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Abstract: In this paper, the fractional derivatives in the
sense of modified Riemann-Liouville and the Riccati-
Bernoulli Sub-ODE method are used to construct exact so-
lutions for some nonlinear partial fractional differential
equations via the nonlinear fractional Zoomeron equation
and the (3 + 1) dimensional space-time fractional mKDV-
ZK equation. These nonlinear fractional equations can be
turned into another nonlinear ordinary differential equa-
tion by complex transform method. This method is ef-
ficient and powerful in solving wide classes of nonlin-
ear fractional order equations. The Riccati-Bernoulli Sub-
ODE method appears to be easier and more convenient by
means of a symbolic computation system.
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1 Introduction

Many physical phenomena such as mathematical biol-
ogy, signal processing, optics, fluid mechanics, electro-
magnetic theory, etc., can be modeled using the fractional
derivatives. Consequently, the investigation of exact solu-
tions for FDEs turns out to be very useful in the study of
scientific research. Moreover generalized forms of differen-
tial equations are described as fractional differential equa-
tions FDEs.
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Recent past, an strong attention has been purposed by
the researchers concerning the fractional partial differen-
tial equations FDEs. For an interesting overview and more
applications of nonlinear FDEs, we refer to [1-4].

However, even in most useful studies, there is no an
efficient and general methods to solve them. Actually, var-
ious analytical and numerical methods to construct ap-
proximate and exact solutions of nonlinear FDEs have
been put forward, such as the fractional sub-equation

method [5, 6], the tanh-sech method [7], the (%)— expan-
sion method [8, 19], the first integral method [10], the mod-
ified Kudryashov method [11], the exponential function
method [12, 13] and others [14, 15].

The novelties of this paper are mainly exhibited in
two aspects: First, we introduce a new method, which
is not familiar, the so called Riccati-Bernoulli Sub-ODE
method. We use this method to solve the nonlinear frac-
tional Zoomeron equation and the (3 + 1) dimensional
space-time fractional mKDV-ZK equation. Moreover, we
show that the proposed method gives infinite sequence of
solutions. Second, we obtain new types of exact analyti-
cal solutions. Moreover comparing our results with other
results, one can see that our results are new and most ex-
tensive.

Actually, the proposed two fractional equations
have many applications in various fields of theoretical
physics,applied mathematics and engineering such as
control theory viscoelasticity, modelling heat transfer,
control, diffusion, signal and image processing, and many
other physical and engineering processes. In more details,
the (3 + 1) dimensional space-time fractional mKDV-ZK
equation is derived for a plasma comprised of cool and
hot electrons and a species of fluid ions, which have so
many direct and indirect in engineering models. Further-
more the nonlinear fractional Zoomeron equation is a
convenient model to display the novel phenomena associ-
ated with boomerons and trappons and further interesting
engineering applications.

The Riccati-Bernoulli Sub-ODE technique has been
used to solve some partial and fractional differential equa-
tions, see for example [16—21]. These works show that this
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method is efficacious, robust and adequate for solving fur-
ther equations.

The rest of the paper is arranged as follows: In Sec-
tion 2, we recall some basic definitions and notions deal-
ing with fractional calculus theory, which are used in
the sequel in this article. In Sections 4 and 3, two exam-
ples, namely the nonlinear fractional Zoomeron equation
and the (3 + 1) dimensional space-time fractional mKDV-
ZK equation, are solved by the Riccati-Bernoulli Sub-ODE
method. Conclusion will appear in Section 5.

2 Preliminaries and notation

We introduce some fundamental definitions and proper-
ties of fractional calculus theory, which turn to be very
useful in order to complete this paper in a completely uni-
fied way. These are the Riemann-Liouville, the Griinwald-
Letnikov, the Caputo and the modified Riemann-Caputo,
Liouville derivative. The most commonly used defi-
nitions are the modified Riemann-Liouville and Ca-
puto derivatives [22, 23]. Jumarie proposed a modified
Riemann-Liouville derivative [24]. Firstly, we present
some properties and definitions of the modified Rie-
mann-Liouville derivative. Secondly, we give the descrip-
tion of the Riccati-Bernoulli Sub-ODE method.

