss two
cases as following:

Case1. If we set a0 = 0 in Eq. (41) and integrating with
respect to u, we get the following solutions of Eqs. (3)–(5)

u1(x, t) = ±κ
√
β2 − (c + 1)2 sec

[
κ
(
x +

(ω
κ + 2

)
t − ξ0

)]
ei(κx−ωt+θ), (42)

v1(x, t) =
−cκ2(β − c − 1)

β + 1 sec2
[
κ
(
x +

(ω
κ + 2

)
t − ξ0

)]
,

(43)

w1(x, t) =
cκ2(β + c + 1)

β − 1 sec2
[
κ
(
x +

(ω
κ + 2

)
t − ξ0

)]
,

(44)

and

u2(x, t) = ∓κ
√
β2 − (c + 1)2 csc

[
κ
(
x +

(ω
κ + 2

)
t − ξ0

)]
ei(κx−ωt+θ), (45)

v2(x, t) =
−cκ2(β − c − 1)

β + 1 csc2
[
κ
(
x +

(ω
κ + 2

)
t − ξ0

)]
,

(46)

w2(x, t) =
cκ2(β + c + 1)

β − 1 csc2
[
κ
(
x +

(ω
κ + 2

)
t − ξ0

)]
.

(47)

These solutions are singular periodic wave solutions.

Case2. If we set a0 = k4(β2−(c+1)2)
4 in Eq. (41) and inte-

grating with resect to u, we get the following solutions of
Eqs. (3)–(5)
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(a) (b) (c)

Fig. 1: Plot of the singular periodic wave solutions (a) |u1|, (b) v1, (c) w1, parameters β =
√
3, c = 0.5, κ = 0.4, ξ0 = 0, ω = 1.

(a) (b) (c)

Fig. 2: Plot of the singular periodic wave solutions (a) |u2|, (b) v2, (c) w2, parameters β =
√
3, c = 0.5, κ = 0.4, ξ0 = 0, ω = 1.

(a) (b) (c)

Fig. 3: Plot of the topological (kink-shaped) solutions (a) |u3|, (b) v3, (c) w3, parameters β =
√
3, c = 0.5, κ = 0.4, ξ0 = 0, ω = 1.

u3(x, t) =

± κ

√
β2 − (c + 1)2

2 tanh
[
κ√
2

(
x +

(ω
κ + 2

)
t − ξ0

)]

ei(κx−ωt+θ), (48)

v3(x, t) =

−cκ2(β − c − 1)
2(β + 1) tanh2

[
κ√
2

(
x +

(ω
κ + 2

)
t − ξ0

)]
, (49)

w3(x, t) =

cκ2(β + c + 1)
2(β − 1) tanh2

[
κ√
2

(
x +

(ω
κ + 2

)
t − ξ0

)]
, (50)

and

u4(x, t) =

± κ

√
β2 − (c + 1)2

2 coth
[
κ√
2

(
x +

(ω
κ + 2

)
t − ξ0

)]

ei(κx−ωt+θ), (51)
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(a) (b) (c)

Fig. 4: Plot of the singular soliton solutions (a) |u4|, (b) v4, (c) w4, parameters β =
√
3, c = 0.5, κ = 0.4, ξ0 = 0, ω = 1.

v4(x, t) =

−cκ2(β − c − 1)
2(β + 1) coth2

[
κ√
2

(
x +

(ω
κ + 2

)
t − ξ0

)]
, (52)

w4(x, t) =

cκ2(β + c + 1)
2(β − 1) coth2

[
κ√
2

(
x +

(ω
κ + 2

)
t − ξ0

)]
. (53)

Theses solutions are topological and singular soliton solu-
tions.

Remark-1
We can derive solutions (48)–(50) and (51)–(53) from solu-
tions (28)–(30) and (31)–(33) by putting B = 0 and D = 0
into (28)–(30) or putting D = 0 and B = 0 into (31)–(33).

Remark-2
The Figures 1,2,3 and 4 show that the coupled NLS equa-
tion has singular periodic wave solutions, topological soli-
ton solutions and singular soliton solutions. It is clear that
it has no solitary wave solutions.

