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Abstract: In this paper, we consider a Roseland approx-
imation to radiate heat transfer, Darcy’s model to simu-
late the flow in porous media and finite-length fin with
insulated tip to study the thermal performance and to
predict the temperature distribution in a vertical isother-
mal surface. The energy balance equations of the porous
fin with several temperature dependent properties are
solved using the Adomian Decomposition Sumudu Trans-
formMethod (ADSTM). The effects of various thermophys-
ical parameters, such as the convection-conduction pa-
rameter, Surface-ambient radiation parameter, Rayleigh
numbers and Hartman number are determined. The re-
sults obtained from the ADSTM are further compared with
the fourth–fifth order Runge–Kutta–Fehlbergmethod and
Least Square Method(LSM) (Hoshyar et al. 2016 [1])) to de-
termine the accuracy of the solution.

Keywords: Adomian Decomposition Sumudu Transform
Method, Porous fin, Magneto hydrodynamic, Fractional
Differential Equation

1 Introduction

The rate of heat transfer is mostly depends upon the
temperature variation involving the surface and the sur-
rounding fluids, an existing surface area and heat trans-
fer coefficient. However, this necessity is frequently jus-
tified through the high cost of the high thermal conduc-
tivity metals. Magnetohydrodynamics (MHD) is the study
of the magnetic properties of electrically conducting flu-
ids in different porous geometries that is of considerable
attention due to its frequent occurrence in geothermal,
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industrial and technological applications. The theoretical
MHD’s study has been a subject of large interest owing to
its widespread applications, such as petroleum industries,
plasma studies, the boundary layer control in aerodynam-
ics, MHD power generators, crystal growth, and cooling of
nuclear reactors.

Numerous studies concerned with the problem of
MHD free convection flow in nonporous and porousmedia
have been published by several authors. Takhar et al. [2]
discussed the various effects of suction, buoyancy forces,
magnetic field, and localized heating for the mixed con-
vection flow on a heated plate in vertical direction. Abbas
and Hayat [3] studied the radiation effects on MHD flow in
a pore space and viscous fluid with heat transfer. Taklifi et
al. [4] studied the effect of MHD on the entire heat transfer
from a porous fin connected to a vertical isothermal sur-
face. Kundu and Bhanja [5] considered different models of
predictions for determination of the performance and op-
timum dimensions of porous fins and developed an ana-
lytical model. Das and Ooi [6] studied unknown and pos-
sible combination of parameters in a naturally convective
porous fin subjected to a given temperature requirement.
They have estimated different parameters of fin for solv-
ing an inverse problem involving the simulated anneal-
ing. Bhanja et al. [7] studied the temperature distribution,
performance parameters and heat transfer rate through a
porous pin fin in natural convection condition by using
Adomian decomposition method (ADM). Kundu and Lee
[8] developed an analysis for ASFs that considered radia-
tive heat transfer and heat generated by a nuclear reactor
through linearization of the radiation terms and solved by
exact and approximate analytical methods. Das [9] stud-
ied forward and inverse solutions of a conductive, con-
vective and radiative cylindrical porous fin. Ravikumar et
al. [10] investigated the heat and mass transfer effects on
MHD flow of viscous incompressible and electrically con-
ducting fluid through a nonhomogeneous porousmedium
in the presence of oscillatory suction velocity and heat
source. Das and Prasad [11] studied simultaneous inverse
predictionof twoparameters suchas theporosity and ther-
mal diffusivity of the fluid in a porous fin and used the
differential evolution (DE)-based optimization technique
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for prediction of the parameters. Singh et al. [12] stud-
ied thermal investigation of a porous stepped fin which
made from different ceramic porous materials (Al and SiC)
having temperature-dependent internal heat generation.
Hatami et al. [13] studied response surface methodology
(RSM) based on central composite design (CCD) and ap-
plied to find an optimization design of finned type heat
exchangers (HEX) to recover waste heat from the exhaust
of a diesel engine. Hatami et al. [14] studied two cases of
heat exchangers (HEXs) to recover the exhaust waste heat.
Rahimi-Gorji et al. used [15] the porous media approach
and the Galerkin method to investigate the heat transfer
for the microchannel heat sink (MCHS) cooled by different
nanofluids. Ghasemi at al. [16] used Collocation Method
(CM) and Optimal Homotopy Asymptotic Method (OHAM)
to simulate flow analysis for a third grade non-Newtonian
blood in porous arteries in presence of magnetic field. Pa-
tel and Meher [17–19] discussed the heat transfer, temper-
ature distribution and efficiency of different types of fins
with or without internal heat generation.

