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Abstract: A new collocation method, namely the general-
ized fractional order of the Chebyshev orthogonal func-
tions (GFCFs) collocation method, is given for solving
some nonlinear boundary value problems in the semi-
infinite domain, such as equations of the unsteady isother-
mal flowof a gas, the third grade fluid, the Blasius, and the
field equation determining the vortex profile. The method
reduces the solution of the problem to the solution of
a nonlinear system of algebraic equations. To illustrate
the reliability of the method, the numerical results of the
present method are compared with several numerical re-
sults.
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1 Introduction

In this section, some necessary preliminarywhich are use-
ful for our method have been introduced.

1.1 The Chebyshev functions

The Chebyshev polynomials have frequently been used
in numerical analysis including polynomial approxima-
tion, Gauss-quadrature integration, integral and differen-
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tial equations and spectral methods. Chebyshev polyno-
mials have many properties, for example orthogonal, re-
cursive, simple real roots, complete in the space of polyno-
mials. For these reasons,many researchers have employed
these polynomials in their research [1, 2].

Using some transformations, the number of re-
searchers extended Chebyshev polynomials to semi-
infinite or infinite domains, for example by using x =
t−L
t+L , L > 0 the rational Chebyshev functions are introduced
[3, 4].

In the proposedwork, by transformation x = 1−2( tη )
α;

α, η > 0 on the Chebyshev polynomials of the first kind,
the generalized fractional order of the Chebyshev orthog-
onal functions (GFCF) in the interval [0, η] have been in-
troduced, that we can use them to solve differential equa-
tions.

1.2 Basic definitions

In this section, some basic definitions and theorems have
been expressed [5–7].
Definition 1. For any real function f (t), t > 0, if there exists
a real number p > μ, such that f (t) = tp f1(t), where f1(t) ∈
C(0,∞), is said to be in space Cμ, μ ∈ 
, and it is in the
space Cnμ if and only if f (n) ∈ Cμ , n ∈ N.
Definition 2. Suppose that f (t), g(t) ∈ C(0, η) and w(t) is
a positive weight function in (0, η), then we define

|| f (t) ||2w =
η∫

0

f 2(t) w(t) dt,

〈f (t), g(t)〉w =
η∫

0

f (t)g(t) w(t) dt.

Theorem 1. (Taylor’s formula) Suppose that f (k)(t) ∈
C(0, η) where k = 0, 1, ...,m and η > 0. Then we have

f (t) =
m−1∑
i=0

ti
i! f

(i)(0+) + tm
m! f

(m)(ξ ), (1)
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with 0 < ξ � t, ∀t ∈ [0, η]. And thus for M � |f (m)(ξ )|:

|f (t) −
m−1∑
i=0

ti
i! f

(i)(0+)| � M tm
m! . (2)

Proof. See Ref. [13].

We know that, the solution of some equations is gener-
ated by fractional powers or the structure of the solution
of some equations is not exactly known. For example, one
of the famous equations that its solution is generated by
fractional powers is Thomas-Fermi equation [14, 15]. Baker
[15] has proved that the solution of Thomas-Fermi equa-
tion is generated by the powers of t 12 . For these reasons, in
this paper, we decided to solve equations using the frac-
tional basis, namely the generalized fractional order of the
Chebyshev function (GFCF), in order to obtain acceptable
results.

The GFCFs are introduced as a new basis for Spectral
methods and this basis can be used to develop a frame-
work or theory in Spectral methods. In this research, the
fractional basis was used for solving nonlinear ordinary
differential equations and it provided insight into an im-
portant issue.

Recently, some researchers have introduced the frac-
tional basis of various basic functions and have used them
in their research, such as the fractional-order Euler func-
tions [4], the fractional-order Legendre functions [6, 8], the
fractional-order Bessel functions [9], the fractional-order
Jacobi functions [10, 11], and the fractional-order Bernoulli
functions [12].

The organization of the paper is expressed as follows:
In section 2, the GFCFs and their properties are obtained.
In section 3, the proposed method is applied for solving
some nonlinear boundary value problems in the semi-
infinite domain. Finally, a brief conclusion is given in the
last section.

2 Generalized Fractional order of
the Chebyshev Functions

In this section, first, the generalized fractional order of
the Chebyshev functions (GFCFs) of the first kind have
been defined and then some properties and convergence
of them for our method have been provided.

