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Abstract: In this paper, the rational exponential solutions
of two space-time fractional equal-width (FEW) equations
are explored in the conformable derivative sense. The way
to reach explicit exact solutions is to transform the frac-
tional order PDEs into a nonlinear ODEs of discrete order
through some properties of conformable derivatives and a
fractional complex transforms. The subsequent equations
have been elucidated by employing the exp , function ap-
proach. Some new exact solutions of the said equations are
effectively formulated and graphically conveyed with the
aid of symbolic computation in Mathematica and MATLAB
respectively.
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1 Introduction

Various fields of science and engineering are influenced by
Leibnitz’s work on fractional calculus and having increas-
ing impact on these sciences during last twenty years os-
tensibly [1, 2]. Many definitions of fractional derivatives,
Like Hilfer, Riemann-Liouville, Caputo form and so on,
have been introduced in the literature. Here, in this pa-
per, we are interested in making the use of a recent def-
inition of fractional derivatives, called conformable frac-
tional derivatives given by Khalil et al. [3]. The exact solu-
tions have always been a particular importance among the
researchers in many fields of nonlinear sciences. The avail-
ability of symbolic computation softwares is a direct help
to minimize the manual labor for finding problematic so-
lutions to nonlinear evolution equations. Various analyt-
ical methods have been presented in the literature to ex-
plore exact solutions such as ansatz [4, 5], modified sim-
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ple equation [6, 7], the extended trial equation [8, 9], the
first integral [10, 11], (%')-expansion [12], sine-Gordon ex-
pansion [13, 14]. Furthermore, some other excellent works
like generalized Kudryashov method [15-17], a modified
form of Kudryashov and functional variable methods [18—
22] have been done by different researchers. In [23-28], the
auxiliary equation, the extended tanh-function, the im-
proved tan(@)-expamsion methods and the exp function
approach have been explored for discrete and fractional
order PDEs as well.

The exp 4 function method is a new and an efficient
technique which has been acknowledged rapidly by the
scholars. For example, Ali and Hassan, Hosseini et al., Za-
yed and Al-Nowehy all have utilized the exp , function
method in [29],[30, 31] and [32] respectively. This paper
aims to explore the exp , function approach to generate
rational exponential solutions to conformable space-time
fractional EW and the space-time fractional modified EW
equations [33, 34].

The scheme of this article is as follows: In Sec. 2, the
definition of conformable fractional derivative with some
of its properties and the explanation of exp, function ap-
proach are given. In Sec. 3, the conformable space-time
FEW equations have been considered to elucidate via the
above mentioned approach. The graphical representation
of some solutions have also been given in the same sec-
tion. Finally, a summarizing discussion of results and con-
clusion have been given in Sec. 4 & 5.

2 Conformable fractional
derivatives and the method of
solutions

Recall the Khalil’s definition of the conformable derivative
and with some properties.

Defination 1 Suppose h : R.g — R be a function. Then,
forallt >0,

1-ay _
(Tah)(®) = lim h(t+et™*) - h(t)
e—0 &
is known as the conformable fractional derivative of h of

order a, O < a < 1. Some useful properties are being listed
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as follows:

Ta(ah+bg)=a(Tah) + b(Tq g),foralla, b € R

Ta(h g) = h Ta(g) + g Ta(h)

Let h : R, — R be a differentiable and a-differentiable
function, g be a differentiable function defined in the
range of h.

Ta(h o g)(t) = 7 g'(¢) W' (g(t)).

On the top of that, the following rules hold.
To(tY) = A1 t1% forallA € R

Ta(A) = O

Ta(h/g) = g(Tah)g—zh(Tag).

Conjointly, if h is differentiable, then T, (h)(t) = tl‘“%(t”.

2.1 The exp, function method

The present subsection provides a concise explanation for
the exp, function method in generating new rational ex-
ponential solutions to nonlinear conformable space-time
FEW and modified FEW equations. For this purpose, sup-
pose that we have a nonlinear conformable time FDE that
can be presented in the form

F(u, D’ u, D§u, 0¥ u,D¥u,...)=0 (1)

The FDE (1) can be changed into the following nonlinear
ODE of integer order

PU,U,U ,...,)=0 )
with the use of following transformation

xP 1 v
B ;
where k, | are nonzero arbitrary constants.