Now a days nonlinear fractional order types of prob-
lems and phenomenon plays an essential role in engi-
neering, physics, appliedmathematics, and new branches
of science specially heat transfer problems. Several ap-
proximate analytical techniques such as Variational iter-
ation method [20], Homotopy perturbation method [20,
21], Least Square Method [1, 22–24], Differential Trans-
form Method [25–27], Adomian decomposition method
[28], have been used to solve such type of problems.

In this paper, the energy balance equation is modeled
through a nonlinear fractional order differential equation
and ADSTM is applied to find the series solution for tem-
perature field of a rectangular porous fin with multiple
nonlinearities.

2 Mathematical Formulation

Here, a rectangular porous fin is considered (Fig. 1) hav-
ing constant cross sectional area, width W, length L and
thickness t with the following assumptions

– The fin is made of porous material that allows the
flow of infiltrate through it.

– The porous medium is isotropic, homogeneous and
saturated with a single-phase fluid.

– A uniform magnetic field is applied in the direction
of y− axis having the temperature inside the fin is a
function of x only.

– The Darcy’s model is used to study the flow velocity
in a porous medium with negligible effect of the im-

Fig. 1: The geometry of a rectangular fin profile.

posed and inducedmagnetic field, and induced elec-
trical field due to polarization effect.

The one-dimensional energy balance equation at
steady state condition to the slice segment of the fin thick-
ness ΔX is given by [1],

q(x) − q(x + Δx) =m̄cp
(
T(x) − T(∞)

)
+ hPΔx(1 − ε)

(
T(x) − T(∞)

)
+ (Jc × Jc)

σ
+ PΔxσst ε̄

(
T(x)4 − γ

ε̄ T(∞)4
)

(1)

where Jc is conduction current intensity, and it is defined
by

Jc = σ (V × B + E) (2)

and, J is total current intensity defined by

J = Jc + ρε̄V

The mass flow rate of the fluid m̄ passing through the
porous material which is stated as

m̄ = ρwv̄wΔx (3)

The passage velocity v̄w be supposed to estimated from the
consideration of the flow in porous medium, then Darcy’s
model yields,

v̄w = kβg(T(x) − T∞)
v (4)

The relation between conduction and radiation at the base
of fin can be defined as

qfin base = qradiation + qConduction (5)
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using Fourier’s law of conduction and the radiation heat
flux term, the Rosseland diffusion approximation can be
defined as

qConduction = −keff Ab
dT
dx , qradiation = −4σst3βr

dT4
dx (6)

Substituting Eq. (2)–(6) in Eq. (1), it gives

d
dx

[
dT
dx + 4σ

3βrkeff
dT4
dx

]
=ρcpgkβbvkeff

(
T(x) − T(∞)

)2
+ hP(1 − ε)

keff
(
T(x) − T(∞)

)
+ (Jc × Jc)
σkeff Ab

+ Pσst ε̄
keff Ab

(
T(x)4 − T(∞)4

)
(7)

With theneglect ofmagnetic field and the induced current,
the electromagnetic force in Eq. (1) takes the form (Jc×Jc)

σ =
σB20u2.
Using the dimensionless parameters

θ = (T(x) − T∞)
(Tb − T∞)

, ζ = x
L , θb =

Tb
T∞

, Ra =
gkβb(Tb − T∞)

γvkr
,

Nc =
Pbh
keff A

, Nr =
4σstLT3∞

keff
H = σB20u2

k0A
, Rd =

4σstT3∞
3βrkeff

(8)

Eq. (7) gives

d2θ
dζ 2 − Ra

(1 + 4Rd)
θ2 − (Nc(1 − ε) + Nr + H)

(1 + 4Rd)
θ = 0 (9)

with the boundary conditions

dθ
dζ

∣∣∣∣
ζ=1

= 0 and θ|ζ=0 = 1. (10)

where Ra, is a modified Rayleigh number, Nc, is a
convection–conduction parameter, Nr, is a Surface-
ambient radiation parameter, H, is Hartman parame-
ters, Rd, is Radiation–conduction parameter and and ε, is
porosity.