2.1 The GFCFs definition

The efficientmethods have beenused bymany researchers
to solve the differential equations (DE) is based on series
expansion of the form

∑n
i=0 ci t

i, such as Adomian’s de-
compositionmethod andHomotopy perturbationmethod.
But the exact solution of some DEs can not be estimated
by polynomials basis, for a simple example: the ODE of
4yy′′ = 3t, y(0) = y′(0) = 0, that the exact solution is
y(t) = t 32 , therefore we have decided to define a new basis
for Spectral methods to solve them as follows:

Φn(t) =
n∑
i=0

ci tiα

Now by transformation z = 1 − 2( tη )
α; α, η > 0 on

classical Chebyshev polynomials of the first kind, we is de-
fined the GFCFs in the interval [0, η], which is denoted by
ηFTαn (t) = Tn(1 − 2( tη )

α).
The ηFTαn (t) can be obtained using the recursive rela-

tion as follows:

ηFTα0(t) = 1 , ηFTα1(t) = 1 − 2( tη )
α ,

ηFTαn+1(t) = (2 − 4( tη )
α) ηFTαn (t) − ηFTαn−1(t),

n = 1, 2, · · · .,

The analytical form of ηFTαn (t) of degree nα is given by

ηFTαn (t) =
n∑
k=0

βn,k,η,α tαk , t ∈ [0, η], (3)

where

βn,k,η,α = (−1)k n2
2k(n + k − 1)!

(n − k)!(2k)!ηαk
and β0,k,η,α = 1.

Note that ηFTαn (0) = 1 and ηFTαn (η) = (−1)n.
The GFCFs are orthogonal with respect to the weight

function w(t) = t
α
2 −1√
ηα−tα in the interval (0, η):

η∫
0

ηFTαn (t) ηFTαm(t)w(t)dt =
π
2α cnδmn . (4)

where δmn is Kronecker delta, c0 = 2, and cn = 1 for n � 1.
The Eq. (4) is provable using the properties of orthogonal-
ity in the Chebyshev polynomials.

Figs. 1 show graphs of GFCFs for various values of n
and α and η = 5.

2.2 Approximation of functions

Any function y(t) ∈ C[0, η] can be expanded as the fol-
lows:

y(t) =
∞∑
n=0

an ηFTαn (t),
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(a) Graph of the GFCFs with α = 0.25 and various val-
ues of n

(b) Graph of the GFCFs with n = 5 and various values
of α

Fig. 1: Graphs of the GFCFs for various values of n and α.

where the coefficients an are obtained by inner product:

〈y(t), ηFTαn (t)〉w = 〈
∞∑
n=0

an ηFTαn (t), ηFTαn (t)〉w

and using the property of orthogonality in the GFCFs:

an =
2α
πcn

η∫
0

ηFTαn (t)y(t)w(t)dt, n = 0, 1, 2, · · · .

In practice,wehave to use firstm-termsGFCFs andapprox-
imate y(t):

y(t) ≈ ym(t) =
m−1∑
n=0

an ηFTαn (t) = ATΦ(t), (5)

where

A = [a0, a1, ..., am−1]T , (6)
Φ(t) = [ηFTα0(t), ηFTα1(t), ..., ηFTαm−1(t)]T . (7)

2.3 Convergence of the method

The following theorem shows that by increasing m, the
approximation solution fm(t) is convergent to f (t) expo-
nentially.

Theorem 2. Suppose that f (k)(t) ∈ C[0, η] for k =
0, 1, ...,m, and ηFαm is the subspace generated by
{ηFTα0(t),η FTα1(t), ...,η FTαm−1(t)}. If fm(t) = ATΦ(t) (in
Eq. (5)) is the best approximation to f (t) from ηFαm, then
the error bound is presented as follows

|| f (t) − fm(t) ||w≤
ηmM
m!

√√
πΓ( 2ma + 1

2 )
αΓ( 2ma + 1)

, (8)

where M ≥ |f (m)(t)|, t ∈ [0, η].

Proof. By theorem 1, y(t) =
∑m−1

i=0
ti
i! f

(i)(0+) and

|f (t) − y(t)| ≤ M tm
m! .

Since ATΦ(t) is the best approximation to f (t) from ηFαm,
and y(t) ∈ ηFαm, one has

|| f (t) − fm(t) ||2w ≤ || f (t) − y(t) ||2w

≤ M2

m!2

η∫
0

t
α
2 +2mα−1√
ηα − tα

dt

= M2

m!2
η2m

√
πΓ( 2ma + 1

2 )
αΓ( 2ma + 1)

.

