
Nonlinear Engineering 2017; 6(4): 277–292

Ch. RamReddy* and Ch. Venkata Rao

Double dispersion effects on non-Darcy free
convective boundary layer flow of a nanofluid over
vertical frustum of a cone with convective
boundary condition

https://doi.org/10.1515/nleng-2016-0071

Received November 14, 2016; accepted May 17, 2017.

Abstract: In this paper, a numerical analysis is performed
to investigate the effects of double dispersion and convec-

tive boundary condition on natural convection flow over

vertical frustum of a cone in a nanofluid saturated non-

Darcy porous medium. In addition, Brownian motion and

thermophoresis effects have taken into consideration, and

the uniform wall nanoparticle condition is replaced with

the zero nanoparticle mass flux boundary condition to ex-

ecute physically applicable results. For this complex prob-

lem, the similarity solution does not exist and hence suit-

able non-similarity transformations are used to transform

the governing equations along with the boundary condi-

tions into non-dimensional form. The Bivariate Pseudo-

Spectral Local Linearisation Method (BPSLLM) is used to

solve the reduced non-similar, coupled partial differential

equations. To test the accuracy of proposed method, the

error analysis and convergence tests are conducted. The

effect of flow influenced parameters on non-dimensional

velocity, temperature, nanoparticle volume fraction, regu-

lar concentration field as well as on the surface drag, heat

transfer, nanoparticle and regular mass transfer rates are

analyzed.
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1 Introduction
Several studies have been reported in the literature by fo-

cusing on combined heat and mass transfer in Darcian

porous media. However, Darcy law is reasonable for the

flows through porous media with low permeability. At

higher flow rates, there is a departure from the linear law

and inertial effects become important and it can be con-

sidered through an additional velocity square term in the

momentum equation, which is known as Forchheimer’s

extension of Darcy’s law. A detailed review of convective

heat andmass transfer inDarcian andnon-Darcian porous

media, to mention few, can be found in Nield and Be-

jan [1], Murthy et al. [2], Kairi and Murthy [3] and Nield

and Kuznetsov [4] (also see the citations therein). In re-

cent years, free and mixed convective heat transfer in

nanofluids using an approach of a thermal or momentum

boundary layer is an emerging area of research due to the

high thermal conductivity of nanofluids. Initially, the term

nanofluid suggested by Choi [5] and it describes as a liq-

uid suspension containing nanometer-sized particles. Ex-

perimental studies have shown that the thermal conduc-

tivity of the base fluid enhanced by 10–50% with a small

volumetric fraction of nanoparticles (Das [6], Xuan and Li

[7], Eastman et al. [8]). One can find a basic theory and

mathematicalmodelingof nanofluids in thebookbyDas et

al. [9] and a paper by Buongiorno [10]. A literature review

on the heat transfer enhancement by nanofluids includ-

ing two different nanofluid models has been presented by

Das et al. [11], Kakac and Pramuanjaroenkij [12], and Nield

and Bejan [1]. The analytical investigation of free convec-

tion flow of nanofluid saturated porousmediumwith ther-

mophoresis and Brownianmotion has been given by Nield

and Kuznetsov [13, 14].

The study of both free andmixed convective flows over

a full cone and vertical frustum of a cone has been pre-

sented by various researchers because of its real time ap-

plications in engineering and industrial problems such as

cooling of electronic gadgets, heat exchangers, etc. The
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problem of free convective flow over a vertical frustum of

a cone has been investigated by Na and Chiou [15] in two

cases: (i) frustumof a conewith uniformwall temperature,

and (ii) frustum of a cone subjected to constant wall heat

flux. A non-similar boundary layer analysis for the double

diffusive convection over vertical wavy frustum of a cone

in porous media has been examined by Cheng [16]. By us-

ing Forchheimer-extended Darcy law, Noghrehabadi et al.

[17] examined the free convective flow near a vertical cone

embedded in a nanofluid saturated porous medium. Pa-

trulescu et al. [18] studied the mixed convective boundary

layer flow of a nanofluid over vertical truncated cone by

employing Tiwari-Das nanofluidmodel. Different real time

applications have been suggested by several authors to in-

vestigate the convective flows over vertical frustum of a

cone/full cone (to mention few, see Shinmura [19], Hamil-

ton et al. [20], McCutcheon et al. [21] and Nakamura et al.

[22]).

It is seen from the literature that the uniform wall

temperature or flux conditions does not valid in some

industrial and engineering systems. For instance, mate-

rial processing, geothermal systems, and in the design of

thermal insulation, it has been observed that free con-

vection can induce thermal stresses that lead to critical

structural damage in the piping systems of nuclear reac-

tors. To over come this, the heat transfer analysis with

more realistic and general representation in the form of

convective boundary condition attracted the interest of

many researchers (see Aziz [23]). This type of analysis fre-

quently appears in engineering and industrial processes

such as transpiration cooling process,material drying, etc.