In this paper, we considered and studied finite-length
finwith insulated tip, so that therewon’t be any heat trans-
fer at the insulated tip.

3 Mathematical Formulation of
ADSTM

Consider a fractional order nonlinear nonhomogeneous
differential equation as

Dα
ζ θ(ζ ) + Rθ(ζ ) + Nθ(ζ ) = g(ζ ), with n − 1 < α ≤ n (11)

with initial condition

θ(0) = K (12)

whereDα
ζ is the Caputo fractional derivative of the function

θ(ζ ), R is reminder term or linear differential operator, N
represents the general nonlinear differential operator, and
g(ζ ) is the source term.
Taking Sumudu Transform (denoted by S) on both sides of
Eq. (11), it obtain

S[Dα
ζ θ(ζ )] + S[Rθ(ζ )] + S[Nθ(ζ )] = S[g(ζ )] (13)

By using Sumudu transform of Caputo fractional deriva-
tive [33, 34], Eq. (11) can be written as

S[θ(ζ )] = θ(0) + uαS[g(ζ )] − uαS[Rθ(ζ ) + Nθ(ζ )] (14)

By taking inverse Sumudu Transform on both sides of Eq.
(14), it gives

θ(ζ ) = G(ζ ) − S−1
[
uαS[Rθ(ζ ) + Nθ(ζ )]

]
(15)

where G(ζ ) = S−1
[
θ(0) + uαS

[
g(ζ )
]]

represents the term
arising from the source termand the prescribed initial con-
ditions.
Now by applying the ADM [28], the approximate series so-
lution of Eq. (15) can be written as

θ(ζ ) =
∞∑
n=0

λnθn(ζ ), (16)

and the nonlinear term in Eq. (15) can be written as the
summation of Adomian polynomials as

Nθ(ζ ) =
∞∑
n=0

λnAn(θ), (17)

where the Adomian polynomials An(θ) arising in differen-
tial equation can be defined as

An(θ0, θ1, θ2, ..., θn) =
1
n!

∂n
∂λn

[
N
( ∞∑

i=0
λiθi

)]
λ=0

, (18)

for n = 0, 1, 2, ...

Substituting Eqs. (16) and (17) in Eq. (15) and applying the
inverse Sumudu Transform, we find

∞∑
n=0

λnθn(ζ ) =

G(ζ ) − λ
[
S−1
[
uαS

[
R

∞∑
n=0

λnθn(ζ ) +
∞∑
n=0

λnAn(θ)
]]]

(19)
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The resulting Eq. (19) is the coupling of the Sumudu Trans-
form and the Adomian Decomposition Method.
Now by equating the coefficients of like powers of λ, in
Eq. (19), the following iterated terms can be obtained as

λ0 : θ0(ζ ) = G(ζ )
λ1 : θ1(ζ ) = −S−1

[
uαS

[
Rθ0(ζ ) + A0(θ)

]]
λ2 : θ2(ζ ) = −S−1

[
uαS

[
Rθ1(ζ ) + A1(θ)

]]
(20)

λ3 : θ3(ζ ) = −S−1
[
uαS

[
Rθ2(ζ ) + A2(θ)

]]
...

By considering this above procedure, θn(ζ ) can be com-
pletely obtained implies the series solution can be deter-
mined subsequently and hence the resulted approximate
analytical solution

∑M
n=0 θn(ζ ) converges to the exact solu-

tion θ(ζ ) as M → ∞.

