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Abstract: Mathematical model for an adiabatic tubular
chemical reactor which processes an irreversible exother-
mic chemical reaction has been considered. For steady
state solution for an adiabatic tubular chemical reactor,
the model can be reduced to ordinary differential equa-
tion with a parameter in the boundary conditions. Again
the ordinary differential equation has been converted into
a Hammerstein integral equation which can be solved nu-
merically. B-spline wavelet method has been developed to
approximate the solution of Hammerstein integral equa-
tion. This method reduces the integral equation to a sys-
temof algebraic equations. Thenumerical results obtained
by the presentmethod have been comparedwith the avail-
able results.

Keywords: B-spline, Scaling and Wavelet functions, Mul-
tiresolution analysis, Hammerstein integral equation

1 Introduction

In this paper, a mathematical model has been developed
for an adiabatic tubular chemical reactor [1] which pro-
cesses an irreversible exothermic chemical reaction. For
steady state solution, the model can be reduced to ordi-
nary differential equation with a parameter in the bound-
ary conditions [2] as follow

y′′ − λy′ + F(λ, μ, β, y) = 0, (1)
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with boundary conditions

y′(0) = λy(0), y′(1) = 0, (2)

where
F(λ, μ, β, y) = λμ(β − y) exp(y).

y represents the steady state temperature of the reaction
which has to be determined, and the parameters λ, μ and
β represent the Peclet number, the Damkohler number
and the dimensionless adiabatic temperature rise, respec-
tively. This problem has been studied bymany researchers
[1–4]. The existence of numerical solution of this problem
for particular parameter range has been discussed in [1–
4].
In order to solve theproblem (1), it is converted intononlin-
ear Hammerstein integral equation by using Green’s func-
tion. The Hammerstein integral form of eq. (1) with bound-
ary conditions eq. (2) can be defined as

y(x) =
1∫

0

K(x, t)g(t, y(t))dt, 0 ≤ x ≤ 1, (3)

where

K(x, t) =
{
eλ(x−t), if 0 ≤ x ≤ t,
1, if t ≤ x ≤ 1,

and
g(t, y(t)) = μ(β − y) exp(y).

In this paper, we consider eq. (3) as Hammerstein inte-
gral equation in the space of continuous functions on the
closed interval. Throughout, we assume λ and μ are pos-
itive, and β is non-negative. Our main work is to solve
this Hammerstein integral equation by B-spline wavelet
method. Compactly supported linear semi-orthogonal B-
spline wavelets have been applied to solve the integral
equations of different forms [5–7]. Yousefi et al. [8] have
solved age-structured population models by using the op-
erational matrices of Bernstein polynomials. Nonlinear
integral equations of the Hammerstein-type have been
solved by using Double Exponential Transformation in
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[9]. Hammerstein integral equations have been solved by
many authors in [10–13]. The learned researchers SahaRay
et al. have solved nonlinear Fredholm integral equations
[5] and system of linear and nonlinear Fredholm integral
equations [6, 7] by B-spline wavelet method. Also, the B-
spline method has been developed for solving fractional
differential equations [14]. The B-spline wavelet method
converts the Hammerstein integral equation to a system
of algebraic equations and that algebraic equations sys-
tem again can be solved by any of the usual numerical
methods. The obtained results have been compared with
the results obtained by Adomian’s decomposition method
(ADM), contractionmappingprinciple (CMP) and shooting
method (SM) [2].

2 Wavelet and scaling function on
bounded interval

Let m and n be two positive integers and

a = t−m+1 = ... = t0 < t1 < ... < tn = tn+1 = ... = tn+m−1 = b,
(4)

be an equally spaced knots sequence [15]. The functions

Bm,j,T(t) =
t − tj

tj+m−1 − tj
Bm−1,j,T(t) +

tj+m − t
tj+m − tj+1

Bm−1,j+1,T(t),

j = −m + 1, ..., n − 1,
and

B1,j,T(t) =
{
1, if t ∈ [tj , tj+1),
0, otherwise,

(5)

are called cardinal B-spline functions of order m ≥ 2 for
the knot sequence T = {ti}n+m−1i=−m+1, and supp Bm,j,T(t) =
[tj , tj+m]

⋂
[a, b].

