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Abstract: In this paper, the rational exponential solutions
of two space-time fractional equal-width (FEW) equations
are explored in the conformable derivative sense. The way
to reach explicit exact solutions is to transform the frac-
tional order PDEs into a nonlinear ODEs of discrete order
through some properties of conformable derivatives and a
fractional complex transforms. The subsequent equations
have been elucidated by employing the exp a function ap-
proach. Somenewexact solutions of the said equations are
e�ectively formulated and graphically conveyed with the
aid of symbolic computation inMathematica andMATLAB
respectively.
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1 Introduction
Various �elds of science and engineering are in�uencedby
Leibnitz’s work on fractional calculus and having increas-
ing impact on these sciences during last twenty years os-
tensibly [1, 2]. Many de�nitions of fractional derivatives,
Like Hilfer, Riemann-Liouville, Caputo form and so on,
have been introduced in the literature. Here, in this pa-
per, we are interested in making the use of a recent def-
inition of fractional derivatives, called conformable frac-
tional derivatives given by Khalil et al. [3]. The exact solu-
tions have always been a particular importance among the
researchers inmany�elds of nonlinear sciences. The avail-
ability of symbolic computation softwares is a direct help
to minimize the manual labor for �nding problematic so-
lutions to nonlinear evolution equations. Various analyt-
ical methods have been presented in the literature to ex-
plore exact solutions such as ansatz [4, 5], modi�ed sim-
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ple equation [6, 7], the extended trial equation [8, 9], the
�rst integral [10, 11], ( G

′

G )-expansion [12], sine-Gordon ex-
pansion [13, 14]. Furthermore, some other excellent works
like generalized Kudryashov method [15–17], a modi�ed
form of Kudryashov and functional variable methods [18–
22] have been done by di�erent researchers. In [23–28], the
auxiliary equation, the extended tanh-function, the im-
proved tan(ϕ(η)2 )-expansionmethods and the exp function
approach have been explored for discrete and fractional
order PDEs as well.

The exp a function method is a new and an e�cient
technique which has been acknowledged rapidly by the
scholars. For example, Ali and Hassan, Hosseini et al., Za-
yed and Al-Nowehy all have utilized the exp a function
method in [29],[30, 31] and [32] respectively. This paper
aims to explore the exp a function approach to generate
rational exponential solutions to conformable space-time
fractional EW and the space-time fractional modi�ed EW
equations [33, 34].

The scheme of this article is as follows: In Sec. 2, the
de�nition of conformable fractional derivative with some
of its properties and the explanation of expa function ap-
proach are given. In Sec. 3, the conformable space-time
FEW equations have been considered to elucidate via the
above mentioned approach. The graphical representation
of some solutions have also been given in the same sec-
tion. Finally, a summarizing discussion of results and con-
clusion have been given in Sec. 4 & 5.

2 Conformable fractional
derivatives and the method of
solutions

Recall the Khalil’s de�nition of the conformable derivative
and with some properties.
De�nation 1 Suppose h : R>0 → R be a function. Then,
for all t > 0,

(Tαh)(t) = lim
ε→0

h(t + εt1−α) − h(t)
ε

is known as the conformable fractional derivative of h of
order α, 0 < α ≤ 1. Some useful properties are being listed
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as follows:
Tα(a h + b g) = a(Tαh) + b(Tα g), for all a, b ∈ R
Tα(h g) = h Tα(g) + g Tα(h)
Let h : R>0 → R be a di�erentiable and α-di�erentiable
function, g be a di�erentiable function de�ned in the
range of h.

Tα(h ◦ g)(t) = t1−α g′(t) h′(g(t)).

On the top of that, the following rules hold.
Tα(tλ) = λ tλ−α, for all λ ∈ R
Tα(λ) = 0
Tα(h/g) = g(Tαh)−h(Tαg)

g2 .
Conjointly, if h is di�erentiable, then Tα(h)(t) = t1−α dh(t)dt .