Now, by taking the square roots, the theorem can be
proved. Eq. (8) shows that ifm → ∞ then || f (t)− fm(t) ||w→
0.

Theorem 3. The generalized fractional order of the Cheby-
shev function, ηFTαn (t), has precisely n real zeros on inter-
val (0, η) in the form

tk = η
(
1 − cos( (2k−1)π2n )

2

) 1
α

, k = 1, 2, ..., n.

Moreover, d
dt ηFT

α
n (t) has precisely n−1 real zeros on inter-

val (0, η) in the following points:

t′k = η
(
1 − cos( kπn )

2

) 1
α

, k = 1, 2, ..., n − 1.

Proof. The Chebyshev polynomial Tn(x) has n real zeros
[16]:

xk = cos( (2k − 1)π2n ), k = 1, 2, ..., n.

Therefore Tn(x) can be written as

Tn(x) = (x − x1)(x − x2)...(x − xn).
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Using transformation x = 1 − 2( tη )
α yields to

ηFTαn (t) =
((

1 − 2
(
t
η

)α)
− x1

)((
1 − 2( tη )

α
)
− x2

)
. . .
((

1 − 2
(
t
η

)α)
− xn

)
,

so, the real zeros of ηFTαn (t) are tk = η( 1−xk2 ) 1α .
Also, we know that, the real zeros of d

dt Tn(t) occurs in the
following points:

x′k = cos( kπn ), k = 1, 2, ..., n − 1

Same as in the previous, the absolute extremes of ηFTαn (t)
are t′k = η( 1−x

′
k

2 ) 1α .

3 Examples

Many problems arising in fluid dynamics, quantum me-
chanics, astrophysics, and other fields are defined on in-
finite or semi-infinite domains. There are different ap-
proaches for solving this type of equation, such as numer-
ical, analytical, and semi-analytical methods. In this sec-
tion, we attempt to introduce a numerical method, based
on the generalized fractional order of the Chebyshev or-
thogonal functions for solving this type of equations.

3.1 The unsteady isothermal flow of a gas

One of the important nonlinear ordinary differential equa-
tions that occurs on semi-infinite domain is the unsteady
gas equation:

d2y
dt2 + 2t√

1 − βy(t)
dy
dt = 0, t ∈ [0,∞), (9)

where 0 � β � 1 is a real constant and the boundary con-
ditions are:

y(0) = 1, lim
t→∞

y(t) = 0. (10)

A substantial amount of numerical and analytical
work has been invested so far in this model [17]. The main
reason of this interest is that the approximation can be
used for many engineering purposes. As stated before, the
problem of Eq. (9) was handled by Kidder [17] where a
perturbation technique is carried out to include terms of
the second order. Wazwaz [18] has solved this equation
nonlinearly by modifying the decomposition method and
Pade approximation. Parand et al. [19, 20], and Taghavi

et al. [21] have also applied the rational Jacobi functions,
Bessel function collocation method, and modified gen-
eralized Laguerre polynomials for solving this equation.
Rezaei et al. [22] have applied two numerical methods
based on Sinc and rational Legendre functions to solve
gas flow through a micro-nano-porous media. Rad et al.
[23] have solved this equation by two numerical and ana-
lytical solutions based on Homotopy analysis method and
Hermite functions collocation method. Recently, Parand
et al. [19] have used the combination of the quasilin-
earization method and the rational Jacobi function collo-
cation method, and have obtained an accurate solution
to the equation, the value of initial slope is calculated as
−1.1917906497194217341228284 for β = 0.50.

Now,we solve this equation by usingGFCF collocation
method.

For satisfying the boundary conditions, we satisfy the
Eq. (10) as follows:

ŷm(t) =
λ

t2 + λ + t e−2t ym(t), (11)

where λ is an arbitrary real constant and ym(t) is defined
in Eq. (5). So, ŷm(0) = 1 and ŷm(t) = 0 when t tends to ∞,
and the boundary conditions (10) are satisfied for all λ > 0,
and is defined in the semi-infinite domain.