4 Conclusions

Many powerful methods are used in solitary waves theory
to examine exact soliton solutions for NLEEs. In this pa-
per, we studied the new application of the the Bäcklund
transformation of Riccati equation and the trial function
approach to derive new soliton solutions of the coupled
nonlinear Schrödinger type equations. These methods are
not only efficient, but also have the merit of being widely
applicable. The obtained results are newand show that the
proposed methods are direct, effective and can be applied
to many other NLEEs in mathematical physics.

References
[1] Y. Inoué. Nonlinear interaction of dispersive waves with equal

group velocity, J. Phys. Soc. Japan. 34 (1977), 243–249.
[2] G.Q. Meng,J. L. Qin, G.L. Yu. Breather and rogue wave solu-

tions for a nonlinear Schrödinger-type system in plasmas.
Non. Dyn., 81 (2015), 739–751.

[3] T Kanna, M Lakshmanan. Exact soliton solutions, shape
changing collisions, and partially coherent solitons in cou-
pled nonlinear Schrödinger equations. Physical review letters.
86(22) (2001), 5043.

[4] T Kanna, M Lakshmanan. Exact soliton solutions of coupled
nonlinear Schrödinger equations: Shape-changing collisions,
logic gates, and partially coherent solitons. Physical review E.
67(4) (2003), 046617.

[5] T Kanna, K Sakkaravarthi, K Tamilselvan. General multicompo-
nent Yajima-Oikawa system: Painlevé analysis, soliton solu-
tions, and energy-sharing collisions. Physical Review E. 88(6)
(2013), 062921.

[6] T Kanna, R Babu Mareeswaran, K Sakkaravarthi. Non-
autonomous bright matter wave solitons in spinor
Bose–Einstein condensates. Physics Letters A. 378(3) (2014),
158–170.

[7] Benkui Tan , John P. Boyd. Coupled-mode envelope solitary
waves in a pair of cubic Schrödinger equations with cross
modulation: Analytical solution and collisions with application
to Rossby waves. Chaos, Solitons and Fractals. 11 (2000),
1113–1129.

[8] X. Yong, J. Gao, Z. Zhang. Singularity analysis and explicit so-
lutions of a new coupled nonlinear Schrödinger type equation.
Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2513–
2518.

[9] G.Q. Meng, J.L. Qin, G.L. Yu. Breather and rogue wave solu-
tions for a nonlinear Schrödinger-type system in plasmas.
Nonlinear Dyn. 81 (2015), 739–751.

[10] X. Qian, S. Songa, Y. Chen. A semi-explicit multi-symplectic
splitting scheme for a 3-coupled nonlinear Schrödinger equa-
tion. Compu. Phys. Commun. 185 (2014), 1255–1264.

[11] Y. O. EL-DIB. Stability of self-resonance mechanisms in non-
linear interaction between two primary harmonic waves. Me-
chanics and Mechanical Engineering. 7(1) (2004), 69–86.



M. M. El-Borai et al., Solitons and other solutions to the coupled nonlinear Schrödinger type equations | 121

[12] Y. Ma, X. Geng. A coupled nonlinear Schrödinger type equation
and its explicit solutions. Chaos Soliton Fract., 42 (2009),
2949–2953.

[13] W. X. Ma, J.-H. Lee. A transformed rational function method
and exact solutions to the (3 + 1)-dimensional Jimbo-Miwa
equation. Chaos Solitons Fract., 42 (2009), 1356–1363.

[14] H. Zhang, W. X. Ma. Extended transformed rational function
method and applications to complexiton solutions. Appl.
Math. Comput., 230 (2014), 509–515.

[15] W.X. Ma, T.W. Huang and Y. Zhang. A multiple exp-function
method for nonlinear differential equations and its applica-
tion. Phys. Scr., 82 (2010), 065003.

[16] W.X. Ma, B. Fuchssteiner. Explicit and exact solutions to a
Kolmogorov-Petrovskii-Piskunov equation. Int. J. Non-Linear
Mech., 31 (1996), 329–338.

