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Abstract: This research peruses the characteristics of heat
and mass transfer of a special non-Newtonian third-grade
fluid over a porous convectively-heated shrinking sheet
filled with nanoparticles. The Buongiorno model is used
for the special non-Newtonian third-grade fluid that in-
cludes both the Brownian motion and the thermophoresis
effects with non-linear radiation. The nonlinear system of
ordinary differential equations are obtained using a suit-
able transformation. The converted system of equations
are then numerically solved using shooting method. The
numerically-obtained results for the skin friction, local
Nusselt number and the local Sherwood number as well
as velocity profile, temperature distribution and concen-
tration of nanoparticle are illustrated for different physi-
cal parameters through graphs and tables. On the behalf of
the whole studies, final conclusions are made and it is ob-
served that multiple solutions are achieved for certain val-
ues of the suction parameter. Further, the non-Newtonian
parameter reduces the velocity of the fluid and increases
the temperature and the concentration profiles for the first
solutionwhile the reverse trend is seen for the second solu-
tion. Finally, a comparative analysis is made through pre-
vious studies in limiting cases and shown good correla-
tion.
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1 Introduction

The intention in boundary layer flow of a non-Newtonian
fluid is raising significantly due to numerous practical
applications in manufacturing and industrial processes.
Molten plastics, blood, ketchup, greases, artificial fibers,
paint, certain oils and many more are examples of non-
Newtonian fluid. These fluids disobey the well-known law
of Newton’s viscosity and as these fluids are highly vis-
cous which do reveal their significant properties of elas-
tic. These types of fluids arise in a broad variety of realistic
problems having imperative importance in composite pro-
cessing, polymer depolarization, bubble absorption and
boiling, etc. Therefore, the study of the behavior of non-
Newtonian fluid of such types is essential. At present, the
non-Newtonian fluids are examined through three major
categories such as the rate type, differential type and the
integral type. The second-grade fluid is known as a sub-
class fluid of the differential typemodel which exhibits the
effect of the normal stress and cannot predict the shear
thinning and shear thickening phenomena. On the other
hand, the model of the third-grade fluid can predict both
the normal stresses as well as the shear thinning and the
shear thickening phenomena even the constitutive equa-
tions have many complexities. Several researchers have
investigated the flows of this model under many differ-
ent aspects [1–5]. Recently, Naganthran et al. [6] obtained
the dual solutions of a special third-grade fluid towards a
stagnation-point of anunsteadyporous stretching/ shrink-
ing surface. They found that the multiple solutions exist
for a stretching sheet as well as for a shrinking sheet. Also,
they showed that the first solution is stable and realizable
physically by the stability analysis while the second solu-
tion is unstable.

The phenomenon of enhancement of the thermal con-
ductivity of fluid by scattering nanoparticles was scru-
tinized by Masuda et al. [7]. Buongiorno [8] observed
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that the Brownian motion and thermophoresis effects of
nanoparticles give the fabulous enhancement in fluid’s
thermal conductivity. Due to these effects, he suggested
the modifications in the convective situations. Khan and
Pop [9] obtained the numerical solution of nanofluid past
a stretching sheet using Buongiorno’smodel and analyzed
the Brownian motion and the thermophoresis effects on
the heat transfer rate at the surface. Further, this prob-
lem was extended by Rana and Bhargava [10] by consid-
ering a nonlinear stretching surface. The characteristics of
heat transfer in nanofluid over a stretching sheet in the
presence of convective boundary condition was examined
by Makinde and Aziz [11]. They observed that the ther-
mal characteristics can be considerably changed by in-
creasing the effects of Brownianmotion and thermophore-
sis. Chamkha and co-workers have investigated various as-
pects of heat and mass transfer on a nanofluid flow over
plates and stretching sheets under various conditions [12–
15]. Recently, Krishnamurthy et al. [16] scrutinized the
combined effects of thermal radiation and melting heat
transfer on flow of nanofluid towards a nonlinear stretch-
ing sheet with slip effect and chemical reaction.

