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Abstract: In this paper, the fractional derivatives in the
sense of modi�ed Riemann–Liouville and the Riccati-
Bernoulli Sub-ODEmethod are used to construct exact so-
lutions for some nonlinear partial fractional di�erential
equations via the nonlinear fractional Zoomeron equation
and the (3 + 1) dimensional space-time fractional mKDV-
ZK equation. These nonlinear fractional equations can be
turned into another nonlinear ordinary di�erential equa-
tion by complex transform method. This method is ef-
�cient and powerful in solving wide classes of nonlin-
ear fractional order equations. The Riccati-Bernoulli Sub-
ODE method appears to be easier and more convenient by
means of a symbolic computation system.
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1 Introduction
Many physical phenomena such as mathematical biol-
ogy, signal processing, optics, �uid mechanics, electro-
magnetic theory, etc., can be modeled using the fractional
derivatives. Consequently, the investigation of exact solu-
tions for FDEs turns out to be very useful in the study of
scienti�c research.Moreover generalized formsof di�eren-
tial equations are described as fractional di�erential equa-
tions FDEs.
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Recent past, an strong attention has been purposed by
the researchers concerning the fractional partial di�eren-
tial equations FDEs. For an interesting overview and more
applications of nonlinear FDEs, we refer to [1–4].

However, even in most useful studies, there is no an
e�cient and general methods to solve them. Actually, var-
ious analytical and numerical methods to construct ap-
proximate and exact solutions of nonlinear FDEs have
been put forward, such as the fractional sub-equation
method [5, 6], the tanh-sech method [7], the ( G

′

G )− expan-
sionmethod [8, 19], the �rst integralmethod [10], themod-
i�ed Kudryashov method [11], the exponential function
method [12, 13] and others [14, 15].

The novelties of this paper are mainly exhibited in
two aspects: First, we introduce a new method, which
is not familiar, the so called Riccati-Bernoulli Sub-ODE
method. We use this method to solve the nonlinear frac-
tional Zoomeron equation and the (3 + 1) dimensional
space-time fractional mKDV-ZK equation. Moreover, we
show that the proposed method gives in�nite sequence of
solutions. Second, we obtain new types of exact analyti-
cal solutions. Moreover comparing our results with other
results, one can see that our results are new and most ex-
tensive.

Actually, the proposed two fractional equations
have many applications in various �elds of theoretical
physics,applied mathematics and engineering such as
control theory viscoelasticity, modelling heat transfer,
control, di�usion, signal and image processing, andmany
other physical and engineering processes. Inmore details,
the (3 + 1) dimensional space-time fractional mKDV-ZK
equation is derived for a plasma comprised of cool and
hot electrons and a species of �uid ions, which have so
many direct and indirect in engineering models. Further-
more the nonlinear fractional Zoomeron equation is a
convenient model to display the novel phenomena associ-
atedwith boomerons and trappons and further interesting
engineering applications.

The Riccati-Bernoulli Sub-ODE technique has been
used to solve some partial and fractional di�erential equa-
tions, see for example [16–21]. These works show that this
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method is e�cacious, robust and adequate for solving fur-
ther equations.

The rest of the paper is arranged as follows: In Sec-
tion 2, we recall some basic de�nitions and notions deal-
ing with fractional calculus theory, which are used in
the sequel in this article. In Sections 4 and 3, two exam-
ples, namely the nonlinear fractional Zoomeron equation
and the (3 + 1) dimensional space-time fractional mKDV-
ZK equation, are solved by the Riccati-Bernoulli Sub-ODE
method. Conclusion will appear in Section 5.

2 Preliminaries and notation
We introduce some fundamental de�nitions and proper-
ties of fractional calculus theory, which turn to be very
useful in order to complete this paper in a completely uni-
�edway. These are theRiemann–Liouville, theGrünwald-
Letnikov, the Caputo and the modi�ed Riemann-Caputo,
Liouville derivative. The most commonly used de�-
nitions are the modi�ed Riemann–Liouville and Ca-
puto derivatives [22, 23]. Jumarie proposed a modi�ed
Riemann–Liouville derivative [24]. Firstly, we present
some properties and de�nitions of the modi�ed Rie-
mann–Liouville derivative. Secondly, we give the descrip-
tion of the Riccati-Bernoulli Sub-ODE method.