To apply the collocation method, we construct the
residual function by substituting ŷm(t) in Eq. (11) for y(t)
in the unsteady gas equation (9):

Res(t) = d2
dt2 ŷm(t) +

2t√
1 − βŷm(t)

d
dt ŷm(t). (12)

The equations for obtaining the coefficient {ai}m−1i=0
arise from equalizing Res(t) to zero on m collocation
points:

Res(ti) = 0, i = 0, 1, ...,m − 1.

In this study, the roots of the GFCFs in the interval [0, η]
(Theorem 3) are used as collocation points. By solving
the obtained set of equations, we have the approximating
function ŷm(t).

Table 1 shows the value of y′(0) by the present method
and comparison it with the values of Bessel function col-
location (BFC) [20], Shootingmethod [24], and RBF [24] for
β = 0.25, 0.50, 0.75 with m = 35 and α = 0.50.

Table 2 shows the obtained values of y′(0) and ||
Res ||2w by the present method for various values of m,
β = 0.50, and α = 0.50.

Table 3 shows the values of y(t) for various values
of t by the present method and comparison it with the
values of perturbation (PB) [17], Bessel function colloca-
tion (BFC) [20], modified generalized Laguerre (MGL) [21],
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Table 1: Comparison of the obtained values of y′(0) for β = 0.25, 0.50, 0.75 by the present method, Shooting method[24], BFC [20], and
RBF [24], with m = 35 and α = 0.50

β λ Present BFC RBF Shooting Abs. Err.

0.25 0.1754 −1.156572055 −1.156275 −1.156557 −1.156572 5.514e−8
0.50 0.1755 −1.191790893 −1.191718 −1.191498 −1.191791 5.078e−7
0.75 0.0167 −1.239760055 −1.239760 −1.239671 −1.239760 5.565e−8

Runge-Kutta method (RK) [24], RBF [24], and finite differ-
ence (FD) [25], with m = 35 and α = 0.50.

Figure 2 shows the graphs of y(t) and y′(t) from the so-
lution of unsteady gas equation for β = 0.25, 0.50, and
0.75 with m = 35, α = 0.5 and η = 10.

Figure 3 shows the graphs of residual errors of Eq. (12)
and the logarithm of coefficients |ai| for β = 0.50, 0.75,
with m = 35 and α = 0.50, to show the convergence of the
method.

Table 2: Obtained values of y′(0) by the present method for various
values of m, β = 0.50, and α = 0.50

m λ y′(0) || Res ||2w
15 0.3005 -1.191794097 2.2591e-02
25 0.1788 -1.191773155 9.2586e-05
35 0.1755 -1.191790893 1.0379e-05

3.2 The third grade fluid in a porous half
space

The boundary value problem modelling the steady state
flow of a third grade fluid in a porous half space on the
semi-infinite domain is as follows:

d2y
dt2

(
1 + b1(

dy
dt )

2
)
− b1b2

3 y
(
dy
dt

)2
− b2y = 0, (13)

t ∈ [0,∞),

where b1 and b2 are real constants and the boundary con-
ditions for this equation:

y(0) = 1, lim
t→∞

y(t) = 0. (14)

Some researchers approximate the third grade fluid
equations in a porous half space; for example, Ahmad
[26] by applying the Homotopy analysis method, Kazem
et al. [27] by applying the radial basis functions colloca-
tion method, Parand and Hajizadeh [28] by applying the
modified rational Christov functions collocation method,
Baharifard et al. [29] by applying the rational and expo-
nential Legendre Tau method.

(a) Graphs of y(t)

(b) Graphs of y′(t)

Fig. 2: Obtained graphs of unsteady gas equation for β =
0.25, 0.50, 0.75

For satisfying the boundary conditions, we satisfy the
Eq. (14) as follows:

ŷm(t) =
λ

t2 + λ + t e−2t ym(t), (15)

where λ is an arbitrary real constant and ym(t) is defined
in Eq. (5). So, ŷm(0) = 1, and ŷm(t) = 0 when t tends to ∞,
and the boundary conditions (14) are satisfied for all λ > 0,
and is defined in the semi-infinite domain. We construct
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Table 3: Obtained values of y(t) for β = 0.5, α = 0.5, m = 35, and λ = 0.1755, comparison between the present method, BFC [20], RBF
[24], FD [25], PB [17], RK [24], and MGL [21]

t Present BFC [20] RBF [24] FD [25] PB [17] RK [24] MGL [21]