2.1 The expa function method

The present subsection provides a concise explanation for
the expa function method in generating new rational ex-
ponential solutions to nonlinear conformable space-time
FEW and modi�ed FEW equations. For this purpose, sup-
pose that we have a nonlinear conformable time FDE that
can be presented in the form

F(u, Dγt u, D
β
xu, D

2γ
t u, D2β

x u, ...) = 0 (1)

The FDE (1) can be changed into the following nonlinear
ODE of integer order

P(U, U
′
, U

′′
, ..., ) = 0 (2)

with the use of following transformation

u(x, t) = U(ξ ), ξ = k x
β

β − l
tγ
γ , (3)

where k, l are nonzero arbitrary constants.
Let us try to search a non-trivial solution for the Eq. (2)

in the following form

U(ξ ) = a0 + a1a
ξ + ... + aNaNξ

b0 + b1aξ + ... + bNaNξ
(4)

where ai and bi for (0 ≤ i ≤ N) are found later and N is a
free positive integer.
Replacing the Eq.(4) in the nonlinear Eq.(2), yields

P(aξ ) = q0 + q1aξ + ... + qτaτξ = 0 (5)

Setting qi(0 ≤ i ≤ τ) in Eq.(4) to be zero, results in a set of
nonlinear equations as below

qi = 0, i = 0, ..., τ (6)

which by solving the generated set (6), we approach to
non-trivial solutions of the nonlinear FDE (1).

3 Rational exponential solutions of
space-time FMEW equation

The space-time fractional modi�ed equal-width equation
[35], for �nding its exact solutions via expa function
method, is as follows:

Dγt u(x, t)+ϵD
γ
xu3(x, t)−δD

3γ
xxtu(x, t) = 0, t > 0 0 < γ ≤ 1,

(7)
Using the transformation (3), and integrating w.r.t. ξ once,
we get

δlk2U
′′
− lU + ϵkU3 = 0. (8)

Through balancing, we select N = 1, the nontrivial solu-
tion (4) reduces to:

U(ξ ) = α1α
ξ + α0

β1αξ + β0
, α ≠ 1 (9)

By setting the above solution in reduced equation Eq. (8)
and equating factors of each power of aξ in the resulting
equation, we reach a nonlinear algebraic set as

α30kϵ − α0β20l = 0,
α1β20δk2l log2(α) − α0β0β1δk2l log2(α) + 3α20α1kϵ − α1β20l
− 2α0β0β1l = 0,
α0β21δk2l log2(α) − α1β0β1δk2l log2(α) + 3α0α21kϵ − α0β21l
− 2α1β0β1l = 0,
α31kϵ − α1β21l = 0

which its solution yields

α1 = ∓
4
√
− δ2β1

√
l log(α)

√
ϵ

, α0 = ±
4
√
− δ2β0

√
l log(α)

√
ϵ

,

k = −
√
−2√

δ log(α)
α1 = ∓

(−1)3/4β1 4√δ
√
l log(α)

4√2
√
ϵ

,

α0 = ±
(−1)3/4β0 4√δ

√
l log(α)

4√2
√
ϵ

, k =
√
−2√

δ log(α)

Thus, the following new rational exponential solutions to
the conformable space-time fractional modi�ed EW equa-
tion can be written as

U1,2(ξ ) =
4
√
− δ2

√
l log(α)(∓β1αξ ± β0)
√
ϵ(β1αξ + β0)

(10)

where ξ = −
√
−2√

δ log(α)
xγ
γ − l

tγ
γ . The rational exponential so-

lutions for di�erent γ values and β0 = β1 = ϵ = δ = l = 1
are graphed here.

U3,4(ξ ) =
(−1)3/4 4√δ

√
l log(α)(∓β1αξ ± β0)

4√2
√
ϵ(β1αξ + β0)

(11)

where ξ =
√
−2√

δ log(α)
xγ
γ − l

tγ
γ .
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Fig. 1: Solution Pro�le of u1,2 for γ = 0.25, 0.5, 0.75 and 1 respectively
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Fig. 2: Solution Pro�le of u3,4 for γ = 0.25, 0.5, 0.75 and 1 respectively

3.1 Rational exponential solutions of
space-time FEW equation

The conformable space-time fractional equal-width equa-
tion is as follows:

Dγt u(x, t)+ϵD
γ
xu2(x, t)−δD

3γ
xxtu(x, t) = 0, t > 0 0 < γ ≤ 1,

(12)

Using the transformation (3), and integrating w.r.t. ξ , we
get

δlk2U
′′
− lU + ϵkU2 = 0. (13)