4 Application of ADSTM for finding
solution for porous fin having
uniform magnetic field

In the last two decades, fractional calculus starts to inter-
vene significantly in engineering, physics, economics, etc
[29]. It is due to newpossibilities inwhich fractional calcu-
lus brings into the modelling of various problems [30, 31].
Therefore, In this work, to understand the anomalous be-
havior of this system, the energy balance Eq. (9) fraction-
alize into fractional order (α > 0), and applied Adomian
decomposition Sumudu transformmethod in order to find
the fin temperature distribution in a rectangular porous fin
as,

dαθ
dζ α − Ra

(1 + 4Rd)
θ2 − (Nc(1 − ε) + Nr + H)

(1 + 4Rd)
θ = 0 (21)

1 < α ≤ 2 and 0 ≤ ζ ≤ 1

and the boundary conditions given in Eq. (10).
Now, by applying Sumudu transform (denoted by S)[32] on
both sides of Eq. (21), it obtains

S
[
dαθ
dζ α

]
= S
[

Ra
(1 + 4Rd)

θ2
]
+ S
[
(Nc(1 − ε) + Nr + H)

(1 + 4Rd)
θ
]

(22)
By using Sumudu transform of Caputo fractional deriva-
tive [33, 34], we can write

S
[
θ(ζ )
]

uα − θ(0)
uα − θ

′
(0)

uα−1 =S
[

Ra
(1 + 4Rd)

θ2
]

+ S
[
(Nc(1 − ε) + Nr + H)

(1 + 4Rd)
θ
]
(23)

Using initial and boundary conditions, and Inverse
Sumudu transform, we get

θ(ζ ) =1 + Kζ + S−1
[
uαS

[
Ra

(1 + 4Rd)
θ2
]]

+
[
uαS

[
(Nc(1 − ε) + Nr + H)

(1 + 4Rd)
θ
]]

(24)

By using the Adomian decomposition method in
Eq. (24), it gives

∞∑
n=0

λnθn(ζ ) =

1 + Kζ +
[
S−1
[
uαS

[
Ra

(1 + 4Rd)

∞∑
n=0

λnAn(θ)
]]]

+
[
S−1
[
uαS

[
(Nc(1 − ε) + Nr + H)

(1 + 4Rd)

∞∑
n=0

λnθn(ζ )
]]]

(25)

where An(θ)’s are the Adomian’s polynomial that repre-
sents nonlinear terms to be determined. The first few Ado-
mian polynomials are obtained by using Eq. (18),

A0 = (θ0)2

A1 = 2θ0θ1
A2 = 2θ0θ2 + (θ1)2

A3 = 2θ0θ3 + 2θ1θ2
...

On comparing the coefficients of like power of λ in Eq. (25),
the iterated components can be expressed as,

θ0(ζ ) = 1 + Kζ

θn+1(ζ ) = S−1
[
uαS

[
Ra

(1 + 4Rd)
An(θ)

+ (Nc(1 − ε) + Nr + H)
(1 + 4Rd)

θn(ζ )
]]

, n > 1. (26)

and it gives,

θ0(ζ ) =1 + Kζ

θ1(ζ ) =
Ra

(1 + 4Rd)

(
ζ α

Γ (α + 1)
+ 2Kζ α+1
Γ (α + 2)

+ Γ(3)K2ζ α+2
Γ (α + 2)

)
+ (Nc (1 − E) + Nr + H) K

(1 + 4Rd)

(
ζ α

Γ (α + 1)
+ Kζ α+1
Γ (α + 2)

)
...

Hence, the temperature field for the rectangular porous
profile fin is obtained in expressions of finite series,

θ =
m∑
k=0

θk(ζ ) = θ0(ζ ) + θ1(ζ ) + θ2(ζ ) + . . . (27)
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Table 1: Comparison of ADSTM solution, LSM [1] solution and the numerical method for dimensionless temperature θ(ζ ) and for dimension-
less parameters Nr = 0.3, Nc = 0.4, H = 0.9, Rd = 0.5 and Ra = 0.1.