Assume that f(t) denotes a continuous R — R func-
tion (but not necessarily first-order differentiable). The Ju-
marie’s modified Riemann-Liouville derivative is defined
as

i & A= O F© - FO)dE, a<O

DEf(O) = § rit i ot = O (F(©) - fO)dEO <a<1

(F ()@, n<a<n+l,n=1.
2.1)
Important property of the fractional modified Riemann-
Liouville derivative is [25]
Ir(1+r)

r+r-a)
Step 1. Any nonlinear fractional differential equation

in two independent variables x and t can be expressed in

following form:

Dt = e (2.2

G(u, Dfu, Dsu, D¥D%u, D¥D%u, ...) = 0, 2.3)

where 0 < a < 1, Dfu,D{u are modified Riemann-
Liouville derivative of u and G is a polynomial in u(x, t)
and its partial fractional derivatives.
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Step 2. Using the traveling wave transformation

kx®
I'l+a)

At*

ulx, ) =U(), &= "T(1+a)’

(2.4)

where k, A are non zero constants and 1 < a < 1. By using
the chain rule,

a

O_tdtf l’{

(2.5)
dU
Diu =0y dz DY,
where 0, and oy, are called the sigma indexes, [26], with-
out loss of generality, we can take o; = oy = L, where L is

a constant.

Superseding (2.4) with (2.2) and (2.5) into (2.3), the
equation (2.3) transformed into the following ODE:

(2.6)

where prime denotes the derivation with respect to &.

Step 3. Based on the Riccati-Bernoulli Sub-ODE
method [16-18], we assume that equation (2.6) has the fol-
lowing solution:

U =aU*™"+bU+cU", (27)

where a, b, ¢ and n are constants calculated later. From
equation (2.7), we have

U' =abB-nU>"+a’Q2 -n)U>2" + nc?u?™ !

+bc(n+ 1)U + ac + bA)U, (2.8)

U’ =(abB-nQR-nU""+a*@2-n)G3 -2n)U*2"
+n(2n - 1)c2U?" % + ben(n+ DU + (2ac + b2)U' .
(2.9)
The exact solutions of equation (2.7), for an arbitrary
constant y are given as follow:

1. For n = 1, the solution is

U(&) = pel@b+% | (2.10)

2. Forn # 1, b = 0and c = 0, the solution is
U = (at-DE+)™ . @)

3. Forn # 1, b # 0 and c = 0, the solution is
U@ = (5 +pe’™ ”f) (2.12)
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4, Forn # 1,a # 0 and b? - 4ac < 0, the solution is

U =
(—b Vaac B2 <(1-n)m >>
— + tan E+p
2a 2a 2
(213)
and
U =
-b  V4ac-b? (1-n)V4ac- b2 T
52 2a cot 5 E+p .

(2.14)

5. Forn # 1,a # 0 and b? - 4ac > 0, the solution is

U@ =
<—b VB ~hac ((1—n)m >>
——-—————coth| ————(£+p)
2a 2a 2
(2.15)
and
Uu() =
(—b vb? - 4ac <(1—n)\/b2—4ac ))11“
— - ————tanh | ————— (& + ) .
2a 2a 2
(2.16)

6. Forn # 1, a # 0 and b? - 4ac = 0, the solution is

1 b\
00~ a) - O

2.1 Béacklund transformation

When Up,—1(¢) and Un(&)(Um(§) = Um(Un-1(£))) are the
solutions of equation (2.7), we have

dUn(@) _ dUn(@) dUp1(@)
A~ dUna() d2

_ dUm(f) 2-n n
= 7dUm,1(§) (aUp’i +bUp-1 + cUp_y),

namely

dUn(&)
aUx" + bUn + cUR,

dUm—l({)
= . (218
aUZ™ + bUp_q1 +cU"_, (218)

Integrating equation (2.18) once with respect to &, we get a
Backlund transformation of equation (2.7) as follows:

-cKy + ak;, (Um—1(f))l_n o (2.19)
bKy +aK, +aky (Un1(®)' ™)
where K; and K, are arbitrary constants. We use equation

(2.19) to obtain infinite sequence of solutions for equation
(2.7), as well for equation (2.3).

Um(§) = (
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3 The nonlinear fractional
Zoomeron equation

We are concerned with the nonlinear fractional Zoomeron
equation([27]),

D [%] - [%] wapf ] -0, 0<as1, G

where u(x,y,t) is the amplitude of the relevant wave
mode.

Using the transformation

u(X’ Y, t) = U({) s (3.2)
§=Ix+qy- 7F(Yi Ik (3.3)

where [, v and w are non zero constants and O < a < 1.

Substituting (3.3) with (2.2) and (2.5) into (3.1), we have
the ODE

) i " L l " ) e
Iyw ( U) ~l ( U) 2lw(U%) =0. (3.4)
Integrating this equation twice, with the second constant

of integration is vanishing, we obtain

yw? - 12U -2lwU? -kU =0, (3.5)

where k is a nonzero constant of integration.
Substituting equations (2.8) into equation (3.5), we ob-
tain

ly(w?-1%) (ab(3—m)U2‘m+a2(2 -mU 2" smc?u?mt

+he(m + 1)U™+(2ac + bZ)U> —2lwU?-kU=0. (3.6)

Setting m = 0, equation (3.6) is reduced to

lyW?=1?>)(3abU?+2a? U +bc+(2ac+b*)U)-2lwU>-kU = 0.