Makinde and Aziz [24] numerically investigated the influ-

enceof convectiveboundary conditiononMHDmixed con-

vective heat and mass transfer along a vertical plate em-

bedded in a porousmedium and reported that the velocity

and temperature enhance with an increase of the convec-

tive heat transfer parameter. The effect ofmagnetic field on

free convective and thermally stratified flow of a nanofluid

in non-Darcy porous medium under convective boundary

condition has been studied by Murthy et al. [25].

The effects of thermal and solutal dispersion in non-

Darcy porous medium are essential due to the existence

of inertia effects (see Nield and Bejan [1]). Kairi et al. [26]

studied the thermal and solutal dispersion effects on non-

Darcy free convective flow of a non-Newtonian fluid from

a vertical flat plate with uniform wall temperature and

concentration and showed that the heat transfer rate en-

hances with an enhancement in thermal dispersion pa-

rameter in both the aiding and opposing flow cases. Telles

and Trevisan [27] presented the hydrodynamic dispersion

effect on free convective heat andmass transfer near to ver-

tical surfaces in a porous medium. The effects of double

dispersion and variable viscosity on free convection flow

of non-Newtonian fluid with heat and mass transfer over

a vertical cone embedded in a non-Darcy porous medium

has been presented by Kairi [28]. RamReddy [29] examined

the thermal and solutal dispersion effects on free convec-

tion heat and mass transfer flow over a vertical cone and

showed that the skin friction coefficient, Nusselt number

and Sherwood numbers increase with the increase of ther-

mal dispersion parameter.

According to the author’s knowledge, the present

study has not been discussed in the literature. The non-

similarity solutions obtained by using Bivariate Pseudo-

Spectral Local LinearizationMethod (BPSLLM), have been

presented to investigate the effects of thermal dispersion,

solutal dispersion, non-Darcy parameter and Biot number

on non-dimensional flow, heat and mass transfer charac-

teristics through graphs.

2 Analysis
Consider the steady, laminar two-dimensional natural

convection heat and mass transfer over a vertical frus-

tum of a cone embedded in a nanofluid saturated non-

Darcy porous medium as shown in Fig.1. The geometry of

the problem is chosen such that x-axis is along the sur-

face and y-axis normal to the surface of vertical frustum

of a cone with the origin O at the vertex of the full cone.

Let x0 is the distance of the leading edge of the vertical

frustum of a cone measured from the origin O. The so-

lutal concentration on the surface of the vertical frustum

of a cone is Cw, while the temperature, solutal concentra-

tion and the nanoparticle volume fraction of nanofluid at

ambient medium are T∞, C∞, and ϕ∞ respectively. The

zero nanaoparticle mass flux boundary condition DB
∂ϕ
∂y
+

DT

T∞

∂T
∂y
= 0 (see Kuznetsov and Nield [30]) on the surface is

considered to attain physically acceptable results. Let Tf
be the fluid temperature, the surface of the vertical frus-

tum of a cone is cooled (Tf < T∞) or heated (Tf > T∞) by

convection.

Implementing the boundary layer and Oberbeck-

Boussinesq approximations, the governing equationswith

momentum equation based on the Darcy-Forchheimer

model (see Nield and Bejan [1]), can be written as:

∂(u r0)

∂x
+
∂(v r0)

∂y
= 0 (1)
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Fig. 1: Geometry of the problem

ρf∞
ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=
μ

ε

∂2u

∂y2

+ ρf∞g
(
1 − ϕ∞

)
(βT(T − T∞) + βC(C − C∞)) cosA

− (ρp − ρf∞)g(ϕ − ϕ∞) cosA −
μ

Kp
u −

ρb

Kp
u2 (2)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
[αm + σdu]

∂T

∂y

)

+ J

(
DB

∂ϕ

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2)
(3)

u
∂ϕ

∂x
+ v

∂ϕ

∂y
= DB

∂2ϕ

∂y2
+
DT

T∞

∂2T

∂y2
(4)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

(
[Dm + δdu]

∂C

∂y

)
(5)

where u and v are the velocity components along the x and

y axes, respectively, T is the temperature,ϕ is thenanopar-

ticle volume fraction, C is the solutal concentration, g is

the gravitational acceleration, Kp is the permeability, b is

the empirical constant associated with the Forchheimer

porous inertia term, and ε is the porosity. Further, d is the

pore diameter, αm =
k
(ρc)f

is the thermal diffusivity, Dm is

themolecular diffusivity, σ and δ are the coefficients of the

thermal and solutal dispersions respectively. The value of

these quantities lies between 1/7 and 1/3. Finally, J =
(ρc)p
(ρc)f

,

ν = μ
ρf∞
is the kinematic viscosity coefficient, ρf∞ is the

density of the base fluid, and ρ, μ, k, βT , and βC are the

density, viscosity, thermal conductivity, volumetric ther-

mal expansion coefficient and volumetric solutal expan-

sion coefficient of the nanofluid, while (ρc)f is the heat ca-

pacity of the fluid and (ρc)p is the effective heat capacity of

the nanoparticle material. The coefficients that appear in

Eqs. (3) - (4) are the Brownian diffusion coefficient DB and

the thermophoretic diffusion coefficient DT .