Through balancing the terms we select N = 2, the non-
trivial solution (4) becomes

U(ξ ) = α2α
2ξ + α1αξ + α0

β2α2ξ + β1αξ + β0
, α ≠ 1 (14)

By inserting the above non-trivial solution in reduced
equation Eq. (13) and setting the coe�cients of each power
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Fig. 3: Solution Pro�le of u1 for γ = 0.25, 0.5, 0.75, and 1 respectively
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Fig. 4: Solution Pro�le of u2 for γ = 0.25, 0.5, 0.75 and 1 respectively

of αξ in the resulting equation, we reach to a set of nonlin-
ear algebraic equations as

α20β0kϵ − α0β20l = 0,
α1β20δk2l log2(α) − α0β0β1δk2l log2(α) + 2α0α1β0kϵ
+ α20β1kϵ − α1β20l − 2α0β0β1l = 0,
4α2β20δk2l log2(α) + α0β21δk2l log2(α)
− α1β0β1δk2l log2(α) − 4α0β0β2δk2l log2(α)
+ α21β0kϵ + 2α0α2β0kϵ + 2α0α1β1kϵ + α20β2kϵ

− α2β20l − α0β21l − 2α1β0β1l − 2α0β0β2l = 0,
3α2β0β1δk2l log2(α) − 6α1β0β2δk2l log2(α)
+ 3α0β1β2δk2l log2(α) + 2α1α2β0kϵ + α21β1kϵ
+ 2α0α2β1kϵ + 2α0α1β2kϵ − α1β21l − 2α2β0β1l
− 2α1β0β2l − 2α0β1β2l = 0,
α2β21δk2l log2(α) + 4α0β22δk2l log2(α)
− 4α2β0β2δk2l log2(α) − α1β1β2δk2l log2(α) + α22β0kϵ
+ 2α1α2β1kϵ + α21β2kϵ + 2α0α2β2kϵ − α2β21l − α0β22l
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− 2α2β0β2l − 2α1β1β2l = 0,
α1β22δk2l log2(α) − α2β1β2δk2l log2(α) + α22β1kϵ
+ 2α1α2β2kϵ − α1β22l − 2α2β1β2l = 0,
α22β2kϵ − α2β22l = 0.

which its solution yields

set − 1 α0 = ∓
iβ0
√
δl log(α)
ϵ , α1 = ±

2iβ1
√
δl log(α)
ϵ ,

α2 = ∓
iβ21
√
δl log(α)
4β0ϵ

, β2 =
β21
4β0

, k = ± i√
δ log(α)

set − 2 α0 = 0, α1 = ∓
3β1
√
δl log(α)
ϵ , α2 = 0,

β2 =
β21
4β0

, k = ∓ 1√
δ log(α)

Thus, from set-1 and set-2, the following new exact solu-
tions to conformable space-timeFEWequation canbewrit-
ten as

U1(ξ ) =
ι
√
δl log(α)(∓ β21

4β0ϵ α
2ξ ± 2β1

ϵ α
ξ ∓ β0

ϵ )
β21
4β0 α

2ξ + β1αξ + β0
(15)

where ξ = ± i√
δ log(α)

xγ
γ − l

tγ
γ . The rational exponential solu-

tions for di�erent γ values and β0 = β1 = ϵ = δ = l = 1 are
graphed here.

U2(ξ ) =
∓3β1

√
δl log(α)
ϵ αξ

( β
2
1

4β0 )α
2ξ + β1αξ + β0

(16)

where ξ = ∓ 1√
δ log(α)

xγ
γ − l

tγ
γ .

4 Discussion
The conformable FEW and modi�ed FEW equations are
important in mathematical physics as a model for the sim-
ulation of one-dimensional wave transmission in nonlin-
ear media with dispersion processes [33, 34]. The con-
formable derivatives and the complex fractional trans-
forms both are simple but e�ective to convert nonlinear
FDE into a nonlinear ODE. The expa function approach for
nonlinear FDEswith fractional complex transforms has its
own bene�ts: direct, concise, and straightforward; and it
can be used for many other nonlinear equations [29, 30].
A series of new rational exponential solutions with their
numerical simulation of conformable FEW equations has
been accomplished through symbolic soft computation
softwares.