3.7
Equating each coefficient of U i(i = 0,1, 2, 3) to zero, we
have

lyw? - ?)bc =0, (3.8)
lyw? - 1>)(2ac+b*) -k =0, (3.9)
3ly(w? - 1P)ab =0, (3.10)
2ly(w? - 12)a® - 2lw = 0. (3.11)
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Solving equations (3.8)-(3.11), we get

b=0, (3.12)
k
ac = m ’ (3-13)
w
a=+ W) (3.14)

Fig. 1: The solution Ui (x, 0, ¢) in (3.15) for I=1.5, k=1, a=1, u=0, w =
2and-5<t,x<5.

Fig. 2: The solution Us(x, 0, t) in (3.17) for I=2, k=2, a=1, u=1, w =
3.5and-5<t,x<5.
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Trigonometric function solutions:

When (wz 2y <0, substituting equations (3.12)-(3.14)
and (3.3) into equations (2.13) and (2.14), we get the exact
solutions for equation (3.1),

Ul,Z(Xa Y, t) =
+ L tan __k (Ix +~y - _wtt + 1)
2wl 2lw(w? - 12) I'l+a)
(3.15)
and
U3,4(Xa Y, t) =
\/k cot \/7]( (Ix + —7Wta +1)
2wl 2lw(w? - 12) W Ir'1l+a) Wi
(3.16)

where [, k, v, w, p are arbitrary constants and 0 < a < 1.
Figure 1 illustrated the solution U, .
Hyperbolic function solutions:

When ; ) k_ -5 >0, substituting equations (3.12)-(3.14)
and (3.3) into equations (2.15) and (2.16), we obtain exact
solutions for equation (3.1),

Use(x,y,t) =
-k k wt?
+ ”TWI tanh (’IZIW(IZ—WZ)(IXJF’W_ o +y))
(3.17)
and
U7,8(X, Y, t) =
-k / k wt?
+ Mtanh( ZIW(IZ_WZ)(IX+W—M+M))’
(3.18)

where [, k, v, w, p are arbitrary constants and O < a < 1.
Figure 2 illustrated the solution Us.

Remark 3.1. Applying equation (2.19) to u;(x, t), i =1,2,...,8,
we obtain an infinite sequence of solutions of equation (3.1).
For illustration, by applying equation (2.19) to u;(x,t), i
=1,2,...,8, once, we have new solutions of equation (3.1)

uI 2(x, ) =

X xA3y/X tan (, / 21w(w2 Tty X+ 7Y = F(1+a) y))
A 2w tan (\/ le(w2 12)(1X Y- F(1+a) + }1))

(3.19)
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u; 4(x, t) = Integrating equation (4.4) once with respect to & with the
P X X « zero constant of integration, we have
—31w t A3/ 37 COt (, | sty X+ 7y - 71"(‘,15-0() + y)) ,
k k a ’ 3 2 2177 . P 3 _
Agi,/mcot(,/m(lxmy—%w)) (B°+By" +BEIU + S U° ~wU =0. (4.5)
(3.20) Substituting equations (2.8) into equation (4.5), we ob-
* tain
Uus ¢(x, t) =
« (B +By2+B6%) (abB-m)U* M +a?(2-m)U> > +mc? U>™
k i k
~ 51w t A3/ —7y tanh (, | stwar ey X+ 7y = nga) + y)) ( "
e « * the(m+ DU™+Qac+b?)U)+LUP-wU=0. 4.6
ABi ﬁtanh( W(IX‘F’Y}/—%_}.H)) ( ) ( ) ) 3 ( )
(3.21)  putting m = 0, equation (4.6) becomes
o g(x, ) = (B> + By* + B6*)BabU? + 2a*U + be + (2ac + b*)U)
B3
k [k k « LB 0. )
—miAg —mCOth( WUX""YV—%"'H)) + 3U wU =0 (47)
VEERY. X coth (\/ WUX +y - % + H)) Putting each coefficient of Ui(i = 0, 1, 2, 3) to zero, we ob-
(3.22) tain , , ,
+ +B6%)bc=0, 4.8
where As, 1, k,~, w, u are arbitrary constants and 0 < « < B+ Br" + Bo7) (4.8)
1.
(B + B+ + p6*)2ac + b)) -w =0, (4.9)
4 The (3 + 1) dimensional 3(8° + By’ + B6%)ab = 0, (4.10)
space-time fractional mKDV-ZK I8
. 28°(B> + B2+ B8%) + £ = 0. (4.11)
equation 3

Solving equations (4.8)-(4.11), we get
The second equation is the (3 + 1) dimensional space-time

fractional mKDV-ZK equation which has the form ([28]) b=0, (4.12)
Dfu + lu*D§u + D3*u + D§Dy;"u + D§Dz"u =0,  (4.1) w
,t>0, O<ac<1, ac:—z(ﬁ3+[372+[362)’ (4.13)
where [ is an nonzero constant and O < a < 1. The mKdV i
equation is used for representing physical and engineering a=z#| 2769 (4.14)

phenomena such as to describe the ion-acoustic waves in
amagnetized plasma, dipole blocking and study of coastal
waves in ocean etc., see e.g. [29-31].