0.1 0.881364979 0.88137178 0.88139802 0.88136465 0.88165882 0.88136461 0.90931873
0.2 0.765828998 0.76582874 0.76588029 0.76582882 0.76630767 0.76582874 0.81748763
0.3 0.656000141 0.65602143 0.65606928 0.65600069 0.65653799 0.65600058 0.71522344
0.4 0.553897686 0.55392593 0.55399431 0.55389894 0.55440240 0.55389881 0.60982075
0.5 0.460943164 0.46097551 0.46107202 0.46094276 0.46136502 0.46094260 0.51632348
0.6 0.377981056 0.37801957 0.37814380 0.37798158 0.37831093 0.37798140 0.41932385
0.7 0.305350982 0.30539503 0.30554174 0.30535232 0.30559765 0.30535212 0.40982377
0.8 0.242953430 0.24313254 0.24316554 0.24295437 0.24313254 0.24295416 0.31999068
0.9 0.190333678 0.19038471 0.19056419 0.19033421 0.19046236 0.19033399 0.20820285
1.0 0.146772618 0.14682691 0.14702048 0.14677328 0.15876898 0.14677305 0.21991074

(a) Graphs of residual errors

(b) Graphs of log(|ai|)

Fig. 3: Graphs of residual errors and log(|ai|) for β = 0.50(Blue) and
β = 0.75(Red)

the residual function as follows:

Res(t) = d2 ŷm
dt2

(
1 + b1(

dŷm
dt )2

)
−b1b23 ŷm

(
dŷm
dt

)2
−b2 ŷm .

(16)

As before, by solving the obtained set of equations, we
have the approximating function ŷm(t).

Table 4 shows the obtained values of y′(0) by the
presentmethod and comparison itwith the values of Gaus-
sian RBF (G-RBF) [27], rational Christov functions (RCF)
[28], Shooting method [29], rational Legendre Tau method
(RLT) [29], and exponential Legendre Tau method (ELT)
[29] for various values of b1 and b2, with m = 20 and
α = 0.50.

Table 5 shows the obtained values of y′(0) and ||
Res ||2w by the present method for various values of m,
b1 = 0.60, b2 = 0.50, and α = 0.50.

Table 6 shows the obtained values of y′(0) and ||
Res ||2w by the present method for various values of α,
b1 = 0.60, b2 = 0.50, and m = 20.

Table 7 shows the obtained values of y(t) for various
values of t by the present method and comparison it with
the values ofHomotopyanalysismethod (HAM) [26], Gaus-
sian RBF (G-RBF) [27], rational Christov functions (RCF)
[28], rational Legendre Tau method (RLT) [29], and expo-
nential Legendre Tau method (ELT) [29], with m = 20 and
α = 0.50.

Figure 4 shows the graphs of residual error of Eq. (16)
and the logarithm of coefficients |ai| for b1 = 0.60, b2 =
0.50, with m = 20 and α = 0.50, to show the convergence
of the method.

3.3 The Blasius equation

Another of important third-order nonlinear ordinary dif-
ferential equations that occurs in the semi-infinite domain
is the Blasius equation:

2d
3y
dt3 + y d

2y
dt2 = 0, t ∈ [0,∞), (17)
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Table 4: Comparison of the obtained values of y′(0) for various values of b1 and b2 by the present method, shooting method, RLT, ELT, RCF,
and G-RBF

b1 b2 λ Present Shooting RLT [29] ELT [29] RCF [28] G-RBF[27]

0.3 0.5 0.80 −0.69128036 −0.691280 −0.691493 −0.691279
0.6 0.80 −0.67830298 −0.678301 −0.678511 −0.678302 −0.6783017 −0.6783013
0.9 0.80 −0.66732796 −0.667327 −0.667528 −0.667327
1.2 0.80 −0.65783825 −0.657838 −0.658029 −0.657837
0.6 0.3 0.81 −0.53331017 −0.533303 −0.533545 −0.533302

0.6 0.81 −0.73800824 −0.738008 −0.738116 −0.738007
0.9 0.81 −0.88746913 −0.887467 −0.887350 −0.887467
1.2 0.81 −1.00865474 −1.008653 −1.008516 −1.008653

Table 5: Obtained values of y′(0) by the present method for various
values of m and α = 0.50

m λ y′(0) || Res ||2w
10 0.4 −0.6757266461 6.098e-03
15 0.7 −0.6782935857 5.147e-05
20 0.8 −0.6783029829 1.198e-05

Table 6: Obtained values of y′(0) by the present method for various
values of α and m = 20