For the sake of simplicity, suppose [a, b] = [0, n] and
tk = k, k = 0, ..., n. The Bm,j,T = Bm(t − j), j =
0, ...n − m, are interior B-spline functions, while the re-
maining Bm,j,T , j = −m+1, ..., −1 and j = n−m, ..., n−1,
are boundary B-spline functions for the bounded interval
[0, n]. Since the boundary B-spline functions at 0 are sym-
metric reflection of those at n, it is sufficient to construct
only the first half functions by simply replacing twith n−t.

By considering the interval [a, b] = [0, 1], at any level
j ∈ Z

+, the discretization step is 2−j, and this generates
n = 2j number of segments in [0, 1] with knot sequence.

T(j) =

⎧⎪⎪⎨
⎪⎪⎩

t(j)−m+1 = ... = t(j)0 ,
t(j)k = k

2(j) , k = 1, ..., n − 1,
t(j)n = ... = t(j)n+m−1 = 1.

(6)

Let j0 be the level for which 2j0 ≥ 2m − 1; for each
level, j ≥ j0 the scaling function of order m can be define
as follows in [6, 16]

φm,j,i(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bm,j0,i(2
j−j0 t), i = −m + 1, ..., −1

Bm,j0,2j−m−i(1 − 2j−j0 t),
i = 2j − m + 1, ..., 2j − 1

Bm,j0,0(2
j−j0 t − 2−j0 i), i = 0, ..., 2j − m.

(7)
And the two scale relation for m-order semiorthogonal
compactly supported B-wavelet functions are defined as
follows:

ψm,j,i−m =
2i+2m−2∑

k=i

qi,kBm,j,k−m , i = 1, ...,m − 1, (8)

ψm,j,i−m =
2i+2m−2∑
k=2i−m

qi,kBm,j,k−m , i = m, ..., n−m+1, (9)

ψm,j,i−m =
n+i+m−1∑
k=2i−m

qi,kBm,j,k−m , i = n−m+2, ..., n, (10)

where qi,k = qk−2i.
Hence, there are 2(m − 1) boundary wavelets and (n −

2m + 2) inner wavelets in the bounded interval [a, b]. Fi-
nally by considering the level j with j ≥ j0, the B-wavelet
function in [0, 1] can be expressed as follows:

ψm,j,i(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψm,j0,i(2
j−j0 t) i = −m + 1, ..., −1

ψm,2j−2m+1−i,i(1 − 2j−j0 t)
i = 2j − 2m + 2, ..., 2j − m

ψm,j0,0(2
j−j0 t − 2−j0 i) i = 0, ..., 2j − 2m + 1.

(11)
The scaling functions φm,j,i(t) occupym segments and the
wavelet functions ψm,j,i(t) occupy 2m − 1 segments.

Therefore, the condition 2j ≥ 2m − 1 must be satisfied
in order to have at least one inner wavelet. In the follow-
ing, the scaling functions and wavelet functions are used
in this paper, for j0 = j = 2 and m = 2, are reported in
[17, 18].

Some of the important properties relevant to the
present work are given in eq. [15] as:

1)Vanishingmoment:Awavelet is said tohave a van-
ishing moment of order m if

∞∫
−∞

tpψ(t) = 0; p = 0, ...,m − 1. (12)

All wavelets must satisfy the above condition for p = 0.
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2)Semiorthogonality: The wavelet ψk,s form a
semiorthogonal basis if〈

ψk,s , ψi,j
〉
= 0; k ≠ i; ∀ k, s, i, j ∈ Z. (13)

3 Function approximation

A function f (x) defined over [0, 1]may be approximated by
B-spline as [19, 20]

f (x) =
2j0−1∑
i=−1

cj0,iϕj0,i(x) +
∞∑

k=j0

2k−2∑
j=−1

dk,jψk,j(x), (14)

where ϕj0,i and ψk,j are scaling and wavelet functions, re-
spectively. In particular, for j0 = 2, if the infinite series in
eq. (14) is truncated at M, then eq. (14) can be written as
[16, 18]

f (x) ≈
2j0−1∑
i=−1

cj0,iϕj0,i(x) +
M∑

k=j0

2k−2∑
j=−1

dk,jψk,j(x) = CTΨ(x),

(15)
where C and Ψ are (2M+1 + 1) × 1 column vectors given by

C =[c2,−1, c2,0, ..., c2,3, d2,−1, ..., d2,2, d3,−1, ..., d3,6, ...,

dM,−1, ..., dM,2M−2]
T , (16)