The boundary conditions are

u = 0, v = 0, −k
∂T

∂y
= hf (Tf − T),

DB
∂ϕ

∂y
+
DT

T∞

∂T

∂y
= 0, C = Cw at y = 0 (6a)

u = 0, T = T∞, ϕ = ϕ∞, C = C∞ as y →∞

(6b)

where hf is the convective heat transfer coefficient and the

subscriptsw and∞indicate the conditions at thewall, and

at the outer edge of the boundary layer respectively.

Introducing the following dimensionless variables

ξ =
x − x0
L
, η =

y

L

(
Gr

ξ

)1/4
, u =

νGr1/2

L
u,

v =
νGr1/4

L
v, r0 =

r0
L
Gr1/4,

f (ξ , η) =
ψ

r0ξ3/4
, θ (ξ , η) =

T − T∞

Tf − T∞
,

γ (ξ , η) =
ϕ − ϕ∞

ϕ∞
, S (ξ , η) =

C − C∞

Cw − C∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

where r0 = x sinA, Gr1/2 = ueL
ν and u2e =

L g βT
(
Tf − T∞

) (
1 − ϕ∞

)
cosA.

Using the abovenon-similar variables (7) into Eqs. (1)–

(5) along with the stream function ψ such that r0 u =
∂ψ
∂y
, r0 v = −

∂ψ
∂x
, we obtain the following non-dimensional

form of the governing equations:

1

ε
f ′′′ + 1

ε2

(
R +

3

4

)
ff ′′ − 1

2ε2
(f ′)2 + θ + Nc S

− Nr γ −
ξ1/2

Da Gr1/2
f ′ − Fs

Da
ξ (f ′)2 = ξ

ε2

(
f ′ ∂f

′

∂ξ
−
∂f

∂ξ
f ′′
)
(8)

1

Pr
θ′′ +

(
R +

3

4

)
fθ′+Nb γ′θ′ + Nt (θ′)2 + Ds ξ1/2(f ′θ′)′

= ξ

(
f ′ ∂θ
∂ξ
−
∂f

∂ξ
θ′
)

(9)

1

Le
γ′′ +

(
R +

3

4

)
fγ′ + 1

Le

Nt

Nb
θ′′ = ξ

(
f ′ ∂γ
∂ξ
−
∂f

∂ξ
γ′
)
(10)

1

Sc
S′′ +

(
R +

3

4

)
fS′ + Dc ξ1/2(f ′S′)′ = ξ

(
f ′ ∂S
∂ξ
−
∂f

∂ξ
S′
)
(11)

where Nr =
(ρp − ρf∞)ϕ∞

ρf∞βT(Tf − T∞)(1 − ϕ∞)
is the nanofluid

buoyancy ratio, Pr =
ν

αm
is the Prandtl number, Nc =
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βC(Cw − C∞)

βT(Tf − T∞)
is the regular buoyancy ratio, Sc =

ν

Dm
is

the Schmidt number, Nb =
(ρc)pDBϕ∞
(ρc)f ν

is the Brownian

motion parameter, Nt =
(ρc)pDT(Tf − T∞)

(ρc)f νT∞
is the ther-

mophoresis parameter, Le =
ν

DB
is the Lewis number. Fi-

nally, Da =
Kp

L2
is the Darcy number, Fs =

b

L
is the Forch-

heimer number, Ds =
σdGr1/2

L
and Dc =

δdGr1/2

L
are the

thermal and solutal dispersion parameters respectively.

The boundary conditions become

η = 0 : f ′(ξ , 0) = 0, f (ξ , 0) + ξ(
R + 34

) ∂f
∂ξ
= 0,

θ′(ξ , 0) = −Bi ξ1/4[1 − θ(ξ , 0)],

Nb γ′(ξ , 0) + Nt θ′(ξ , 0) = 0, S(ξ , 0) = 1 (12a)

η →∞ : f ′(ξ , ∞) = 0, θ(ξ , ∞) = 0,

γ(ξ , ∞) = 0, S(ξ , ∞) = 0 (12b)

where the prime indicates differentiation with respect to

η, Bi =
hf L

k Gr1/4
is the Biot number and R = ξ

(1+ξ )
. When

ξ = 0, R becomes zero, and hence the present problem is

reduced to the simple problem of the natural convection

over a vertical plate and as ξ → ∞, R → 1. Since ξ = x =
(x−x0)
x0
, ξ becoming large means x is far down-stream or the

cross section radius of the leading edge of the frustum is

very small.