The thermal radiation effect with a convective bound-
ary condition is engaged in many engineering and indus-
trial processes containing die forging, gas turbines, chem-
ical reactions, nuclear turbines and storage of thermal en-
ergy. Aziz [17] examined the boundary layer flow past a flat
plate with convective boundary conditions. Makinde and
Aziz [18] investigated MHD mixed convection boundary
layer flow and heat transfer over a heated vertical plate im-
mersed in porous medium. The boundary layer flow with
heat transfer towards a heated porous stretching surface
was investigated numerically by Ishak [19]. Yao et al. [20]
found an exact solution for boundary layer flow past a
convectively heated permeable stretching/shrinking wall.
Rahman et al. [21] studied mixed convective flow past a
vertical flat plate in the presence of convective bound-
ary condition. Mustafa et al. [22] investigated the Maxwell
fluid over a heated exponentially stretching surface im-
mersed in a nanofluid. Ibrahim and Haq [23] studied the
MHD flow of a nanofluid towards a stagnation-point past
a stretching surface with convective boundary condition.
Makinde et al. [24] illustrated MHD stagnation-point flow
of a nanofluid past a connective heated stretching sheet
with slip and radiation effects. Recently, Khan et al. [25]
studied the effect of nonlinear radiation on MHD flow of a
Carreau fluid past a nonlinear stretching surface through
convective boundary condition.

The aim of this study is to consider the boundary-
layer flow of a special non-Newtonian third-grade fluid
past a convectively heated shrinking sheetwith thenonlin-

ear thermal radiation due to solar energy. The Buongiorno
model is used for the third-grade fluidwhich includes both
the Brownian motion and the thermophoresis effects. The
transformed nonlinear equations are solved numerically
using shooting method. As far our knowledge, the objec-
tivewhich has been considered in this research is still to be
ruminated over and therefore yet no to be communicated.

2 Mathematical Formulation

Consider a steady two dimensional laminar flowwith heat
and mass transfer of a special non-Newtonian fluid past a
heated shrinking sheet with nonlinear thermal radiation
filled with nanoparticles. It is presumed that x-axis mea-
sured along the shrinking sheet and y-axis normal to it.
It is also assumed that the shrinking surface velocity is
uw(x) = ax with a > 0. Further, it is assumed that at
the lower surface, the sheet is heated convectively with a
temperature Tf which provides a heat transfer coefficient
hf . The physical equations that govern the steady flow are
written as (Naganthran et al. [6] and Mustafa et al. [22]):

∂u
∂x + ∂v

∂y = 0 (1)

u ∂u∂x + v ∂u∂y = ν ∂
2u
∂y2 + 6κ

(
∂u
∂y

)2 ∂2u
∂y2 (2)

u ∂T∂x + v ∂T∂y = α ∂
2T
∂y2 + Λ

[
DB

∂C
∂y

∂T
∂y +

(
DT
T∞

)(
∂T
∂y

)2
]

− 1
(ρcp)f

∂qr
∂y (3)

u ∂C∂x + v ∂C∂y = DB
∂2C
∂y2 +

(
DT
T∞

)(
∂T2
∂y2

)
(4)

The physical boundary conditions are

u = −uw(x), v = −v0, − k ∂T∂y = hf
(
Tf − T

)
,C = Cw at y = 0,

u → 0, T → T∞, C → C∞asy → ∞.
(5)

where u and v are the velocity components in the x− and
y−axes, respectively, α is the thermal diffusivity, v is the
kinematic viscosity, ρ is the density, T is the temperature,
T∞ is the free stream temperature, Tf is the convectivefluid
temperature, C is the concentration of nanoparticle, DB
and DT are the coefficients of Brownian and thermophore-
sis diffusion, respectively, κ is the non-Newtonian parame-
ter, Λ is the ratio between the effective heat capacity of the
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nanoparticle material and specific heat capacitance of the
fluid, (ρcp)f is the specific heat capacitance of nanofluid.