α λ y′(0) || Res ||2w
0.25 0.4 −0.67827627 9.6011e-04
0.50 0.8 −0.67830298 1.1986e-05
0.75 1.0 −0.67844196 1.1074e-06
1.00 1.8 −0.67830171 2.7556e-08

where the boundary conditions for this equation are as fol-
lows:

y(0) = 0, y′(0) = 0, lim
t→∞

y′(t) = 1. (18)

In recent years, different methods have been used
to solve the Blasius equation. For example, Liao [30]
by applying the Homotopy analysis method (HAM), Yu
and Chen [31] by applying the differential transformation
method, Wang [32] by applying the Adomian decompo-
sition method (ADM), Hashim [33] by applying the ADM
Pade approach, Cortell [34] by applying the Runge-Kutta
algorithm,Wazwaz [35] by applying themodifiedAdomian
decomposition method, Parand et al. [36, 37] by applying
Bessel functions of the first kind and the rational Cheby-
shev functions. In 2008, Boyd [38] has solved the Bla-
sius equation and has reported the accurate solution of
0.33205733621519630 for f ′′(0).

For satisfying the boundary conditions, we satisfy the
Eq. (18) as follows:

ŷm(t) =
t3

(t + λ)2 + t2 e−2t−2 ym(t), (19)

(a) Graph of residual error

(b) Graph of log(|ai|)

Fig. 4: Obtained graphs of residual error and the logarithm of coeffi-
cients |ai| for b1 = 0.60 and b2 = 0.50, to show the convergence of
the method.

where λ is an arbitrary real constant and ym(t) is defined
in Eq. (5). So, ŷm(0) = 0, ŷm ′(0) = 0, and ŷm ′(t) = 1 when t
tends to ∞, and the boundary conditions (18) are satisfied
for all λ > 0, and is defined in the semi-infinite domain.We
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Table 7: Comparison of the obtained values of y(t) for various values of t by the present method, RLT, ELT, RCF, G-RBF, and HAM

t Present RLT [29] ELT [29] RCF [28] G-RBF[27] HAM [26]

0.2 0.87261020 0.87261 0.87261 0.872608596 0.87265264 0.87220
0.4 0.76062562 0.76063 0.76063 0.760626805 0.76074843 0.76010
0.6 0.66243220 0.66243 0.66243 0.662431176 0.66261488 0.66190
0.8 0.57650340 0.57650 0.57650 0.576502298 0.57671495 0.57600
1.0 0.50143723 0.50143 0.50144 0.501436165 0.50164542 0.50100
1.2 0.43595139 0.43595 0.43595 0.435950397 0.43613322 0.43560
1.6 0.32920399 0.32920 0.32920 0.329202052 0.32930679 0.32890
2.0 0.24838691 0.24837 0.24838 0.248384348 0.24842702 0.24820
2.5 0.17455143 0.17455 0.17455 0.174547634 0.17456033 0.17440
3.0 0.12261790 0.12264 0.12261 0.122612386 0.12262652 0.12250
3.5 0.08612124 0.08617 0.08611 — — —
4.0 0.06048471 0.06054 0.06047 0.060473418 0.06049038 0.06042
4.5 0.04248174 0.04252 0.04247 — — —
5.0 0.02984241 0.02984 0.02982 0.029819128 0.02982446 0.02979

Table 8: Comparison of the obtained values of y′′(0) between the present method, Boyd [38], Parand et al. [3, 36], and Liao [30]

Present Boyd [38] Parand [36] Parand [3] Liao [30]

0.3320573049 0.33205733621519630 0.33205733621519542 0.33205733 0.33206

construct the residual function as follows:

Res(t) = 2d
3 ŷm
dt3 + ŷm

d2 ŷm
dt2 . (20)

Table 8 shows the value of y′′(0) by the presentmethod
with m = 20, α = 0.50 and λ = 0.9859 and comparison it
with the values of Liao [30], Parand et al. [3, 36], and Boyd
[38].

Table 9 shows the obtained values of y′′(0) and ||
Res ||2w by the present method for various values of m and
α = 0.50.

Table 10 shows the obtained values of y′′(0) and ||
Res ||2w by the present method for various values of α and
m = 20.

Tables 11 - 13 show the values of y(t), y′(t) and y′′(t) for
various values of t by the present method and comparison
it with the values of Parand et al. [3, 36], Cortell [34], and
Howarth [39], with m = 20, α = 0.50 and λ = 0.9859.