The shearing stress, local heat, nanoparticle and reg-

ular mass fluxes to indicate the surface drag, the heat,

nanoparticle and regular mass transfer rates, respectively,

can be obtained from

τw = μ

[
∂u

∂y

]
y=0

, qw = −ke

[
∂T

∂y

]
y=0

,

qn = −DB

[
∂ϕ

∂y

]
y=0

and qm = −De

[
∂C

∂y

]
y=0

(13)

where ke = (k + kd) and De = (Dm + Dd) are the effective

thermal and solutal conductivities of the porous medium,

in which kd and Dd are the dispersion thermal and solutal

conductivities.

The non-dimensional shear stress Cf =
2τw

ρf∞ U2
*

,

the Nusselt number Nux* =
qwx*

k(Tf − T∞)
, the nanoparticle

Sherwood number NShx* =
qnx*

DB(ϕ∞)
and the regular Sher-

wood number Shx* =
qmx*

Dm(Cw − C∞)
, are given by

Cf (Grx* )
1/4 = 2f ′′(ξ , 0), Nux* (Grx* )

−1/4

= −
[
1 + ξ1/2DsPrf

′(ξ , 0)
]
θ′(ξ , 0),

NShx* (Grx* )
−1/4 = −γ′(ξ , 0), Shx* (Grx* )

−1/4

= −
[
1 + ξ1/2DcScf

′(ξ , 0)
]
S′(ξ , 0)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(14)

where Grx* =
x*
3
g βT (Tf−T∞)

(
1−ϕ∞

)
cos A

ν2
is the Grashof num-

ber based on x* and x* = x − x0.

3 Bivariate pseudo-spectral local
linearisation method

Initially, Motsa [31] introduced the Local Linearisation

Method (LLM) to find the solution of a coupled non-linear

systemof ordinary differential equations. Later, Motsa and

Animasaun [32] extended this LLM along with the spectral

collocation method to find the solution of the system of

partial differential equations in both the space and timedi-

rections.Now,wepresent a bivariate pseudo-spectral local

linearisation method (BPSLLM) to find the solution of the

governing system of nonlinear partial differential equa-

tions (8)–(11) togetherwith the boundary conditions (12) in

three steps: (i) first we use an innovative linearisation and

decoupling technique based on the quasi-linearisation

technique to linearise all the equations(8)–(11) together

with the boundary conditions (12) about one dependent

variable at a time in the sequential order f , θ, γ and S,

(ii) next we use Chebyshev pseudo-spectral collocation

method to convert the resulting system of the iterative se-

quence of linearized partial differential equations into a

system of linear algebraic equations in a matrix form, and

(iii) finally we solve the system of equations iteratively in

matrix formby taking a reasonable initial approximations.

First, we linearise the Eqs. (8)–(11) about f , θ, γ and S,

respectively, gives

1

ε
f ′′′r+1 + a1,r f

′′
r+1 + a2,r f

′
r+1 + a3,r fr+1 + a4,r

∂f ′r+1
∂ξ

+ a5,r
∂fr+1
∂ξ

= K1,r , (15)

b1,rθ
′′
r+1 + b2,rθ

′
r+1 + b3,r

∂θr+1
∂ξ

= K2,r , (16)

1

Le
γ′′r+1 + c1,rγ

′
r+1 + c2,r

∂γr+1
∂ξ

= K3,r , (17)

e1,rS
′′
r+1 + e2,rS

′
r+1 + e3,r

∂Sr+1
∂ξ

= K4,r , (18)
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where

a1,r =
1

ε2

(
R +

3

4

)
fr +

ξ

ε2
∂fr
∂ξ
,

a2,r = −
1

ε2
f ′r −

1

DaGr1/2
ξ1/2 − 2

Fs

Da
ξf ′r −

ξ

ε2
∂f ′r
∂ξ
,

a3,r =
1

ε2

(
R +

3

4

)
f ′′r , a4,r = −

ξ

ε2
f ′r , a5,r =

ξ

ε2
f ′′r ,

K1,r =
1

ε2

(
R +

3

4

)
fr f

′′
r −

1

2ε2
(f ′r )2 −

Fs

Da
ξ (f ′r )2 − θr − NcSr

+ Nrγr +
ξ

ε2

(
f ′′r

∂fr
∂ξ
− f ′r

∂f ′r
∂ξ

)
,

b1,r =
1

Pr
+ Dsξ1/2f ′r+1, b2,r =

(
R +

3

4

)
fr+1 + Nbγ

′
r

+ 2Ntθ′r + Dsξ1/2f ′′r+1 + ξ
∂fr+1
∂ξ

,

b3,r = −ξf
′
r+1, K2,r = Nt(θ

′
r)
2,

c1,r =

(
R +

3

4

)
fr+1 + ξ

∂fr+1
∂ξ

,

c2,r = −ξf
′
r+1, K3,r = −

1

Le

Nt

Nb
θ′′r+1,

e1,r =
1

Sc
+ Dc ξ1/2f ′r+1,

e2,r =

(
R +

3

4

)
fr+1 + Dcξ

1/2f ′′r+1 + ξ
∂fr+1
∂ξ

,

e3,r = −ξf
′
r+1, K4,r = 0.