Following Khan et al. [25], the radiative heat flux qr is
expressed as

qr = −4σ
*

3k*
∂T
∂y = −16σ

*

3k* T3 ∂T∂y (6)

where σ* is the Stefan–Boltzmann constant and is the
mean absorption coefficient. Using Eq. (6), Energy Eq. (3)
can be written as

u ∂T∂x + v ∂T∂y = ∂
∂y

[(
α + 16σ*T3

3(ρcp)f k*

)
∂T
∂y

]

+ Λ
[
DB

∂C
∂y

∂T
∂y +

(
DT
T∞

)(
∂T
∂y

)2
]

(7)

Now, we introduce the similarity transformation:

η = y
√
a
v , ψ =

√
avxf (η),

θ(η) = T − T∞
Tf − T∞

, ϕ(η) = C − C∞
Cw − C∞

. (8)

Here η is the similarity variable,ψ is the stream function
and we get T = T∞ [1 + (θw − 1) θ] with θw > 1, where
θw = Tf

T∞ is being the temperature ratio parameter. Here
for similarity solution, we assumed that κ = κ0/x2, where
κ0 > 0 being a constant (see Naganthran et al. [6] and
Ishak [19]).

In view of relation (8), Eqs. (2), (4) and (7) are trans-
muted into the following equations:

(1 + Kf ′′2)f ′′′ + ff ′′ + f ′2 = 0 (9)

θ′′ + Pr fθ′ + 4
3Rd

d
dη

[
{1 + (θw − 1) θ}3θ′

]
+ Pr

[
Nbθ′ϕ′ + Nt

(
θ′
)2] = 0 (10)

ϕ′′ + Lefϕ′ + Nt
Nb θ

′′ = 0 (11)

subject to the following boundary conditions:

f (0) = S, f ′(0) = −1, θ′(0) = −γ
(
1 − θ(0)

)
, ϕ(0) = 1,

f ′(∞) → 0, θ(∞) → 0, ϕ(∞) → 0.
(12)

where the prime denotes differentiation with respect to
η, K = 6κ0a3/ν2 is the dimensionless non-Newtonian
parameter, Pr = ν/α is the Prandtl number, Nb =
τDB (Cw − C∞) /ν is the Brownian motion parameter, Nt =
τDT

(
Tf − T∞

)
/T∞ν is the thermophoresis parameter, γ =

hf
√
ν/a/k is the convective parameter, Rd = kk*/4σ*T3∞

is the thermal radiation parameter, S = v0/
√
aν > 0 is the

suction parameter and Le = ν/DB is the Lewis parameter.

The important physical quantities of interest are the
local skin-friction coefficient, the local Nusselt number
and the local Sherwood number are defined as:

Cfx =
τw
ρu2w

, Nux = − xqw
k(Tf − Tw)

, Shx =
xmw

DB(Cw − C∞)
,

(13)
where τw is the shear stress in x−direction (see Nagan-
thran et al. [6]), qw is the heat flux andmw is the mass flux
given as

τw = μ
(
∂u
∂y

)
y=0
, qw = −k

(
∂T
∂y

)
w
+ (qr)w ,mw = −DB

(
∂C
∂y

)
y=0
,

(14)

Using (8), we get

CfRe1/2x = f ′′(0), ShxRe−1/2x = −ϕ′(0),
NuxRe−1/2x = −

[
1 + 4

3Rd
{
1 + (θw − 1) θ(0)

}3] θ′(0).
(15)

where Rex = xuw(x)/v is the Reynolds number.

3 Stability Analysis

As suggested by Merkin [27] and Weidman et al. [28], we
test the stability analysis by taking the unsteady form of
Eqs. 1–4.

∂u
∂x + ∂v

∂y = 0 (16)

∂u
∂t + u

∂u
∂x + v ∂u∂y = v ∂

2u
∂y2 + 6κ

(
∂u
∂y

)2 ∂2u
∂y2 (17)

∂T
∂t + u

∂T
∂x + v ∂T∂y = α ∂

2T
∂y2

+ τ
[
DB

∂C
∂y

∂T
∂y +

(
DT
T∞

)(
∂T
∂y

)2
]
− 1
(ρcp)f

∂qr
∂y (18)

∂C
∂t + u

∂C
∂x + v ∂C∂y = DB

∂2C
∂y2 +

(
DT
T∞

)(
∂2T
∂y2

)
(19)

where t represents the time. This introduce a new variable
in similarity transformation:

η = y
√
a
v , ψ =

√
avxf (η, τ), θ(η, τ) = T − T∞

Tf − T∞
,

ϕ(η, τ) = C − C∞
Cw − C∞

, τ = at. (20)

Using Eq. (20), Eqs. (17)–(19) can be written as(
1 + K

(
∂2f
∂η2

)2) ∂3f
∂η3 + f ∂

2f
∂η2 −

(
∂f
∂η

)
− ∂2f
∂η∂τ = 0

(21)
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[
3Rd + 4

(
1 + (θw − 1)θ

)3] ∂2θ
∂η2 + 3Pr Rdf

∂θ
∂η

+ 12(θw − 1)
(
1 + (θw − 1)θ

)2( ∂θ
∂η

)2

+ 3Rd Pr
(
Nb ∂θ∂η

∂ϕ
∂η + Nt

(
∂θ
∂η

)2
)
− 3Pr Rd

∂θ
∂τ = 0

(22)

∂2ϕ
∂η2 + Lef ∂ϕ∂η + Nt

Nb
∂2θ
∂η2 − Le ∂ϕ∂τ = 0 (23)

subject to the following boundary conditions

f (0, τ) = S, ∂f∂η (0, τ) = −1, ∂θ∂η (0, τ) = −γ[1 − θ(0, τ)],

ϕ(0, τ) = 1, ∂f (η, τ)∂η → 0, θ(η, τ) → 0, ϕ(η, τ) → 0

as η → ∞. (24)

To test the stability of the steady flow solution f (η) =
f0(η), θ(η) = θ0(η), and ϕ(η) = ϕ0(η) satisfying the
boundary value problem (9)–(11), we can write

f (η, τ) = f0(η) + e−ατF(η, τ),
θ(η, τ) = θ0(η) + e−ατG(η, τ),
ϕ(η, τ) = ϕ0(η) + e−ατH(η, τ),

(25)

where α is an unknown eigenvalue, F(η, τ), G(η, τ) and
H(η, τ) are small relative to f0(η), θ0(η) and ϕ0(η). Substi-
tuting (25) into (21)–(23), we get the following linearized
equations

(1 + Kf ′′20 )∂
3F
∂η3 + (f0 + 2Kf ′′0 + f ′′′0 )∂

2F
∂η2 − 2f ′0

∂F
∂η + f ′′0 F

− ∂2F
∂η∂τ + α ∂F∂η = 0 (26)

(3Rd + 4)
∂2G
∂η2 + 3PrRd

(
f0
∂G
∂η + θ′0F

)

+ 3RdPrNb
(
θ′0
∂H
∂η + ϕ′

0
∂G
∂η

)
+ 6RdPrNtθ′0

∂G
∂η

+ 4(θw − 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+6θ′0 ∂G∂η + 3(θw − 1)
(
θ0 ∂

2G
∂η2 + θ

′′
0G
)

+6(θw − 1)
(
2θ0θ′0 ∂G∂η + θ′20 + G

)
+(θw − 1)2

(
θ30 ∂

2G
∂η2 + θ

2
0θ′′0G

)
+3(θw − 1)2

(
θ20 ∂

2G
∂η2 + 2θ0θ

′′
0G
)

+6(θw − 1)2
(
θ20θ′0 ∂G∂η + θ0θ′20 G

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 3PrRdαG − 3PrRd
∂G
∂τ = 0 (27)

∂2H
∂η2 + Le

(
f0
∂H
∂η + ϕ′

0 + F
)
+ Nt
Nb

∂2G
∂η2

+ Le
(
αH − ∂H

∂τ

)
= 0 (28)

along with the boundary conditions

F(0, τ) = 0, ∂F∂η (0, τ) = 0, ∂G∂η (0, τ) = γG(0, τ),

H(0, τ) = 0, ∂F(η, τ)∂η → 0, G(η, τ) → 0, H(η, τ) → 0

as η → ∞. (29)

As proposed by Weidman et al. [28], we analyze the
stability of the steady flowandheat transfer solution f0(η),
θ0(η) and ϕ0(η) by setting τ = 0, and thus F = F0(η),
G = G0(η) and H = H0(η) in (26)–(29) to identify initial
growth or decay of the solution (25). To test our numerical
procedure we have to solve the linear eigenvalue problem