) ; Trigonometric function solutions:
Using the transformation

u(x,y, z, t) = U@), (4.2) When W < 0, substituting equations (4.12)-
(4.14) and (4.3) into equations (2.13) and (2.14), we obtain
the exact solutions of equation (4.1),

__ B 20 6z wtt i
§= Tl+a) T(+a) Tl+a) Td+a)’ (4.3) Ui2(x,y,2,t) =
where f, v, 6 and w are non zero constantsand 0 < a < 1., [~3W tan w Bx* + e
Bl 2(B3 + By + p62) \I'1 +a) I(1+a)
Substituting (4.3) with (2.2) and (2.5) into (4.1), we have 6z wtt
+ +u (4.15)
the ODE I'l+a) I'l+a)

(% +By* + BSHU” +1BUU - wU =0, (44) and
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Fig. 3: The solution T3 (x, 0, 0, t) in (4.15) for f=-2.6, v=-3.5, §=3,I=-
2,a=1, y=0,w=-2and-5<t,x<5.

03,4()(’ Yy, Z, t) =

. [3w w Bx“ W
£\ BT (\/2(33 ¥ B2+ 67 (r(1 va) T(+a)

. 6z wt” .
I'l+a) TI'Q+a) ko
where 8, v, §, w and u are non zero constants and 0 < a <

1. Figure 3 illustrated the solution U .
Hyperbolic function solutions:

(4.16)

When /33+l37++l%52 > 0, substituting equations (3.12)-
(3.14) and (4.3) into equations (2.15) and (2.16), we obtain
exact solutions of equation (4.1),

05,6()() y; Z, t) =

+ \/Bﬂj’l" tanh (\/2(53 +L;WM; + B62) (F(llgxfa)

’Yya 62" wt%
+F(1+a)+F(1+a)_1"(1+a)+11)) (4.17)
and
U;8(x,y,2,t) =
M EL -w Bx* e
B \/% coth (\/2(ﬁ3 + B2 + B62) (F(l +q) * I'1+a)
6z* wit®
+F(1+a)_r(1+a)+”))’ (4.18)

where 8, v, 8§, w and y are non zero constants and 0 < a <
1. Figure 4 illustrated the solution .

Remark 4.1. Similarly as shown in Remark (3.1), we can
give an infinite solutions of equation (4.1).

DE GRUYTER

-0.1

-0.2

-0.3

-0.4

0.6

-0.6

Fig. 4: The solution Us(x, 0, 0, t) in (4.17) for f=2.6, v=-3.5, §=3,I=-
2,a=0.5, y=0,w=3and-5<t,x<5.

Remark 4.2.

1. Comparing our results concerning equation (3.1) with
the results in [27, 32], one can see that our results are
new and most extensive.

2. Comparing our results concerning equation (4.1) with
the results in [31, 33], one can see that our results are
new and most extensive.

3. Comparing our solutions for equations (3.1) and (4.1)
with [27, 31-33], it can be seen that by choosing suit-
able values for the parameters similar solutions can
be verified.

4. Actually the Riccati-Bernoulli Sub-ODE technique has
a very important feature, that admits infinite se-
quence of solutions of equation, which is explained
clearly in Section 2.1. In fact this feature has never
given for any another method.

5. Consequently, the method is efficacious, robust and
adequate for solving other type of space-time frac-
tional differential equations.

5 Conclusions

In this work, a Riccati-Bernoulli Sub-ODE technique has
successfully been applied to exact solutions for the non-
linear fractional Zoomeron equation and the 3 + 1) di-
mensional space-time fractional mKDV-ZK equation with
modified Riemann-Liouville derivative. Fractional com-
plex transform is also used as the basic ingredient to ob-
tain exact solutions for these nonlinear equations. As a re-
sult, some new exact solutions for them have successfully
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been obtained. The graphs of some solutions are depicted
for suitable coefficients. Actually this method can be ap-
plied for many other nonlinear FDEs appearing in mathe-

matical physics and natural sciences.

Acknowledgement: The author wants to thank the editor

and reviewers for valuable comments.
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