Next, the pseudo-spectral collocation method is em-

ployed to discretize both the η and ξ domains. Before

the numerical method is applied, the domains of η and ξ

respectively are transformed to [−1, 1] and [−1, 1] under

suitable linear transformations. For numerical implemen-

tation, the semi-infinite domain is truncated to η ∈ [0, η∞]
and transformed to ζ ∈ [−1, 1]. Similarly, ξ ∈ [0, ξ∞] is
transformed to τ ∈ [−1, 1]. In this process, η∞ is a limited
value that is proposed to aid the numerical method at in-

finity and ξ∞ is the largest value of ξ used in the numerical

simulations. Further, the Chebyshev-Gauss-Lobatto type

of discretization points used in this study, are given below

ζi = cos

(
πi

Nx

)
,

τj = cos

(
πj

Nτ

)
, i = 0, 1, . . . , Nx; j = 0, 1, . . . , Nτ .

(19)

The approximate solutions are assumed to be defined

in terms of bivariate Lagrange interpolation polynomial of

the form

f (η, ξ ) ≈

Nx∑
m=0

Nτ∑
j=0

f (ζm , τj)Lm(ζ )Lj(τ), (20)

which interpolates f (η, ξ ) at the collocation points defined

by equation (19). Similar expressions are used to define ap-

proximate functions for θ(η, ξ ) , γ(η, ξ ) and S(η, ξ ). The

functions Lm(ζ ) and Lj(τ) are known as the characteristic

Lagrange cardinal polynomials. Following [33–35], we de-

fine the derivatives of the unknown functions with respect

to η and ξ at the collocation points ζk and τi as follows:

∂f

∂η

∣∣∣∣
(ζk ,τi)

=
2

η∞

Nx∑
m=0

Nτ∑
j=0

f (ζm , τj)
dLm(ζk)

dζ
Lj(τi) = DFi ,

(21)

∂2f

∂η2

∣∣∣∣
(ζk ,τi)

= D2Fi ,
∂3f

∂η3

∣∣∣∣
(ζk ,τi)

= D3Fi , (22)

∂f

∂ξ

∣∣∣∣
(ζk ,τi)

=
2

ξ∞

Nx∑
m=0

Nτ∑
j=0

f (ζm , τj)
dLj(τi)

dτ
Lm(ζk)

=
2

ξ∞

Nτ∑
j=0

dijFj =

Nτ∑
j=0

dFj , (23)

where di,j (i, j = 0, 1, . . . , Nτ) are entries of the standard

Chebyshev differentiation matrix d = 2
ξ∞
[di,j] of size (Nτ +

1) × (Nτ + 1) (see, for example [33–35]), D = (2/η∞)[Dr,s]

(r, s = 0, 1, 2, . . . , Nx) with [Dr,s] being an (Nx+1)×(Nx+1)

Chebyshev derivative matrix, and the vector Fi is defined

as

Fi = [fi(ζ0), fi(ζ1), . . . , fi(ζNx
)]T . (24)

Similar expressions are obtained for derivatives of the

other dependent variables with respect to η and ξ . Apply-

ing the pseudo-spectral method in both η and ξ gives

A(1)Fi + a4,i

M∑
j=0

di,jDFj + a5,i

M∑
j=0

di,jFj = K1,i , (25)

A(2)Θi + b3,i

M∑
j=0

di,jΘj = K2,i , (26)

A(3)Gi + c2,i

M∑
j=0

di,jGj = K3,i , (27)

A(4)Si + e3,i

M∑
j=0

di,jSj = K4,i , (28)
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where

A(1) =
1

ε
D3 + a1,iD

2 + a2,iD + a3,i ,

A(2) = b1,iD
2 + b2,iD,

A(3) =
1

Le
D2 + c1,iD, A(4) = e1,iD

2 + e2,iD.

Equations (25) can be written in matrix form⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A(1)0,0 A(1)0,1 A(1)0,2 · · · A(1)0,M
A(1)1,0 A(1)1,1 A(1)1,2 · · · A(1)1,M
A(1)2,0 A(1)2,1 A(1)2,2 · · · A(1)2,M
...

...
... · · ·

...

A(1)M,0 A(1)M,1 A(1)M,2 · · · A(1)M,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

F0

F1

F2
...

FM

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

K1,0

K1,1

K1,2
...

K1,M

⎤
⎥⎥⎥⎥⎥⎥⎦
(29)

for i = 0, 1, . . . ,M, and where

A(1)i,j = A
(1) + a4,idi,iD + a5,idi,iI, i = j, (30)

A(1)i,j = a4,idi,jD + a5,idi,jI, i ≠ j. (31)

Thematrix form of Eqs. (26)–(28) can be obtained in a sim-

ilar manner. To obtain the approximate solutions, the sys-

tem of equations in matrix form solved iteratively by start-

ing with a suitable initial approximations.