Absolute error Absolute error
X ADSTM LSM [1] NM between ADSTM between LSM [1]

and NM and NM

0.0 1.000000000 1.000000000 1.000000000 0.000000000 0.000000000
0.1 0.956987943 0.956987665 0.956988020 0.000000077 0.000000355
0.2 0.919132442 0.919132060 0.919132513 0.000000071 0.000000453
0.3 0.886217887 0.886217828 0.886217964 0.000000077 0.000000136
0.4 0.858057590 0.858057970 0.858057690 0.000000100 0.000000280
0.5 0.834492402 0.834492969 0.834492509 0.000000107 0.000000460
0.6 0.815389550 0.815389906 0.815389668 0.000000118 0.000000238
0.7 0.800641676 0.800641589 0.800641805 0.000000129 0.000000216
0.8 0.790166063 0.790165668 0.790166187 0.000000124 0.000000519
0.9 0.783904049 0.783903760 0.783904154 0.000000105 0.000000394
1.0 0.781820594 0.781820569 0.781820729 0.000000135 0.000000160

and the value of θ can be evaluated if the temperature
at the fin tip K is known, and it must lie in the interval
[0, 1]. The constant, K can be determined by applying
Newton-Raphson method.

5 Fin Efficiency

Fin performance can also be characterized by fin efficiency
and it can be defined as

η =
qf

qmax
=

(1 + 4Rd) dθ
dζ

∣∣∣
ζ=1

(Nc(1 − ε) + Nr) + H + Ra
(28)

6 Results and Discussion

Here, we discusses the temperature distribution in a rect-
angular porous finwith the consideration of uniformmag-
netic field. The effects of different dimensionless param-
eters such as modified Rayleigh number, Ra, convection–
conduction parameter, Nc, Surface-ambient radiation pa-
rameter, Nr, Hartman parameters, H and Radiation–
conduction parameter, Rd, on temperature distribution
are investigated during heat transfer in a rectangular
porous fin.

The parameter Ra measures the ratio of thermal con-
vection to diffusion, when there is a balance between
buoyancy and Lorentz forces, and it is the determining pa-
rameter for the flow. The parameter Nc indicates that the
strength of convection versus conduction and the param-
eter Nr, measures the strength of surface radiation ver-
sus conduction. The values of Nc and Nr range between
0 (ideal fin of infinite thermal conductivity) and 2 for most

of the fins. The parameter H measures the ratio of electro-
magnetic force to the viscous force.

Table 1 discusses the numerical results obtained for
temperature distribution by using ADSTM and the ob-
tained results has been compared with the standard nu-
merical results obtained by Runge–Kutta method and
Least SquareMethod (LSM)[1]. The absolute error has been
discussed to test the accuracy of the present method and
the obtained results shows that the ADSTM results is very
close to the numerical results obtained by Runge–Kutta
method and LSM [1].

Fig. 2: Effect of surface-ambient radiation parameter, Nr and com-
parison between the ADSTM with the numerical solution for classi-
cal order α = 2.0.
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(a) (b) (c)

Fig. 3: The ADSTM solutions for a different value of Nr and for (a) α = 1.75 (b) α = 1.5 (c) α = 1.25.

Fig. 4: Effect of convection–conduction parameter, Nc and compar-
ison between the ADSTM with the numerical solution for classical
order α = 2.0.

Fig. 5: Effect of Hartman parameters, H and comparison between
the ADSTM with the numerical solution for classical order α = 2.0.

Fig. 2 discusses the variation of temperature distribu-
tion for ε = 0.4, Rd = 0.7, Ra = 0.5, Nc = 0.2, H = 0.4
and α = 2 with different values of Nr. It shows that the fin
temperature decreases with Nr results, strong cooling im-
plies lesser the radiant temperaturedistributionwithin the
fin. Similarly, Fig. 3 discusses the variation of temperature
distribution with different Nr and for different fractional
values α = 1.75, 1.5, 1.25 results the behavior of the so-
lution curve is closer to the integer order solution implies
the solution curve is valid for the fractional order energy
balance equation.