Figure 5 shows the graph of residual error of Eq. (20)
and thegraphof obtained solution for theBlasius equation
by the present method with m = 20 and α = 0.50.

3.4 The field equation determining the
vortex profile

Finally, we consider the field equation determining the
vortex profile:

d2y
dt2 +

1
t
dy
dt +

(
1 − n2

t2

)
y(t)−y3(t) = 0, t ∈ [0,∞), (21)

Table 9: Obtained values of y′′(0) by the present method for various
values of m and α = 0.50

m λ y′(0) || Res ||2w
10 0.77 0.33238931 2.0196e-01
15 1.09 0.33213594 1.0365e-03
20 0.98 0.33205367 2.8918e-08

Table 10: Obtained values of y′′(0) by the present method for vari-
ous values of α and m = 20

α λ y′′(0) || Res ||2w
0.25 1.0164 0.3320600170 1.1698e-02
0.50 0.9859 0.3320573049 2.8930e-08
0.75 1.7191 0.3320718355 3.4739e-08
1.00 0.9168 0.3320573541 1.5661e-06

where the boundary conditions for this equation are as fol-
lows:

lim
t→0

y(t) = kntn + O(tn+2), lim
t→∞

y(t) = 1. (22)

where y(t) is a real function and n ∈ Z.
A major problem of the this boundary conditions

amounts to find the value(s) of the free parameter, kn, to
ensure the boundary conditions (22) of y(t) at t = ∞.

This equation is examined in the static, rotationally
symmetric global vortex in a Ginzburg-Landau effective
theory [40], which has numerous applications ranging
from condensed matter to cosmic strings [41]. Some re-
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Table 11: Comparison of the obtained values of y(t) for various values of t by the present method, Parand et al. [3, 36], Howarth [39], and
Cortell [34]

t Present Parand [36] Howarth [39] Cortell [34] Parand [3]

1.0 0.1655717346 0.1655717 0.16557 0.16557 0.1655724
2.0 0.6500244189 0.6500243 0.65003 0:65003 0.6500351
3.0 1.3968083309 1.3968082 1.39682 1.39682 1.3968223
4.0 2.3057465742 2.3057464 2.30576 2.30576 2.3057618
5.0 3.2832738023 3.2832736 3.28329 3.28330 3.2832910

Table 12: Comparison of the obtained values of y′(t) for various values of t by the present method, Parand et al. [3, 36], Howarth [39], and
Cortell [34]

t Present Parand [36] Howarth [39] Cortell [34] Parand [3]

1.0 0.3297800807 0.32978003 0.32979 0.32978 0.3297963
2.0 0.6297657868 0.62976573 0.62977 0.62977 0.6297763
3.0 0.8460444987 0.84604444 0.84605 0.84605 0.8460595
4.0 0.9555182849 0.95551823 0.95552 0.95552 0.9555236
5.0 0.9915413606 0.99154190 0.99155 0.99155 0.9915546

Table 13: Comparison of the obtained values of y′′(t) for various values of t by the present method, Parand et al. [3, 36], Howarth [39], and
Cortell [34]

t Present Parand [36] Howarth [39] Cortell [34] Parand [3]

0.0 0.3320573049 0.3320573362 0.33206 0.33206 0.3320571
1.0 0.3230074062 0.3230071168 0.32301 0.32301 0.3230136
2.0 0.2667515144 0.2667515456 0.26675 0.26675 0.2667557
3.0 0.1613603185 0.1613603194 0.16136 0.16136 0.1613637
4.0 0.0642341187 0.0642341209 0.06424 0.06423 0.0642411
5.0 0.0159026175 0.0159067985 0.01591 0.01591 0.0159134

searchers approximate the field equation determining the
vortex profile; for example, Boisseau et al. [42] by apply-
ing the analytical method based on replacing the origi-
nal ODEs by a sequence of auxiliary first-order polynomial
ODEs with constant coefficients, and Amore & Fernandez
[43] by applying the Pade-Hankel method.