(1 + Kf ′′20 )F′′′0 + (f0 + 2Kf ′′0 f ′′′0 )F′′0 − 2f ′0F′0 + f ′′0 F0 + αF′0 = 0
(30)

(3Rd + 4)G′′
0 + 3PrRd(f0G′

0 + θ′0F0)
+ 3RdPrNb(θ′0H′

0 + ϕ′
0G′

0) + 6RdPrNtθ′0G′
0

+ 4(θw − 1)

⎡
⎢⎢⎢⎢⎢⎣

6θ′0G′
0 + 3(θw − 1)(θ0G′′

0 + θ′′0G0)
+6(θw − 1)(2θ0θ′0G′

0 + θ′20 G0)
+(θw − 1)2(θ30G′′

0 + θ20θ′′0G0)
+3(θw − 1)2(θ20G′′

0 + 2θ0θ′′0G0)
+6(θw − 1)2(θ20θ′0G′

0 + θ0θ′20 G0)

⎤
⎥⎥⎥⎥⎥⎦

+ 3PrRdαG0 = 0 (31)

H′′
0 + Le(f0H′

0 + ϕ′
0F0) +

Nt
NbG

′′
0 + LeαH0 = 0 (32)

along with the boundary conditions

F0(0) = 0, F′0(0) = 0, G′
0(0) = γG0(0),

H0(0) = 0, F′0(η) → 0, G0(η) → 0, H0(η) → 0 as η → ∞.
(33)

It is worth mentioning that for a particular values of
physical parameters, the corresponding steady flow solu-
tion f0(η), θ0(η) and ϕ0(η), the stability of the steady flow
solution is determined by the smallest eigenvalue α. Solu-
tions of the problem (30)–(32) give an infinite set of eigen-
values α1 < α2 < α3 < . . .; if the smallest eigenvalue
is positive (α1 ≥ 0) then there is an initial decay of distur-
bances and the flow is stable, and if is negative then there
is an initial growth of disturbances, which indicates that
the flow is unstable. As suggested by Harris et al. [29], the
range of possible eigenvalues can be obtained by relaxing
a boundary condition on F0(η) or G(η) or H0(η). For the
current problem, we relax the condition G0(η) → 0 as and
for a fixed value of , we solve the system of equations (30)–
(32) subject to the boundary conditions (33), alongwith the
new boundary condition G′

0(0) = 1.
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Fig. 1: The velocity profiles for different values of K.

4 Results and discussion

The set of transmuted non-linear equations (9)–(11) along
with the boundary condition (12) are numerically solved
using shootingmethod. Theobtainednumerical results for
different physical parameters involving in the problem are
discussed through graphs and tables. Table 1 displays the
comparison of our results of −θ′(0) and −ϕ′(0) with the
available results in a limiting cases and show good agree-
ment.

The velocity, temperature distribution and the con-
centration of nanoparticle for different values of the non-
Newtonian parameter K are depicted in Figs. 1–3. Fig. 1
shows that the velocity profile decreases with increasing
values of K for the first solution and therefore, themomen-
tum boundary layer thickness increases while for the sec-
ond solution, the velocity profile increases. On the other
hand, the temperature distribution and concentration of
nanoparticle increase with K for the first solution as por-
trayed in Figs. 2 and 3 and consequently, the thermal and
concentration boundary layers increase. It is also found
from these figures that the velocity, temperature and the
concentration of nanoparticle are larger for the special
third-grade fluid compared with the Newtonian fluid (K =
0). Further, these profiles satisfy the boundary conditions
asymptotically and the existence ofmultiple solutions that
support the validation of our obtained numerical results.

Fig. 4 shows that due to increasing the value of
the Brownian parameter Nb, the temperature profile in-
creases, whereas the opposite behavior is observed for the
concentration profile as shown in Fig. 5. Thus, the ther-
mal boundary layer thickness increases, whereas the con-
centration boundary layer thickness decreases. This is due
to the fact that the kinetic energy of the nanoparticles in-
creases due to the strength of this chaotic motion and as
a result, the fluids temperature increases. This is because
the Brownian motion at the nanoscale and the molecu-

Fig. 2: The temperature profiles for different values of K.