[17] C.S. Liu. Trial equation method to nonlinear evolution equa-
tions with rank inhomogeneous: mathematical discussions
and its applications. Commun. Theor. Phys., 45 (2006), 219–
223.

[18] M. Mirzazadeh, A. H. Arnous, M. F. Mahmood, E. Zerrad, A.
Biswas. Soliton solutions to resonant nonlinear Schrödinger’s
equation with time- dependent coefficients by trial solution
approach, Non. Dyn., 81 (2015), 277–282.

[19] A. H. Arnous, M. Mirzazadeh and M. Eslami. Exact solutions
of the Drinfel’d-Sokolov-Wilson equation using the Bäcklund
transformation of Riccati equation and trial function approach.
Pramana J. Phys., 86(6) (2016), 1153–1160.

[20] A. H. Arnous, M. Mirzazadeh, S. Moshokoa, S. Medhekar, Q.
Zhou, M. F. Mahmood, A. Biswas and M. Belic. Solitons in op-
tical metamaterials with trial solution approach and Backlund
transformation of Riccati equation. J Comput. Theor. Nanosci.,
12(12) (2015), 5940–5948.

[21] A. H. Arnous, M. Mirzazadeh, Q. Zhou, S. P. Moshokoa, A.
Biswas, M. Belic. Optical solitons with higher order disper-
sions in parabolic law medium by trial solution approach.
Optik. 127(23) (2016), 11306–11310.

[22] M. Mirzazadeh, A.H. Arnous, M.F. Mahmood, E. Zerrad, A.
Biswas. Soliton solutions to resonant nonlinear Schrödinger’s
equation with time-dependent coefficients by trial solution
approach. Nonlinear Dynamics. 81 (2015), 277–282.

[23] M. Wang, X. Li, and J. Zhang. The (G′ /G)-expansion method
and travelling wave solutions of nonlinear evolution equations
in mathematical physics. Phys. Lett. A, 372 (2008), 417–423.

[24] A. H. Arnous, M. Mirzazadeh, Qin Zhou, M. F. Mahmood, Anjan
Biswas, Milivoj Belic. Optical solitons with resonant nonlin-
ear Schrödinger’s equation using (G′ /G)-expansion scheme.
Optoelectronics and Advanced Materials: Rapid Communica-
tions. 9 (2015), 1214–1220.

[25] M. Mirzazadeh, M. Eslami, A. H. Arnous. Dark optical solitons
of Biswas-Milovic equation with dual-power law nonlinearity.
The European Physical Journal Plus. 130 (2015), 1–7.

[26] A. J. M. Jawad, M. D. Petkovic and A. Biswas. Modified simple
equation method for nonlinear evolution equations. Appl.
Math. Comput., 217 (2010), 869–877.

[27] E. M. E. Zayed and A. H. Arnous. Exact traveling wave solutions
of nonlinear PDEs in mathematical physics using the modified
simple equation method. Appl. Appl. Math., 8(2) (2013), 553–
572.

[28] A. H. Arnous, M. Mirzazadeh, Q. Zhou, S. P. Moshokoa, A.
Biswas, M. Belic. Soliton solutions to resonant nonlinear
Schrödinger’s equation with time-dependent coefficients
by modified simple equation method. Optik. 127(23) (2016),
11450–11459.

[29] N. A. Kudryashov. One method for finding exact solutions of
nonlinear differential equations. Commun. Non. Sci. Numer.
Simulat.,17 (2012), 2248–2253.

[30] E. M. E. Zayed and A.H. Arnous, DNA dynamics studied using
the homogeneous balance method, Chin. Phys. Lett., 29(8)
(2012), 080203.

[31] B. Lu. Bäcklund transformation of fractional Riccati equation
and its applications to nonlinear fractional partial differential
equations. Phys. Lett. A, 376 (2012), 2045–2048.

[32] M. K. Elboree. Derivation of soliton solutions to nonlinear
evolution equations using He’s variational principle. Appl.
Math. Model., 39(14) (2014), 4196–4201.