Ψ =[ϕ2,−1, ϕ2,0, ..., ϕ2,3, ψ2,−1, ..., ψ2,2, ψ3,−1, ...,

ψ3,6, ..., ψM,−1, ..., ψM,2M−2]
T , (17)

with

c2,k =
1∫

0

f (x)ϕ̃2,k(x)dx, k = −1, 0, ..., 3, (18)

dj,k =
1∫

0

f (x)ψ̃j,k(x)dx, j = 2, 3...,M, k = −1, 0, ..., 2j−2,

(19)
where ϕ̃2,k(x) and ψ̃j,k(x) are dual functions ofϕ2,k(x) and
ψj,k(x) respectively. These can be obtained by linear com-
bination of ϕ2,k(x), k = −1, 0, ..., 3 and ψj,k(x, ) j =
2, 3, ...,M, k = −1, 0, ..., 2j − 2 as follows.
Let

Φ = [ϕ2,−1(x), ϕ2,0(x), ϕ2,1(x), ϕ2,2(x), ϕ2,3(x)]T . (20)

Ψ̄ = [ψ2,−1(x), ψ2,0(x), ..., ψM,2M−2(x)]
T . (21)

Using eqs. (7) and (20) we get,

1∫
0

ΦΦTdx = P1 =

⎛
⎜⎜⎜⎜⎜⎝

1
12

1
24 0 0 0

1
24

1
6

1
24 0 0

0 1
24

1
6

1
24 0

0 0 1
24

1
6

1
24

0 0 0 1
24

1
12

⎞
⎟⎟⎟⎟⎟⎠

and from the eqs. (11) and (21) we have,

1∫

0

Ψ̄ Ψ̄Tdx = P2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N4×4
1
2N8×8

.
.

.
1

2M−2 N2M×2M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where P1 and P2 are 5 × 5 and (2M+1 − 4) × (2M+1 − 4) ma-
trices, respectively, and N is a five-diagonal matrix given
by

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
27

1
96

− 1
864

0 0 . . . 0
1
96

1
16

5
432

− 1
864

0 . . . 0
− 1

864
5
423

1
16

1
96

− 1
864

. . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 . . . − 1

864
5
432

1
16

5
432

− 1
864

0 . . . 0 − 1
864

5
432

1
16

1
96

0 . . . 0 0 − 1
864

1
96

2
27

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Suppose Φ̃ and ˜̄Ψ are the dual functions of Φ and Ψ̄ , re-
spectively, given by

Φ̃ = [ϕ̃2,−1(x), ϕ̃2,0(x), ϕ̃2,1(x), ϕ̃2,2(x), ϕ̃2,3(x)]T , (22)

˜̄Ψ = [ψ̃2,−1(x), ψ̃2,0(x), ..., ψ̃M,2M−2(x)]
T . (23)

Combining eqs. (22) and (23), we will get

Ψ̃ =[ϕ̃2,−1(x), ϕ̃2,0(x), ϕ̃2,1(x), ϕ̃2,2(x), ϕ̃2,3(x), ψ̃2,−1(x),

ψ̃2,0(x), ..., ψ̃M,2M−2(x)]
T . (24)

Using eqs. (20), (22) and eqs. (21), (23) we have

1∫
0

Φ̃ΦTdx = I1,
1∫

0

˜̄ΨΨ̄Tdx = I2, (25)

where I1 and I2 are 5 × 5 and (2(M+1) − 4) × (2(M+1) − 4)
identity matrices respectively. Then from matrices P1 and
P2 we get,

Φ̃ = P−11 Φ, ˜̄Ψ = P−12 Ψ̄ . (26)

4 Convergence analysis

Theorem 1:

We assume that f ∈ C2[0, 1] is represented by linear
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B-spline wavelets, where Ψ has 2 vanishing moments.
Then |dj,k| ≤ αβη2 2

−3j

2! , where α = max|f ′′(t)|t∈[0,1], β =∫ 2j−k
−k ψ̃(x)dx and η ∈ (−k, 2j − k).