Fig. 3: The concentration profiles for different values of K.

Fig. 4: The temperature profiles for different values of Nb.

Fig. 5: The concentration profiles for different values of Nb.
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Table 1: Comparison of −θ′(0) and −ϕ′(0) when S = 0, Pr = Le = 10, Rd = γ = ∞ in case of stretching sheet f ′(0) = 1.

Nt Nb Makinde and Aziz [27] Present
−θ′(0) −ϕ′(0) −θ′(0) −ϕ′(0)

0.1 0.1 0.9524 2.1294 0.9524 2.1294
0.2 0.1 0.5056 2.3819 0.5056 2.3819
0.3 0.1 0.2522 2.4100 0.2522 2.4100
0.4 0.1 0.1194 2.3997 0.1194 2.3997
0.5 0.1 0.0543 2.3836 0.0543 2.3836
0.1 0.2 0.6932 2.2740 0.6932 2.2740
0.1 0.3 0.5201 2.5286 0.5201 2.5286
0.1 0.4 0.4026 2.7952 0.4026 2.7952
0.1 0.5 0.3211 3.0351 0.3211 3.0351

Fig. 6: The temperature profiles for different values of Nt.

Fig. 7: The concentration profiles for different values of Nt.

Fig. 8: The temperature profiles for different values of γ.

Fig. 9: The concentration profiles for different values of γ.

Fig. 10: The temperature profiles for different values of Rd.

Fig. 11: The concentration profiles for different values of Rd.
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Fig. 12: The skin friction CfRe1/2x versus S for different values of K.

Fig. 13: The Nusselt number NuxRe−1/2x versus S for different values
of K.

Fig. 14: The Sherwood number ShxRe−1/2x versus S for different val-
ues of K.

lar levels is an important mechanism of the nanoscale
level that governs the thermal behaviors. In systems using
nanofluids, the Brownian motion takes place because of
the size of nanoparticles which can change the properties
of heat transfer. As the scale size of particles approaches
the scale of nanometer, the particles Brownianmotion and
its result on the surrounding liquids play a vital role inheat
transfer characteristics. Figs. 6 and 7 show the effects of
the thermophoresis parameter Nt on the temperature and

the concentration of nanoparticle. These figures show that
the temperature profile and the concentration of nanopar-
ticle increase with increasing Nt. This is because diffusion
penetrates deeper into the fluid due to increasing values
of Nt which causes the thickening of the thermal bound-
ary layer as well as the concentration boundary layer.

The effect of the convective parameter γ on the temper-
ature distribution and concentration of nanoparticle are
perused in Figs. 8 and 9, respectively. Fig. 8 reveals that
due to the increase in the value of γ resulting from the
stronger convective heating at the surface, the tempera-
ture gradient at the surface of the sheet increases. This al-
lows the thermal effect to penetrate deeper into the qui-
escent fluid. Therefore, the temperature and the thermal
boundary layer thickness increase with increasing values
of γ for the first and second solutions. It is worth mention-
ing that the constant wall temperature θ(0) = 1 can be re-
covered by taking sufficiently large values of the convec-
tive parameter. Further γ = 0 corresponds to the case of
an insulated sheet. Fig. 9 shows that the concentration of
nanoparticle as well as the concentration boundary layer
increaseswith larger values of γ for both solutions. Figs. 10
and 11 show that the temperature and the concentration
of nanoparticle decrease as the radiation parameter Rd in-
creases for the first solution as well as for the second solu-
tion. Thus, the thermal and concentration boundary lay-
ers thicknesses become thinner and thinner for both solu-
tions. This is due to the fact that a large value of the radia-
tion parameter implies the dominance of conduction and
therefore, the thermal and concentration boundary layer
thicknesses decrease.