Assume that f (t) denotes a continuous R → R func-
tion (but not necessarily �rst-order di�erentiable). The Ju-
marie’s modi�ed Riemann–Liouville derivative is de�ned
as

Dαt f (t) =



1
Γ(1−α)

d
dt
∫ t
0 (t − ξ )

−α−1(f (ξ ) − f (0))dξ , α < 0

1
Γ(1−α)

d
dt
∫ t
0 (t − ξ )

−α(f (ξ ) − f (0))dξ ,0 < α < 1

(f (n)(t))(α−n), n ≤ α < n + 1, n ≥ 1 .

,

(2.1)
Important property of the fractional modi�ed Riemann-
Liouville derivative is [25]

Dαt tr =
Γ(1 + r)

Γ(1 + r − α) t
r−α . (2.2)

Step 1. Any nonlinear fractional di�erential equation
in two independent variables x and t can be expressed in
following form:

G(u, Dαt u, Dαxu, Dαt Dαxu, DαxDαxu, ...) = 0, (2.3)

where 0 < α ≤ 1, Dαt u, Dαxu are modi�ed Riemann-
Liouville derivative of u and G is a polynomial in u(x, t)
and its partial fractional derivatives.

Step 2. Using the traveling wave transformation

u(x, t) = U(ξ ), ξ = kxα
Γ(1 + α) −

λtα
Γ(1 + α) , (2.4)

where k, λ are non zero constants and 1 < α ≤ 1. By using
the chain rule,

Dαt u = σ′t
dU
dξ D

α
t ξ ,

Dαxu = σ′x
dU
dξ D

α
x ξ ,

(2.5)

where σ′t and σ′x are called the sigma indexes, [26], with-
out loss of generality, we can take σ′t = σ′x = L, where L is
a constant.

Superseding (2.4) with (2.2) and (2.5) into (2.3), the
equation (2.3) transformed into the following ODE:

H(U, U ′, U ′′, U ′′′, .....) = 0, (2.6)

where prime denotes the derivation with respect to ξ .

Step 3. Based on the Riccati-Bernoulli Sub-ODE
method [16–18], we assume that equation (2.6) has the fol-
lowing solution:

U ′ = aU2−n + bU + cUn , (2.7)

where a, b, c and n are constants calculated later. From
equation (2.7), we have

U ′′ = ab(3 − n)U2−n + a2(2 − n)U3−2n + nc2U2n−1

+ bc(n + 1)Un + (2ac + b2)U, (2.8)

U ′′′ = (ab(3 − n)(2 − n)U1−n + a2(2 − n)(3 − 2n)U2−2n

+n(2n − 1)c2U2n−2 + bcn(n + 1)Un−1 + (2ac + b2))U ′ .
(2.9)

The exact solutions of equation (2.7), for an arbitrary
constant µ are given as follow:

1. For n = 1, the solution is

U(ξ ) = µe(a+b+c)ξ . (2.10)

2. For n ≠ 1, b = 0 and c = 0, the solution is

U(ξ ) =
(
a(n − 1)(ξ + µ)

) 1
n−1 . (2.11)

3. For n ≠ 1, b ≠ 0 and c = 0, the solution is

U(ξ ) =
(−a
b + µeb(n−1)ξ

) 1
n−1 . (2.12)
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4. For n ≠ 1,a ≠ 0 and b2 − 4ac < 0, the solution is

U(ξ ) =(
−b
2a

+
√
4ac − b2

2a
tan
(
(1 − n)

√
4ac − b2

2
(ξ + µ)

)) 1
1−n

(2.13)

and

U(ξ ) =(
−b
2a
−
√
4ac − b2

2a
cot
(
(1 − n)

√
4ac − b2

2
(ξ + µ)

)) 1
1−n

.

(2.14)

5. For n ≠ 1,a ≠ 0 and b2 − 4ac > 0, the solution is

U(ξ ) =(
−b
2a
−
√
b2 − 4ac
2a

coth
(
(1 − n)

√
b2 − 4ac
2

(ξ + µ)
)) 1

1−n

(2.15)

and

U(ξ ) =(
−b
2a
−
√
b2 − 4ac
2a

tanh
(
(1 − n)

√
b2 − 4ac
2

(ξ + µ)
)) 1

1−n

.