Proof. Taylor expansion of f ∈ C2[0, 1] about arbitrary
x0 ∈ [0, 1] can be written as

f (x) = f (x0) + (x − x0)f ′(x0) +
(x − x0)2

2! f ′′(ξ ), ξ ∈ (0, 1).
(27)

Now f (x) can be presented by B-spline wavelets as

f (x) = CTΨ(x)

where

dj,k =
1∫

0

f (x)ψ̃j,k(x)dx. (28)

Putting eq. (27) in eq. (28), we get

dj,k =
1∫

0

f (x0)ψ̃j,k(x)dx +
1∫

0

(x − x0)f ′(x0)ψ̃j,k(x)dx

+
1∫

0

(x − x0)2
2! f ′′(ξ )ψ̃j,k(x)dx. (29)

Putting x0 = k
2j and u = 2jx − k in eq. (29), we have

dj,k = 2−j f (k/2j)
2j−k∫
−k

ψ̃j,k(u)du+2−2j f ′(k/2j)
2j−k∫
−k

uψ̃j,k(u)du

+ f ′′(ξ )
2! 2−3j

2j−k∫
−k

u2ψ̃j,k(u)du. (30)

Suppose T is a linear transformation such that

Tψ = ψ̃,

then taking the linear transformation T of first two integral
of eq. (30) we have

dj,k =2−j f (k/2j)
2j−k∫
−k

T(ψj,k(u))du

+ 2−2j f ′(k/2j)
2j−k∫
−k

uT(ψj,k(u))du

+ f ′′(ξ )
2! 2−3j

2j−k∫
−k

u2ψ̃j,k(u)du

dj,k =2−j f (k/2j)T

⎛
⎜⎝

2j−k∫
−k

ψj,k(u)du

⎞
⎟⎠

+ 2−2j f ′(k/2j)T

⎛
⎜⎝

2j−k∫
−k

uψj,k(u)du

⎞
⎟⎠

+ f ′′(ξ )
2! 2−3j

2j−k∫
−k

u2ψ̃j,k(u)du. (31)

According to vanishing moments of order m, i.e.
∞∫

−∞

xpψ(x)dx = 0, p = 0, 1, ...,m − 1,

the first two integrals of eq. (31) are zero. Then we have

dj,k =
f ′′(ξ )
2! 2−3j

2j−k∫
−k

u2ψ̃j,k(u)du. (32)

Applying mean value theorem for integral in eq. (32), we
have

dj,k =
f ′′(ξ )
2! 2−3jη2

2j−k∫
−k

ψ̃j,k(u)du, η ∈ (−k, 2j − k).

Hence
| dj,k |≤ αβη2 2

−3j

2! .

Theorem 2:

Consider the previous theorem and assume that ej(x) be
the error of approximation in Vj , then

|ej(x)| = O(2−2j).

Proof. Any function f (x) = L2[0, 1] can be approximated
by linear B-spline wavelets as

f (x) =
3∑

k=−1

ckφ2,k +
∞∑
i=2

2i−2∑
j=−1

di,jψi,j . (33)

If the above function truncated at M, then

f (x) ∼= f *(x) =
3∑

k=−1

ckφ2,k +
M∑
i=2

2i−2∑
j=−1

di,jψi,j . (34)

From eq. (33) and eq. (34), the error term can be calculated
as (without loss of generality)

ej(x) =
∞∑
l=j

2l−2∑
k=−1

dl,kψl,k . (35)
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Setting

Cl = Max
{∣∣ψl,k(x)

∣∣ , k = −1, ..., 2l − 2
}
. (36)

Using Theorem 1 together with eq. (36), we obtain

|dl,kψl,k(x)| ≤ αβη2Cl
2−3l
2! .

This implies

2l−2∑
k=−1

|dl,kψl,k(x)| ≤ αβη2Cl
2−2l
2! .

Therefore, from eq. (35), we have

|ej(x)| ≤ αβ
2! η

2
∞∑
l=j

Cl2−2l .

Hence
| ej(x) |= O(2−2j).

5 Application of B-spline wavelet
method to the Hammerstein
integral equations

In this section, we have solved the nonlinear Fredholm
Hammerstein integral equation defined in eq. (3) using B-
spline wavelets. First, we assume

g(x, y(x)) = z(x) 0 ≤ x ≤ 1. (37)

Now from eq. (15), we can approximate the functions z(x)
and y(x) as

z(x) = ATΨ(x), (38)

y(x) = BTΨ(x), (39)

where A and B are (2M+1 + 1) × 1 column vectors similar to
C as in eq. (16)
Again using the dual of wavelet functions, we can approx-
imate K(x, t) as follows.