4 Results and Discussion
In this section, we present the numerical results obtained

by solving Eqs. (8)–(11) using the method discussed in the

last section for various values of physical parameters. The

present computational work has been carried by taking

the number of collocation points in η-directionNx = 60, ξ -

direction Nτ = 15, and Lx = 20 and Lt = 2 are used to aid

the numerical approximations at infinity in η and ξ direc-

tions, respectively. We remark that the BPSLLM algorithm

has been implemented in MATLAB machine software. To

test the convergence of iteration scheme, we take the norm

of difference in the values of two successive iterations. The

algorithm is assumed to have converged when the norms

are less than a given tolerance level (ϵ = 10−10). The error

norms at (r + 1)th iteration are defined as

Ef = max
0≤i≤Nx

‖fr+1,i − fr,i‖∞, Eθ = max
0≤i≤Nx

‖θr+1,i − θr,i‖∞,
Eγ = max

0≤i≤Nx
‖γr+1,i − γr,i‖∞, ES = max

0≤i≤Nx
‖Sr+1,i − Sr,i‖∞

⎫⎬
⎭
(32)

Figures 2a–2ddepict the variation of the normof resid-

ual errors of the four governing equations (8)–(11) across ξ

at different iterations levels of the BPSLLM. It can be seen

from Figs. 2a–2d that the residual errors decrease with an

increase in the number of iterations in all cases. This is an

indication for convergence of the solutions. Furthermore,

the small residual errors, which are obtained after a few

iterations, are a clear sign of the accuracy of the solution

method used to solve the governing PDEs. The residual er-

ror results validate the accuracy of the results generated in

this study.

The values of non-dimensional velocity, tempera-

ture, nanoparticle volume fraction and regular concentra-

tions along with the skin friction coefficient, heat trans-

fer, nanoparticle and regular mass transfer rates have

been computed and presented graphically. In order to

analyze the effects of non-Darcy parameter, Biot num-

ber, thermal and solutal dispersions on the flow pro-

files, the computations are carried out for the values of

Pr = 1.0, Sc = 0.6, Le = 10.0, Nc = 1.0, Nr = 0.5, Gr =

5.0, ε = 0.8, Da = 0.5, Nt = 0.5 and Nb = 0.2. These

values are fixed through the entire discussion unless spec-

ified separately. The current results of the skin friction

f ′′(ξ , 0) and Nusselt number −θ′(ξ , 0) at ξ = 0 are com-
pared with the results reported by Na and Chiou [15], Kays

and Crawford [36], Lin and Chen [37] and Yih [38]. These

comparisons are found to be in very good agreement as

shown in Table 1.

The effects of mono-diffusion and double-diffusion of

regular andnanofluids on the dimensionless velocity, tem-

perature, nanoparticle volume fraction and regular con-

centration are depicted in Figs. 3a-3d. It is identified that

the non-dimensional velocity and temperature are higher

for mono-diffusion and double-diffusion nanofluids than

regular fluids in the respective boundary layers. As ex-

pected that, the nanoparticle volume fraction of mono-

diffusion regular fluid (Nr = Nb = Nt = Nc = 0) is zero.

Also, it can be seen that the regular concentration is higher

for regular fluids in the both mono and double diffusion.

The similar observations have been reported by Akbar et

al. [39] where they analyzed the effects of double-diffusive

on the steady boundary layer flow of a nanofluid over a

porous stretching surface.

4.1 Effects of non-Darcy parameter (Fs) and
Biot number (Bi)

The variation of the dimensionless velocity, temperature,

nanoparticle volume fraction and regular concentration

shown in Figs. 4a-4d for different values of non-Darcy pa-

rameter (Fs) and Biot number (Bi), respectively. In these

figures, all the other parameters are taken to be fixed. It is

observed that, an increase in the Biot number leads to in-
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(a) (b)

(c) (d)

Fig. 2: Residual error over iterations when Pr = 1.0, Sc = 0.6, Gr = 1.0, ε = 1.0, Da = 0.5, Fs = 1.0, Bi = 1.0, Ds = 0.2, Dc = 0.3, Nr = 0.5,
Nc = 1.0, Le = 10, Nb = 0.2 and Nt = 0.3
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Fig. 3: Effects of mono- and double-diffusion of regular and nanofluids on dimensionless (a) velocity, (b) temperature, (c) nanoparticle con-
centration and (d) regular concentration for ξ = 1.5, Fs = 0.5, Bi = 1.0, Ds = 0.2, Dc = 0.3.