(2.16)

6. For n ≠ 1, a ≠ 0 and b2 − 4ac = 0, the solution is

U(ξ ) =
(

1
a(n − 1)(ξ + µ) −

b
2a

) 1
1−n

. (2.17)

2.1 Bäcklund transformation

When Um−1(ξ ) and Um(ξ )(Um(ξ ) = Um(Um−1(ξ ))) are the
solutions of equation (2.7), we have

dUm(ξ )
dξ = dUm(ξ )

dUm−1(ξ )
dUm−1(ξ )

dξ

= dUm(ξ )
dUm−1(ξ )

(aU2−n
m−1 + bUm−1 + cUnm−1),

namely
dUm(ξ )

aU2−n
m + bUm + cUnm

= dUm−1(ξ )
aU2−n

m−1 + bUm−1 + cUnm−1
. (2.18)

Integrating equation (2.18) once with respect to ξ , we get a
Bäcklund transformation of equation (2.7) as follows:

Um(ξ ) =
(

−cK1 + aK2
(
Um−1(ξ )

)1−n
bK1 + aK2 + aK1

(
Um−1(ξ )

)1−n
) 1

1−n

, (2.19)

where K1 and K2 are arbitrary constants. We use equation
(2.19) to obtain in�nite sequence of solutions for equation
(2.7), as well for equation (2.3).

3 The nonlinear fractional
Zoomeron equation

We are concerned with the nonlinear fractional Zoomeron
equation([27]),

D2α
tt

[uxy
u

]
−
[uxy
u

]
xx
+ 2Dαt

[
u2
]
x
= 0, 0 < α ≤ 1 , (3.1)

where u(x, y, t) is the amplitude of the relevant wave
mode.

Using the transformation

u(x, y, t) = U(ξ ) , (3.2)

ξ = lx + γy − wtα
Γ(1 + α) , (3.3)

where l, γ and w are non zero constants and 0 < α ≤ 1.

Substituting (3.3) with (2.2) and (2.5) into (3.1), we have
the ODE

lγw2
(
U ′′
U

)′′
− γ l3

(
U ′′
U

)′′
− 2lw(U2)′′ = 0 . (3.4)

Integrating this equation twice, with the second constant
of integration is vanishing, we obtain

lγ(w2 − l2)U ′′ − 2lwU3 − kU = 0 , (3.5)

where k is a nonzero constant of integration.
Substituting equations (2.8) into equation (3.5), we ob-

tain

lγ(w2− l2)
(
ab(3−m)U2−m+a2(2 − m)U3−2m+mc2U2m−1

+bc(m + 1)Um+(2ac + b2)U
)
−2lwU3−kU = 0 . (3.6)

Setting m = 0, equation (3.6) is reduced to

lγ(w2−l2)(3abU2+2a2U3+bc+(2ac+b2)U)−2lwU3−kU = 0 .
(3.7)

Equating each coe�cient of U i(i = 0, 1, 2, 3) to zero, we
have

lγ(w2 − l2)bc = 0 , (3.8)

lγ(w2 − l2)(2ac + b2) − k = 0 , (3.9)

3lγ(w2 − l2)ab = 0 , (3.10)

2lγ(w2 − l2)a2 − 2lw = 0 . (3.11)
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Solving equations (3.8)-(3.11), we get

b = 0 , (3.12)

ac = k
2lγ(w2 − l2) , (3.13)

a = ±
√

w
γ(w2 − l2) , (3.14)

Fig. 1: The solution U1(x, 0, t) in (3.15) for l=1.5, k=1, a=1, µ=0, w =
2 and −5 ≤ t, x ≤ 5 .

Fig. 2: The solution U5(x, 0, t) in (3.17) for l=2, k=2, a=1, µ=1, w =
3.5 and −5 ≤ t, x ≤ 5 .

Trigonometric function solutions:

When k
lγ(w2−l2) < 0, substituting equations (3.12)-(3.14)

and (3.3) into equations (2.13) and (2.14), we get the exact
solutions for equation (3.1),

U1,2(x, y, t) =

±
√

k
2wl tan

(√
k

2lw(w2 − l2) (lx + γy − wtα
Γ(1 + α) + µ)

)
(3.15)

and

U3,4(x, y, t) =

±
√

k
2wl cot

(√
k

2lw(w2 − l2) (lx + γy − wtα
Γ(1 + α) + µ)

)
,

(3.16)

where l, k, γ, w, µ are arbitrary constants and 0 < α ≤ 1.
Figure 1 illustrated the solution U2 .
Hyperbolic function solutions:

When k
lγ(w2−l2) > 0, substituting equations (3.12)-(3.14)

and (3.3) into equations (2.15) and (2.16), we obtain exact
solutions for equation (3.1),

U5,6(x, y, t) =

±
√
−k
2wl tanh

(√
k

2lw(l2 − w2) (lx + γy − wtα
Γ(1 + α) + µ)

)
(3.17)

and

U7,8(x, y, t) =

±
√
−k
2wl tanh

(√
k

2lw(l2 − w2) (lx + γy − wtα
Γ(1 + α) + µ)

)
,

(3.18)

where l, k, γ, w, µ are arbitrary constants and 0 < α ≤ 1.
Figure 2 illustrated the solution U5.