K(x, t) = Ψ̃T(x)ΘΨ̃(x), (40)

where

Θ =
1∫

0

⎡
⎣ 1∫
0

K(x, t)Ψ(t)dt

⎤
⎦Ψ(x)dx.

From eqs. (37)-(40), we will get

1∫
0

K(x, t)g(t, y(t))dt =
1∫

0

ATΨ(t)Ψ̃T(t)ΘΨ̃(x)dt

=AT

⎡
⎣ 1∫
0

Ψ(t)Ψ̃T(t)dt

⎤
⎦ΘΨ̃(x)

=ATΘΨ̃(x), (41)

since
1∫

0

Ψ(t)Ψ̃T(t)dt = I.

Applying eqs. (37)-(41) in the eq. (3), we get

BTΨ(x) = ATΘΨ̃(x). (42)

Multiplying ΨT(x) both sides of eq. (42) from the right and
integrating with respect to x from 0 to 1, we get

BTP = ATΘ, (43)

where P is a (2M+1 + 1) × (2M+1 + 1) square matrix given by

P =
1∫

0

Ψ(x)ΨT(x)dx =
(

P1
P2

)
,

and
1∫

0

Ψ̃(x)ΨT(x) = I.

Eq. (43) gives a system of (2(M+1) + 1) algebraic equations
with 2(2(M+1) + 1) unknowns for A and B given in (38) and
(39).
Again we utilize the following equation

g(x, BTΨ(x)) = ATΨ(x), (44)

with the collocation points

xs =
s − 1
2M+1 , s = 1, 2, ...2M+1 + 1. (45)

Eq. (44) gives a system of (2(M+1) + 1) algebraic equations
with 2(2(M+1) + 1) unknowns for A and B.

Combining eqs. (43) and (44), we have total number
of 2(2(M+1) + 1) algebraic equations with same number
of unknowns for A and B. Solving the system for the un-
known coefficients in the vectors A and B, we can obtain
the solution y(x) = BTΨ(x). The numerical results ob-
tained by B-spline wavelet method are cited in Table 1.
Also the Table 1 cites the comparison of results obtained by
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Fig. 1: Numerical results obtained by B-spline wavelet method with
the results of other available methods in ref. [2] (for λ = 10, β = 3
and μ = 0.02)

present method and the methods given in ref. [2] (i.e. Ado-
mian’s decompositionmethod, Contractionmapping prin-
ciple and Shooting method). Since, the exact solution of
this problem is not known, from the figure itmanifests that
we obtained accurate results by B-spline wavelet method
in compare to other methods. As, the error of approxima-
tion by B-spline wavelet method is O(2−2j), we will get
more accurate result by increasing the value of j (the level
of resolution). Also, from the table, it is clear that the re-
sults obtained by B-spline method are more accurate than
the results obtained by other method.

Table 1: Comparison of numerical results obtained by B-spline
wavelet method with the results of other available methods in ref.
[2] (for λ = 10, β = 3 and μ = 0.02)

x B-spline wavelet method CMP SM ADM
M = 2 M = 4 [2] [2] [2]

0.0 0.006045 0.006048 0.006079 0.006048 0.006048
0.2 0.018194 0.018193 0.018224 0.018192 0.018192
0.4 0.030424 0.030424 0.030456 0.030424 0.030424
0.6 0.042675 0.042669 0.042701 0.042669 0.042669
0.8 0.054332 0.054368 0.054401 0.054371 0.054371
1.0 0.062030 0.061505 0.061459 0.061458 0.061458

6 Conclusion

In this paper, the compactly supported semiorthogonal
linear B-Spline Wavelets have been applied to solve the
nonlinear Hammerstein integral equation.We have solved
a model for an adiabatic tubular chemical reactor theory
which forms a nonlinear Hammerstein integral equation.
Using thismethod, the integral equation has been reduced
to a system of algebraic equations. The numerical results
obtained by present method have been compared with the
results obtained by Contractionmapping principle, Shoot-
ing method, and Adomian’s decomposition method and

this comparison justifies that the present method gives ac-
curate results with regard to other methods if we increase
the value of M.