Ch. RamReddy and Ch. Venkata Rao, Double dispersion effects | 285

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

f'

η

Bi = 0.1
Bi = 1.0
Bi = 10.0
Bi >> 1.0

Fs = 0.0, 1.0

(a)

0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0
Bi = 0.1
Bi = 1.0
Bi = 10.0
Bi >> 1.0

θ

η

Fs = 0.0, 1.0

(b)

0 2 4 6
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

Bi = 0.1
Bi = 1.0
Bi = 10.0
Bi >> 1.0

γ

η

Fs = 0.0, 1.0

(c)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
Bi = 0.1
Bi = 1.0
Bi = 10.0
Bi >> 1.0

S

η

Fs = 0.0, 1.0

1

(d)

Fig. 4: Effect of Fs and Bi on (a) velocity, (b) temperature, (c) nanoparticle volume fraction, and (d) regular concentration for Ds = 0.2, Dc =
0.3.
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Fig. 5: Effect of Fs and Bi on (a) skin friction, (b) heat transfer rate, (c) nanoparticle mass transfer rate, and (d) mass transfer rate Ds =
0.2, Dc = 0.3.
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Table 1: Comparison values of f ′′(0, 0) and −θ′(0, 0) when Nt = 0.0, Nc = 0.0, Nr = 0.0, Sc = 1.0, Le = 1.0, 0.0 < Nb � 1.0, Gr = 1.0, ε =

1.0, Da = 1.0, Ds = 0.0, Dc = 0.0, Bi � 1.0.

f ′′(0, 0) −θ′(0, 0)

Pr [38] Present [15] [36] [37] [38] Present

0.1 1.2144 1.21446092 — 0.1640 0.1627 0.1629 0.16275771

1.0 0.9084 0.90819121 0.4010 0.4010 0.4009 0.4012 0.40103314

10.0 0.5927 0.59283234 0.8269 0.8270 0.8258 0.8266 0.82684304

100.0 0.3559 0.35587198 1.5493 1.5500 1.5490 1.5493 1.54948223

1000.0 0.2049 0.19648946 — 2.8000 2.8035 2.8035 2.79895143

crease the momentum and thermal boundary layer thick-

ness and decrease the nanoparticle and regular concen-

tration boundary layer thickness. We can see that, the ve-

locity and nanoparticle volume fraction profiles decrease

with the non-Darcy parameter, when it rises from Fs = 0

(Darcy flow) to Fs = 1 (non-Darcy flow). Conversely, non-

Darcy parameter Fs enhance the temperature, and regu-

lar concentration profiles. The reason for the above be-

havior is that, the enhancement of non-Darcy parameter,

i.e., Forchheimer term increase the pressure drop related

to drag force. That is, for a fixed velocity with large Forch-

heimer’s coefficient produce a large pressure drop due to

drag forces. In the same way, when the non-Darcy param-

eter increases with a fixed pressure drop, velocity would

decreases. This relation between the non-Darcy term and

velocity is shown in Fig.4a. The same behavior has been

reported by Cheng et al. [40] where they studied non-

Darcy effects on natural convection in a saturated porous

medium using experimental setup.

Figures 5a–5d represent the streamwise variation of

ξ on non-dimensional skin friction, heat transfer rate,

nanoparticle and regular mass transfer rates for various

values of Biot number (Bi) in two cases of Fs = 0.0 (Darcy

flow) and Fs = 1.0 (non-Darcy flow), respectively. As the

Biot number tends to infinity it reaches the isothermal sur-

face (i,e., it becomes wall condition). The internal thermal

resistance of a vertical frustum of a cone is more than the

thermal resistance of boundary layer for high Biot num-

ber in reality. These figures depict that, an increase of

Biot number enhance the magnitude of skin friction co-

efficient, heat transfer rate and mass transfer rate but re-

duces the nanoparticle mass transfer rate. As mentioned

above, an increase of non-Darcy parameter reduces the ve-

locity profiles and enhances the temperature profiles, and

thus it decreases the surface drag, rate of heat, and regular

mass transfer rates. Further, the values of skin friction and

nanoparticle Sherwood number along vertical plate case

(i.e., ξ = 0) are higher than those of over full cone (i.e.,

ξ � 1) and, the nusselt and regular Sherwood numbers

along vertical plate case (i.e., ξ = 0) are less than those of

over full cone (i.e., ξ � 1).