Remark 3.1. Applying equation (2.19) to ui(x, t), i =1,2,...,8,
we obtain an in�nite sequence of solutions of equation (3.1).
For illustration, by applying equation (2.19) to ui(x, t), i
=1,2,...,8, once, we have new solutions of equation (3.1)

u*1,2(x, t) =

− k
2lw ± A3

√
k

2wl tan
(√

k
2lw(w2−l2) (lx + γy − wtα

Γ(1+α) + µ)
)

A3 ±
√

k
2wl tan

(√
k

2lw(w2−l2) (lx + γy − wtα
Γ(1+α) + µ)

) ,

(3.19)
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u*3,4(x, t) =

− k
2lw ± A3

√
k

2wl cot
(√

k
2lw(w2−l2) (lx + γy − wtα

Γ(1+α) + µ)
)

A3 ±
√

k
2wl cot

(√
k

2lw(w2−l2) (lx + γy − wtα
Γ(1+α) + µ)

) ,

(3.20)

u*5,6(x, t) =

− k
2lw ± A3

√
− k
2wl tanh

(√
k

2lw(l2−w2) (lx + γy − wtα
Γ(1+α) + µ)

)
A3 ±

√
k

2wl tanh
(√

k
2lw(l2−w2) (lx + γy − wtα

Γ(1+α) + µ)
) ,

(3.21)

u*7,8(x, t) =

− k
2lw ± A3

√
− k
2wl coth

(√
k

2lw(l2−w2) (lx + γy − wtα
Γ(1+α) + µ)

)
A3 ±

√
k

2wl coth
(√

k
2lw(l2−w2) (lx + γy − wtα

Γ(1+α) + µ)
) ,

(3.22)

where A3, l, k, γ, w, µ are arbitrary constants and 0 < α ≤
1.

4 The (3 + 1) dimensional
space-time fractional mKDV-ZK
equation

The second equation is the (3 + 1) dimensional space-time
fractional mKDV-ZK equation which has the form ([28])

Dαt u + lu2Dαxu + D3α
x u + DαxD2α

y u + DαxD2α
z u = 0, (4.1)

, t > 0, 0 < α ≤ 1 ,

where l is an nonzero constant and 0 < α ≤ 1. The mKdV
equation is used for representingphysical andengineering
phenomena such as to describe the ion-acoustic waves in
amagnetized plasma, dipole blocking and study of coastal
waves in ocean etc., see e.g. [29–31].

Using the transformation

u(x, y, z, t) = U(ξ ) , (4.2)

ξ = βxα
Γ(1 + α) +

γyα
Γ(1 + α) +

δzα
Γ(1 + α) −

wtα
Γ(1 + α) , (4.3)

where β, γ, δ and w are non zero constants and 0 < α ≤ 1.

Substituting (4.3)with (2.2) and (2.5) into (4.1),wehave
the ODE

(β3 + βγ2 + βδ2)U ′′′ + lβU2U ′ − wU ′ = 0 , (4.4)

Integrating equation (4.4) once with respect to ξ with the
zero constant of integration, we have

(β3 + βγ2 + βδ2)U ′′ + lβ3 U
3 − wU = 0 . (4.5)

Substituting equations (2.8) into equation (4.5),we ob-
tain

(β3+βγ2+βδ2)
(
ab(3−m)U2−m+a2(2−m)U3−2m+mc2U2m−1

+bc(m + 1)Um+(2ac+b2)U
)
+ lβ3 U

3−wU=0 . (4.6)

Putting m = 0, equation (4.6) becomes

(β3 + βγ2 + βδ2)(3abU2 + 2a2U3 + bc + (2ac + b2)U)

+ lβ3 U
3 − wU = 0 . (4.7)

Putting each coe�cient of U i(i = 0, 1, 2, 3) to zero, we ob-
tain

(β3 + βγ2 + βδ2)bc = 0 , (4.8)

(β3 + βγ2 + βδ2)(2ac + b2) − w = 0 , (4.9)