5 Conclusion
The exact rational exponential solutions to conformable
space-time FEW and modi�ed FEW equations have been
explored via exp a function approach. The obtained solu-
tions are entirely di�erent from those given in [35]. These
solutions are veri�ed by inserting back in the reduced
equations with the aid of symbolic computation in Math-
ematica. Furthermore, the numerical simulation of some
solutions has been left for the reader to visualize them.
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References
[1] G. Samko, A.A. Kilbas, and Marichev. Fractional Integrals and

Derivatives: Theory and Applications. Gordon and Breach,
Yverdon, 1993.

[2] A. Kilbas, M. H. Srivastava, and J. J. Trujillo. Theory ans ap-
plication of fractional di�erential equations. North Holland
Mathematics Studies, 2006, 204.

[3] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh. A new
de�nation of fractional derivative. J.Comput.Appl.Math., 2014,
264, 65–70.

[4] Q. Zhou, M. Mirzazadeh, E. Zerrad, A. Biswas, and B. Milivoj.
Bright, dark, and singular solitons in optical �bers withspatio-
temporal dispersion and spatially dependent coe�cients.
Jornal of Modern Optics., 2016, 63(10), 427–430

[5] Kamyar Hosseini, Peyman Mayeli, and Reza Ansari. Bright and
singular soliton solutions of the conformable time-fractional
klein–gordon equations with di�erent nonlinearities. Waves in
Random and Complex Media, 2018, 28(3), 426–434.

[6] M. Kaplan and A. Bekir. The modi�ed simple equation
method for solving some fractional-order nonlinear equations.
Pramana-J.Phys, 2016, 87(15).

[7] A. Biswas, Y. Yildirim, E. Yaser, H. Triki, A. S. Alshomrani,
M. Zakh Ullah, Q. Zhou, S. P. Moshokoa, and M. Belic. Optical
soliton perturbation with gerdjikov–ivanov equation by modi-
�ed simple equation method. Optik, 2018, 157, 1235–1240.

[8] Y. Pandir, Y. Gurefe, and E. Misirli. The extended trial equa-
tion method for some time fractional di�erential equations.
Discrete Dyn. Nat. Soc., 2013, 2013.

[9] A. Biswas, Y. Yildirim, E. Yaser, H. Triki, A.S. Alshomrani,
M. Zakh Ullah, Q. Zhou, S. P. Moshokoa, and M. Belic. Opti-
cal soliton perturbation with full nonlinearity by trial equation
method. Optik, 2018, 157, 1366–1375.

[10] B. Lu. The �rst integral method for some time fractional di�er-
ential equations. J. Math. Anal. Appl., 2012, 395, 684–693.

[11] M. Eslami. Trial solution technique to chiral nonlinear
schrodinger’s equation in (1+2)-dimensions. Nonlinear Dy-
nam, 2016, 85(2), 813–816.



Asim Zafar, Rational exponential solutions of conformable space-time fractional equal-width equations | 355

[12] M. Younis and Asim Zafar. Exact solutions to nonlinear dif-
ferential equations of fractional order via ( G

′

G )-expansion
method. Appl. Math, 2014, 5, 1–6.

[13] D. Kumar, K. Hosseini, and F. Samadani. The sine- gordon
expansion method to look for the traveling wave solutions
of the tzitzéica type equations in nonlinear optics. Optik -
International Journal for Light and Electron Optics, 2017, 149,
439–446.

[14] K. Hosseini, D. Kumar, M. Kaplan, and E.Y. Bejarbaneh. New
exact traveling wave solutions of the unstable nonlinear
schrödinger equations. Commun. Theor. Phys., 2017, 68,
761–767.

[15] Y. Pandir, Y. Gurefe, and E. Misirli. A new approach to
kudryashov’s method for solving some nonlinear physical
models. Int. J. Phys. Sci., 2012, 7,2860–2866.

[16] M. Kaplan, A. Bekir, and A. Akbulut. A generalized kudryashov
method to some nonlinear evolution equations in mathemati-
cal physics. Nonlinear Dyn., 2016, 85, 2843–2850.

[17] E. Aksoy, A.C. Cevikel, and A. Bekir. Soliton solutions of (2+1)-
dimensional time-fractional zoomeron equation. Optik, 2016,
127, 6933–6942.