4.2 Effects of thermal dispersion parameter
(Ds) and solutal dispersion parameter
(Dc)

The effects of thermal dispersion (Ds) and solutal dis-

persion (Dc) on non-dimensional velocity, temperature,

nanoparticle volume fraction and regular concentration

displayed in Figs. 6a–6d across the boundary layers. Since

Ds = 0 and Dc = 0, implies the case of nanofluid with-

out thermal dispersion and solutal dispersion. The veloc-

ity is more in the presence of thermal dispersion and less

that of in the absence of thermal dispersion. Taking ther-

mal dispersion effect in the energy equation leads to con-

duction over convection. That is, supplementing disper-

sion effects to the energy equation gives thermal conduc-

tion more dominance. We can observe from Fig. 6b that

the thermal boundary layer thickness improves with the

enhancement of thermal dispersion coefficient near to the

surface, but the opposite behavior can observed far away

from the surface of the vertical frustum of a cone. This

sudden change is due to the presence of non-isothermal

boundary condition (CBC). The nanoparticle volume frac-

tion profiles enhance with the thermal dispersion param-

eter near to the surface and negligible influence on regu-

lar concentration profiles in the boundary layers. On the

other hand, increasing the solutal dispersion parameter

leads to increase the thickness of momentum and regular

concentration boundary layers. But, it is observed that the

thermal and nanoparticle volume fraction boundary layer

thickness slightly reduced with the increasing value of so-

lutal dispersion parameter. As explained above, consider-

able influence of thermal and solutal dispersion effects on

the thermal and concentration boundary layers is noticed,

respectively.
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Fig. 6: Effect of Ds and Dc on (a) velocity, (b) temperature, (c) nanoparticle volume fraction, and (d) regular concentration for Fs = 0.5, Bi =
1.0.
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Fig. 7: Effect of Ds and Dc on (a) skin friction, (b) heat transfer rate, (c) nanoparticle mass transfer rate, and (d) mass transfer rate Fs =
0.5, Bi = 1.0.
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Fig. 8: Variation of ξ on (a) velocity, (b) temperature, (c) nanoparticle concentration and (d) regular concentration for Fs = 0.5, Bi =
1.0, Ds = 0.2, Dc = 0.3.
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Figures 7a–7d prepared to explore the physical sig-

nificance of thermal dispersion (Ds) and solutal disper-

sion (Dc) effects on the streamwise variations of surface

drag, rate of heat, nanoparticle and regular mass trans-

fers across the vertical frustumof a cone. As expected that,

the strengthening of thermal dispersion parameter leads

to reduce the surface drag and nano-mass transfer rate as

shown in Fig. 7a and Fig. 7c, and enhance the heat transfer

rate and regular mass transfer rate as shown in Fig. 7b and

Fig. 7d. Further, it can be seen that the presence of solu-

tal dispersion slightly enhance the surface drag and rate of

heat but a large variation is observed in regularmass trans-

fer rate. The opposite behavior is noticed in the nanopar-

ticle mass transfer rate with solutal dispersion parame-

ter. Moreover, the skin friction and the nanoparticle mass

transfer rate produce large values along vertical plate (i.e.,

ξ = 0) than those of over full cone (i.e., ξ � 1) and, the

rate of heat and regular mass transfer rate along vertical

plate case (i.e., ξ = 0) are less than those of over full cone

(i.e., ξ � 1).

Further, the Figs. 8a–8d plotted to show the effect of

streamwise coordinate (ξ ) on dimensionless velocity, tem-

perature, nanoparticle volume fraction and regular con-

centration. It is seen from Fig. 8a that the velocity dimin-

isheswith the rise of streamwise coordinate. Initially, there

is a zero temperature when ξ = 0. But, we can see the

improvement of temperature profiles near to the surface

of a cone as ξ raises from 0 to 2. In the similar way, the

nanoparticle volume fraction is improved with respect to

ξ as shown in Fig. 8c. But, we can observe an opposite be-

haviour in the case of regular concentration profiles. That

is, the strengthen values of streamwise coordinate causes

reduce the regular concentration as given in Fig. 8d.

5 Conclusions
In this article, a newly introduced numerical approach

named as Bivariate Pseudo Spectral Local Linearisation

Method (BPSLLM) has been used for solving highly non-

linear and coupled system of partial differential equa-

tions that model a non-Darcy natural convection flow of

a nanofluid over a vertical frustum of cone in the pres-

ence of double dispersion effects and convective bound-

ary condition. Thenon-dimensional velocity, temperature,

nanoparticle volume fraction and regular concentration

profiles are presentedand the skin friction coefficient, heat

transfer rate, nanoparticle and regular mass transfer rates

are discussed for various values of non-Darcy parameter,

Biot number anddouble dispersion parameters. Themajor

findings emerging from this study are as follows:

– The main conclusion is that the velocity, tempera-

ture, surface drag, heat and regular mass transfer

rates enhance with the Biot number. Moreover, the

nanoparticle volume fraction diminishes near to the

surface of a vertical frustum of cone and far away

from cone it shows the reverse trend in the both

Darcy and non-Darcy flows.

– For a fixed small value of Biot numer (non-

isothermal surface), the temperature, nanoparticle

mass transfer rate, nanoparticle volume fraction and

regular concentration profiles increase, whereas the

velocity, skin friction, rate of heat and regular mass

transfer rate decrease with non-Darcy parameter.

– An enhancement in the thermal dispersion param-

eter leads to increase the thickness of momentum,

nanoparticle volume fraction boundary layers and

heat transfer rate.

– An increasing value of solutal dispersion parame-

ter enhance the momentum, regular concentration

boundary layer thickness, andheat and regularmass

transfer rates.

– The non-dimensional velocity and regular concen-

tration decrease, and the temperature and nanopar-

ticle volume fraction increase with the streamwise

coordinate ξ (0 ≤ ξ ≤ 2).

– The residual error analysis shown that, the conver-

gence and effectiveness of bivariate pseudo-spectral

local linearisation method for this kind of compli-

cated flow problems.
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