3(β3 + βγ2 + βδ2)ab = 0 , (4.10)

2a2(β3 + βγ2 + βδ2) + lβ3 = 0 . (4.11)

Solving equations (4.8)-(4.11), we get

b = 0 , (4.12)

ac = w
2(β3 + βγ2 + βδ2) , (4.13)

a = ±

√
−l

6(β2 + γ2 + δ2) , (4.14)

Trigonometric function solutions:

When w
β3+βγ2+βδ2 < 0, substituting equations (4.12)-

(4.14) and (4.3) into equations (2.13) and (2.14), we obtain
the exact solutions of equation (4.1),

Ũ1,2(x, y, z, t) =

±
√
−3w
βl tan

(√
w

2(β3 + βγ2 + βδ2)

(
βxα

Γ(1 + α) +
γyα

Γ(1 + α)

+ δzα
Γ(1 + α) −

wtα
Γ(1 + α) + µ

))
(4.15)

and
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Fig. 3: The solution Ũ1(x, 0, 0, t) in (4.15) for β=-2.6, γ=-3.5, δ=3,l=-
2, α=1, µ=0, w = -2 and −5 ≤ t, x ≤ 5 .

Ũ3,4(x, y, z, t) =

±
√
−3w
βl cot

(√
w

2(β3 + βγ2 + βδ2)

(
βxα

Γ(1 + α) +
γyα

Γ(1 + α)

+ δzα
Γ(1 + α) −

wtα
Γ(1 + α) +µ

))
, (4.16)

where β, γ, δ, w and µ are non zero constants and 0 < α ≤
1. Figure 3 illustrated the solution Ũ1 .

Hyperbolic function solutions:

When w
β3+βγ2+βδ2 > 0, substituting equations (3.12)-

(3.14) and (4.3) into equations (2.15) and (2.16), we obtain
exact solutions of equation (4.1),

Ũ5,6(x, y, z, t) =

±
√

3w
βl tanh

(√
−w

2(β3 + βγ2 + βδ2)

(
βxα

Γ(1 + α)

+ γyα
Γ(1 + α) +

δzα
Γ(1 + α) −

wtα
Γ(1 + α) + µ

))
(4.17)

and

Ũ7,8(x, y, z, t) =

±
√

3w
βl coth

(√
−w

2(β3 + βγ2 + βδ2)

(
βxα

Γ(1 + α) +
γyα

Γ(1 + α)

+ δzα
Γ(1 + α) −

wtα
Γ(1 + α) + µ

))
, (4.18)

where β, γ, δ, w and µ are non zero constants and 0 < α ≤
1. Figure 4 illustrated the solution Ũ5.

Remark 4.1. Similarly as shown in Remark (3.1), we can
give an in�nite solutions of equation (4.1).

Fig. 4: The solution Ũ5(x, 0, 0, t) in (4.17) for β=2.6, γ=-3.5, δ=3,l=-
2, α=0.5, µ=0, w = 3 and −5 ≤ t, x ≤ 5 .

Remark 4.2.

1. Comparing our results concerning equation (3.1) with
the results in [27, 32], one can see that our results are
new and most extensive.

2. Comparing our results concerning equation (4.1) with
the results in [31, 33], one can see that our results are
new and most extensive.

3. Comparing our solutions for equations (3.1) and (4.1)
with [27, 31–33], it can be seen that by choosing suit-
able values for the parameters similar solutions can
be veri�ed.

4. Actually the Riccati-Bernoulli Sub-ODE technique has
a very important feature, that admits in�nite se-
quence of solutions of equation, which is explained
clearly in Section 2.1. In fact this feature has never
given for any another method.

5. Consequently, the method is e�cacious, robust and
adequate for solving other type of space-time frac-
tional di�erential equations.

5 Conclusions
In this work, a Riccati-Bernoulli Sub-ODE technique has
successfully been applied to exact solutions for the non-
linear fractional Zoomeron equation and the (3 + 1) di-
mensional space-time fractional mKDV-ZK equation with
modi�ed Riemann–Liouville derivative. Fractional com-
plex transform is also used as the basic ingredient to ob-
tain exact solutions for these nonlinear equations. As a re-
sult, some new exact solutions for them have successfully
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been obtained. The graphs of some solutions are depicted
for suitable coe�cients. Actually this method can be ap-
plied for many other nonlinear FDEs appearing in mathe-
matical physics and natural sciences.

Acknowledgement: The author wants to thank the editor
and reviewers for valuable comments.
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