[18] K. Hosseini and R. Ansari. New exact solutions of nonlinear
conformable time-fractional boussinesq equations using the
modi�ed kudryashov method. Waves Random Complex Media,
2017, 27, 628 – 636.

[19] K. Hosseini, E. Yazdani Bejarbaneh, A. Bekir, and M. Kaplan.
New exact solutions of some nonlinear evolution equations of
pseudoparabolic type. Optical and Quantum Electronics, 2017,
49(7), 241.

[20] Z. Ayati, K. Hosseini, and M. Mirzazadeh. Application of
kudryashov and functional variable methods to the strain wave
equation in microstructured solids. Nonlinear Engineering,
2017, 6, 25–29.

[21] K. Hosseini, P. Mayeli, and D. Kumar. New exact solutions of
the coupled sine- gordon equations in nonlinear optics using
the modi�ed kudryashov method. Journal of Modern Optics,
2018, 65(3), 361–364.

[22] K. Hosseini, F. Samadani, D. Kumar, and M. Faridi. New opti-
cal solitons of cubic-quartic nonlinear schrödinger equation.
Optik, 2018, 157, 1101–1105.

[23] A. Bekir. Application of the extended tanh method for coupled
nonlinear evolution equation. Commun. Nonlinear Sci., 2008,
13, 1742–1751.

[24] Bekir A., Adem C. Cevikel, Ö. Güner, and Sait San. Bright and
dark soliton solutions of the (2+1)-dimenssional evolution
equation. Mathematical Modelling and Analysis, 2014, 19,
118–126.

[25] E. Fan. Extended tanh-function method and its application to
nonlinear equation. Phys. Lett. A., 2000, 277, 212–218.

[26] AM. Wazwaz. The extended tanh method for the zakharov-
kuznestsov(zk) equation, the modi�ed zk equation, and its
generalized forms. Commun. Nonlinear Sci., 2008, 13, 1039–
1047.

[27] Kamyar Hosseini, Jalil Mana�an, Farzan Samadani, Moham-
madreza Foroutan, Mohammad Mirzazadeh, and Qin Zhou.
Resonant optical solitons with perturbation terms and frac-
tional temporal evolution using improved tan(ϕ(η)/2)-
expansion method and exp function approach. Optik, 2018,
158, 933–939.

[28] S. Zhang. Application of exp-function to a kdv equation with
variable-coe�cients. Phys. Lett. A, 2007, 365, 448–453.

[29] A. T. Ali and E. R. Hassan. General expa function method for
nonlinear evolution equations. Appl. Math. Comput., 2010,
217, 451–459.

[30] K. Hosseini, Z. Ayati, and R. Ansari. New exact solution of the
tzitze´ica type equations in nonlinear optics using the expa
function method. J. Mod. Opt., 2018, 65(7), 847–851.

[31] K. Hosseini, A. Zabihi, F. Samadani, and R. Ansari. New explicit
exact solutions of the unstable nonlinear schrödinger’s equa-
tion using the expa and hyperbolic function methods. Optical
and Quantum Electronics, 2018, 50(2), 82.

[32] E. M. E. Zayed and A. G. Al-Nowehy. Generalized kudryashov
method and general exp a function method for solving a high
order nonlinear schrödinger equation. J. Space Explor., 2017,
6, 1–26.

[33] Cary JR. Morrison PJ, Meiss JD. Scattering of regularized-long-
wave solitry waves. Physica D: Nonlinear Phenomena, 1984,
11(3), 324–336.

[34] Fan HL. The classiication of single trawling wave solutions to
the generalized equal-width equation. Appl. Math. Comput.,
2012, 219(2), 748–754.

[35] Alper Korkmaz. Exact solutions of space-time fractional ew and
modi�ed ew equations. Chaos, Solitons and Fractals, 2017, 96,
132–138.


	Rational exponential solutions of conformable space-time fractional equal-width equations
	1 Introduction
	2 Conformable fractional derivatives and the method of solutions
	2.1 The  expa function method 

	3 Rational exponential solutions of space-time FMEW equation
	3.1 Rational exponential solutions of space-time FEW equation

	4 Discussion
	5 Conclusion