To study the effect of varying the convection-
conduction parameter Nc on the performance of the fins,
Fig. 4 and 6 was plotted. Fig. 4 discusses the variation
of temperature distribution for ε = 0.4, Rd = 0.7, Ra =
0.5, Nr = 0.3, H = 0.4 and for classical α = 2 with
different values of Nc. It shows that the fin temperature
decreases with Nc increases results, a decline in fin tem-
perature causes a stronger decrease in local temperature
of insulated tip fin. Similarly, Fig. 6 discusses the vari-
ation of temperature distribution with different Nc and
for different fractional values α = 1.75, 1.5, 1.25 results
the behavior of the solution curve is closer to the integer
order solution implies the solution curve is valid for the
fractional order energy balance equation.

Figs. 5 and 7 depicts the results of dimensionless tem-
perature variation for parameter H and for classical or-
der solution α = 2. The values of H are varied from
0.1, 0.3, 0.6 and 0.9, while remaining parameters are
kept at, ε = 0.4, Rd = 0.7, Ra = 0.5, Nc = 0.3 and
Nr = 0.3. It shows that the fin temperature be decreases
with the increaseof theparametric values ofH and for frac-
tional order α = 1.75, 1.5, 1.25 respectively.
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(a) (b) (c)

Fig. 6: The ADSTM solutions for a different value of Nc and for (a) α = 1.75 (b) α = 1.5 (c) α = 1.25.

(a) (b) (c)

Fig. 7: The ADSTM solutions for a different value of H and for (a) α = 1.75 (b) α = 1.5 (c) α = 1.25.

Fig. 8: Effect of Radiation–conduction parameter, Ra and compar-
ison between the ADSTM with the numerical solution for classical
order α = 2.0.

Figs. 8 and 9 depicts the results of dimensionless tem-
perature variation for different parameters Ra and for clas-
sical order solution α = 2. The values of Ra are varied from
0.1, 0.3, 0.6 and 0.9, while remaining parameters are kept
at, ε = 0.4, Rd = 0.7, H = 0.4, Nc = 0.3 and Nr = 0.3.
It shows that the fin temperature be decreases with the
increase of the parametric values of Ra results stronger
thermal convection implies decline in fin temperature and
for fractional order α = 1.75, 1.5, 1.25 respectively. Ac-
cordingly, Fig. 8 clearly demonstrates that the radiation–
conduction parameter has a minimum effect on the fins
surface temperature for the rectangular porous fin.

Figs. 10(a) illustrate the variation of fin efficiency with
Ra with the effect of different parameters Rd, H, Nr and Nc

by keeping its parametric values fixed which shows that
the fin efficiency be decreases as Ra increases and porosity
decreases. In Fig. 10(b), we have plotted the fin tip temper-
ature as a function of the radiation-conduction parameter
Rd for fixed parametric values Ra,H,Nr andNc and for the
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(a) (b) (c)

Fig. 9: The ADSTM solutions for a different value of Ra and for (a) α = 1.75 (b) α = 1.5 (c) α = 1.25.

(a) (b)

(c) (d)

Fig. 10: The variation of efficiency with variation of (a)Ra (b)Rd (c)Nr (d)Nc for different porosity ϵ.
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different porosity parameter ϵ. When radiation is stronger,
it results in lower fin tip temperatures. Figs. 10(c) illustrate
the variation of fin efficiency with Nr with the effect of dif-
ferent parameters Ra, Rd H andNc by keeping its paramet-
ric values fixed which shows that the fin efficiency be de-
creases as Nr increases and porosity decreases. Figs. 10(d)
illustrate the variation of fin efficiency with Nc with the ef-
fect of different parameters Ra, Rd H and Nr by keeping its
parametric values fixedwhich shows that the fin efficiency
be decreases as Nc increases and porosity decreases.

7 Conclusions

In this study, the solution of a rectangular porous fin with
a uniform magnetic field in a vertical isothermal surface
obtained by using the ADSTM. A dimensionless expres-
sion for the temperature distribution and fin efficiency has
been derived and discussed the effects of different param-
eters on porous fin. Analytical and numerical results for
the temperature distribution are presented through the
graphs and the table in various values of the parame-
ter. Finally, the ADSTM results has been compared with
the fourth–fifth order Runge–Kutta–Fehlberg method and
Least Square Method(LSM).
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