The skin-friction coefficient Cf Re1/2x , theNusselt num-
ber NuxRe−1/2x and the Sherwood number ShxRe−1/2x ver-
sus S for different values of the non-Newtonian parameter
[K = 0 (Newtonian fluid), 1,2] are illustrated in Figs. 12–14,
respectively and in Table 2. Fig. 12 shows that the skin fric-
tion decreases with increasing K for first solution as well
as for second solution. On the other hand, the values of the
Nusselt number and the Sherwood number also decrease
with increasing K in case of the first solution, while the
values increase for the second solution as shown inFigs. 13
and 14. The behavior of these results is also shown through
Table 2. Dual solutions are achieved for S ≥ Sc and no so-
lution for S < Sc where Sc is the critical value of S. Further,
the critical values has been displayed in Table 3. The larger
characteristics of the non-Newtonian special third-grade
fluid increase the values of the critical point. Thus, the spe-
cial third-grade fluid accelerates the boundary layer sepa-
ration.
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Table 2: Values of skin friction, Nusselt number and Sherwood number for different values of K when Nb = 1, Nt = 1.5, Le = 1, Qw =
1.5, Rd = 2, γ = 0.3 are fixed.

S CfRe1/2x NuxRe−1/2x ShxRe−1/2x
First solution Second solution First solution Second solution First solution Second solution

2.8
0 2.3798 0.1577 1.0749 1.0454 2.2400 1.8205
1 1.3511 0.1658 1.0725 1.0456 2.1844 1.8223
2 1.1227 0.1746 1.0712 1.0459 2.1593 1.8244

2.6
0 2.1307 0.3247 1.0669 1.0293 2.0228 1.6267
1 1.2573 0.3209 1.0634 1.0296 1.9643 1.6279
2 1.0446 0.3198 1.0615 1.0299 1.9355 1.6297

2.4
0 1.8633 0.4670 1.0554 1.0094 1.7984 1.4472
1 1.1439 0.4479 1.0501 1.0101 1.7349 1.4493
2 0.9466 0.4386 1.0469 1.0111 1.7000 1.4530

2.2
0 1.5583 0.6140 1.0374 0.9886 1.5592 1.2916
1 0.9858 5868 1.0277 0.9921 1.4829 1.3018
2 0.7860 0.5914 1.0192 0.9977 1.4269 1.3217

Table 3: Critical values of Sc for different values of K when Nb =
1, Nt = 1.5, Le = 1, Qw = 1.5, Rd = 2, γ = 0.3 are fixed.

K Sc
0 1.9990
1 2.0950
2 2.1636

5 Conclusions

This research analyzed the boundary layer flow with heat
and mass transfer of a special third-grade fluid over a
heated shrinking sheet with nonlinear thermal radiation.
The transformed ordinary differential equations are nu-
merically solved using shooting method for different val-
ues of the pertinent parameters. From this study, the fol-
lowing conclusions can be drawn:

1. Dual solutions are achieved for certain values of the
suction parameter.

2. Due to the non-Newtonian parameter, the velocity
of the fluid decreases for the first solution and de-
creases for the second solution. On the other hand,
the temperature and concentration profiles increase
for the first solution and decrease for the second so-
lution.

3. The thermal and concentration boundary layer
thicknesses are enhanced due to the convective pa-
rameter for the first and the second solutions.

4. The thermal radiation reduces the temperature of
the fluid as well as the nanoparticles concentration
for both solutions.

5. Using the Brownian motion mechanism, the distri-
bution of nanoparticles can be arranged in the flow

regime by taking larger values of Nb or Nt and also
cooling of the regime can be achieved by taking
smaller values of Nb or Nt.

We believe that the present results may be used for ex-
plaining the non-Newtonian characteristics and applica-
tions in the tribology field, automotive industry, etc. For
example, inmachineries, the lubricating oils are tested fre-
quently for viscosity as it may affect the oil performance
and thus influence the equipment life span. Since oils are
utilized for a long period of time and still being used, fac-
tors involving the particles of contamination and smoke
from unfinished combustion, may reason them to acquire
on more characteristics of a non-Newtonian fluid at the
lower shear rates. Therefore, the involved physical pa-
rameters and suitable situations for instance, shrinking
sheets, adequate suction, etc. require to be handled and
applied in order to organize the non-Newtonian behavior
of the oil.
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