For satisfying the boundary conditions, we satisfy the
Eq. (22) as follows:

ŷm(t) =
tn

tn + λ + tn e−2t−2 ym(t), (23)

where λ is an arbitrary real constant and ym(t) is defined
in Eq. (5). So the boundary conditions (22) are satisfied for
all λ > 0, and is defined in the semi-infinite domain. We
construct the residual function as follows:

Res(t) = d2 ŷm
dt2 + 1

t
dŷm
dt +

(
1 − n2

t2

)
ŷm(t) − ŷm3(t). (24)

Table 14 shows the values of kn by the present method
with m = 40 and α = 0.50, and comparison it with the
values of Shooting method [42], Boisseau et al. [42], and
Amore & Fernandez [43].

Table 15 shows the obtained values of k2 and || Res ||2w
by the present method for various values of m and α =
0.50.

Table 16 shows the obtained values of k2 and || Res ||2w
by the present method for various values of α andm = 40.
As can be seen, the results for α = 0.50 and α = 1.00 are
almost identical.

Table 17 shows the obtained values of y(t) by the
present method for various values of n and t with m = 40
and α = 0.50.

Figure 6 shows the graphs of residual errors of Eq. (24)
and the graphs of the obtained solutions for the field equa-
tion by the present method with m = 40 and α = 0.50.

Figure 7 shows the graphs of 1
n! y

(n)(t) for n = 1, 2, 3,
and 4, and the graphs of log(|ai|) for n = 2, 3, and 4 to
show the convergence of the method.
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Table 14: Comparison of the obtained values of kn between the present method, Shooting method [42], Boisseau et al. [42], and Amore &
Fernandez [43].

kn λ Present Shooting [42] Boisseau [42] Amore [43]

k1 0.1 0.583189717489 0.5831894959 0.5831894936 0.5831894958601
k2 2 0.153099102829 0.1530991029 0.15309 0.15309910286
k3 23 0.026183420209 0.02618342072 0.026185 0.0261834207
k4 45 0.003327173339 0.00332717340 0.0033 0.0033271734

(a) Graph of residual error

(b) Graphs of solution

Fig. 5: Obtained graphs of residual error and the Blasius solution.

Table 15: Obtained values of k2 by the present method for various
values of m and α = 0.50

m λ k2 || Res ||2w
10 2 0.1529258473004.3939e-05
20 2 0.1530990508703.5332e-10
30 2 0.1530991055357.3141e-13
40 2 0.1530991028291.5483e-16

4 Conclusion

The main goal of this paper is introducing a new orthog-
onal fractional basis, namely the generalized fractional

Table 16: Obtained values of k2 by the present method for various
values of α and m = 40

α λ k2 || Res ||2w
0.25 2 0.153092105254 2.7708e-04
0.50 2 0.153099102829 1.5483e-16
0.75 2 0.153068774773 6.7629e-08
1.00 2 0.153099103672 8.0842e-16
1.25 1 0.151696304817 8.8242e-05
1.50 1 0.137087413881 7.2232e-04

Table 17: Obtained values of y(t) by the present method for various
values of n and t.

t n = 1 n = 2 n = 3 n = 4

0.5 0.28282173 0.03748381 0.00322210 0.00020535
1.0 0.52005163 0.14078358 0.02458744 0.00316426
1.5 0.69208735 0.28531419 0.07662991 0.01503527
2.0 0.80495682 0.44008751 0.16224506 0.04343598
2.5 0.87497019 0.57972330 0.27383162 0.09430307
3.0 0.91748107 0.69154754 0.39661914 0.16902827
3.5 0.94337703 0.77435581 0.51495766 0.26313174
4.0 0.95946829 0.83300459 0.61788070 0.36737260
6.0 0.98473111 0.93670460 0.84845320 0.71026581
8.0 0.99184533 0.96681821 0.92294713 0.85614939
10. 0.99487378 0.97930359 0.95265849 0.91367234

order of the Chebyshev orthogonal functions (GFCF), for
solving nonlinear boundary value problems in the semi-
infinite domain. Solving these problems is difficult be-
cause they have a boundary condition in the infinite. But
we used these new basis to solve them and obtained the
good results. The present results show that new basis for
the collocationSpectralmethod is efficient andapplicable.
A comparisonwasmade of the numerical solution of other
researchers and the present method. It has been shown
that the present method has provided an acceptable ap-
proach for solving these types of equations.

Acknowledgement: The authors are very grateful to re-
viewers and editor for carefully reading the paper and for
their comments and suggestions which have improved the
paper.
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(a) Graph of residual errors

(b) Graph of solutions

Fig. 6: Obtained graphs of the residual errors and the obtained
solutions for various values of n.
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