Acknowledgement: The authors would like to express
their sincere thanks and gratitude to the anonymous
learned reviewers for their kind suggestions for the better-
ment and improvement of the present paper.

References
[1] Poore AB. A tubular chemical reactor model. A Collection of

Nonlinear Model Problems Contributed to the Proceedings of
the AMS-SIAM, 1989, 28-31.

[2] Madbouly NM, McGhee DF, Roach GF. Adomian’s method for
Hammerstein integral equations arising from chemical reactor
theory. Applied Mathematics and Computation, 2001, 117,
241-249.

[3] Heinemann R, Poore A. Multiplicity stability and oscillatory dy-
namics of the tubular reactor. Chemical Engineering Science,
1981, 36, 1411-1419.

[4] Heinemann R, Poore A. The effect of activation energy on tubu-
lar reactor multiplicity. Chemical Engineering Science, 1982,
37, 128-131.

[5] Sahu PK, Saha Ray S. Numerical Approximate Solutions of
Nonlinear Fredholm Integral Equations of Second Kind Using
B-spline Wavelets and Variational Iteration Method. CMES,
2013, 93(2), 91-112.

[6] Sahu PK, Saha Ray S. Numerical solutions for the system
of Fredholm integral equations of second kind by a new ap-
proach involving semiorthogonal B-spline wavelet collocation
method. Applied Mathematics and Computation, 2014, 234,
368-379.

[7] Sahu PK, Saha Ray S. A new approach based on semi-
orthogonal B-spline wavelets for the numerical solutions of
the system of nonlinear Fredholm integral equations of second
kind. Computational and Applied Mathematics, 2014, 33(3),
859-872.

[8] Yousefi SA, Behroozifar M, Dehghan M. Numerical solution
of the nonlinear age-structured population models by using
the operational matrices of Bernstein polynomials. Applied
Mathematical Modelling, 2012, 36, 945-963.

[9] Zarebnia M. Solving Nonlinear Integral Equations of the
Hammerstein-type by Using Double Exponential Transforma-
tion. Australian Journal of Basic and Applied Sciences, 2010,
4(8), 3433-3440.

[10] Maleknejad K, Hashemizadeh E, Basirat B. Computational
method based on Bernstein operational matrices for nonlinear
Volterra-Fredholm-Hammerstein integral equations. Commun.
Nonlinear Sci. Numer. Simulat., 2012, 17, 52-61.

[11] Lakestani M, Razzaghi M, Dehghan M. Solution of nonlin-
ear Fredholm-Hammerstein integral equations by using
semiorthogonal Spline wavelets. Mathematical Problems in
Engineering, 2005, 2005(1), 113-121.

[12] Mahmoudi Y. Wavelet Galerkin method for numerical solution
of nonlinear integral equation. Applied Mathematics and Com-



P. K. Sahu et al., B-spline Wavelet Method for Solving Fredholm Hammerstein Integral Equation | 169

putation, 2005, 167, 1119-1129.
[13] Rashidinia J, Zarebnia M. New approach for numerical solution

of Hammerstein integral equations. Applied Mathematics and
Computation, 2007, 185, 147-154.

[14] Jafari H, Tajadodi H, Baleanu D. A Numerical Approach for Frac-
tional Order Riccati Differential Equation Using B-Spline Oper-
ational Matrix. Fractional Calculus and Applied Analysis, 2015,
18(2), 387-399.

[15] Mallat SG. A Wavelet Tour of Signal Processing. Academic
Press, 1999.

[16] Maleknejad K, Sahlan MN. The method of moments for so-
lution of second kind Fredholm integral equations based on
B-spline wavelets. Int. J. Comp. Math., 2010, 87(7), 1602-1616.

[17] Goswami JC, Chan AK, Chui CK. On solving First-kind integral
equations using wavelets on a bounded interval. IEEE Trans
Antennas Propag., 1995, 43, 614-622.

[18] Lakestani M, Razzaghi M, Dehghan M. Semiorthogonal Spline
Wavelet Approximation for Fredholm Integro-Differential Equa-
tion. Mathematical Problem in Engineering, 2006, 2006,
96184, 1-12.

[19] Chui CK. An Introduction to Wavelets. vol 1. Academic press
limited, Massachusetts, 1992.

[20] Goswami JC, Chan AK. Fundamentals of wavelets: theory, algo-
rithms and applications. Wiley, New York, 2011.