Let us try to search a non-trivial solution for the Eq. (2)
in the following form

u(x,t)=U(¢), &=k 3

ao +aiad +... + ayaé
bo + byaé +... + byaNé

U = (4)

where a; and b; for (0 < i < N) are found later and N is a
free positive integer.
Replacing the Eq.(4) in the nonlinear Eq.(2), yields

P(@®) = qo+qia* +...+q:a™ =0 5)

Setting ¢;(0 < i < 7) in Eq.(4) to be zero, results in a set of
nonlinear equations as below

qgi=0, i=0,...,T 6)

which by solving the generated set (6), we approach to
non-trivial solutions of the nonlinear FDE (1).
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3 Rational exponential solutions of
space-time FMEW equation

The space-time fractional modified equal-width equation
[35], for finding its exact solutions via exp, function
method, is as follows:

DYu(x, t) +eDju (x, t)—5D)3<§tu(x, £)=0, t>00 <y«< 1,

@

Using the transformation (3), and integrating w.r.t. £ once,
we get

SICU” —1U + ekU? = 0. (8)

Through balancing, we select N = 1, the nontrivial solu-

tion (4) reduces to:

a as + ag
Bias +Bo’
By setting the above solution in reduced equation Eq. (8)

and equating factors of each power of a® in the resulting
equation, we reach a nonlinear algebraic set as

Ui = a#l )

adke - aofdl =0,
a1B36k*1og? (@) — aofof16k*1log? (a) + 3adar ke — a1 B3l
- zaoﬂoﬁll = Os

2612 2 2 2 2 2
aoB16k”llog”(a) — a1 BoB16k"1log” (a) + 3agatke — a1l
- 2(X1ﬁ0ﬁ11 = 0,
alke-a131=0

which its solution yields

\“/gﬁ 1V llog(a) (‘/@Bo V/1log(a)
e temr— g
V2 __(=1)%/%B, V/5+/1og()
Vologla) T V2\e '
_ GV BoVENog@) V2
h Vv2\/€ v6log(a)
Thus, the following new rational exponential solutions to
the conformable space-time fractional modified EW equa-
tion can be written as

(/E Vog(@)(Fp1a¢ + fo)
\/E(ﬁlaé' + Bo)

V=2 ¥t i i -
75 los@) ¥ l v The rational exponential so
lutions for different y valuesand o = 1 =e=6=1=1

are graphed here.

(-1)>/4/8\/Tog(@)(Fp1a° + Bo)

ap =%

Qo

Ui2(8) = (10)

where & = -

Us,4(8) = T2 eB o + Bo) (11)
where & = VSRS S 4

Vélog(a) ¥V y:
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Fig. 1: Solution Profile of us,, for y = 0.25, 0.5, 0.75 and 1 respectively

Fig. 2: Solution Profile of u3 4 fory = 0.25, 0.5, 0.75 and 1 respectively

3.1 Rational exponential solutions of
space-time FEW equation

The conformable space-time fractional equal-width equa-
tion is as follows:

3
DYu(x, )+eDsu*(x, )~ 8D Y u(x, ) =0, t>00 <y=< 1,
(12)

Using the transformation (3), and integrating w.r.t. &, we
get

SUCU —1U + ekU? = 0. (13)

Through balancing the terms we select N = 2, the non-
trivial solution (4) becomes

aa% +arat +ag
ﬁZQZ{ +‘81a{ +B0 ’
By inserting the above non-trivial solution in reduced
equation Eq. (13) and setting the coefficients of each power

ué) = a#1 (14)



DE GRUYTER Asim Zafar, Rational exponential solutions of conformable space-time fractional equal-width equations = 353

Fig. 3: Solution Profile of u; fory = 0.25, 0.5, 0.75, and 1 respectively

Fig. 4: Solution Profile of u, fory = 0.25, 0.5, 0.75 and 1 respectively

of a% in the resulting equation, we reach to a set of nonlin-
ear algebraic equations as

- azﬁ(z)l - aoﬁ%l - 2(11[‘30[311 - zaoﬁoﬁzl = 0,
3a,B0B16k*11og? (@) — 6a1Bof26k*110g? (@)
+ 3aoﬁlﬂz6kzllog2(a) +2a1a2B0ke + a%ﬂlke

{X(Z)B()ké' - (X(),B(Z)I =0,

a1 p36K* 110g? (&) - aoBoB1 6k 1log? (a) + 2a0as Boke +2a00f1ke + 2a0a1 Boke - a1 il - 2a2Bopal

+ agPike — a1 ol - 2a0Bop11 = 0, = 2a1BoBa2l - 2a0B1B21 = 0,

hay B3k 110g2(a) + o B2 6K 10g* (@) a8k’ log® (a) + 4a0p38k" llog” (a)

— a1 BoB16k*110g*(@) — 4aofof>8k*110g?(a) — 4a>PoB26K>110g*(a) — a1 B1 26k 1log” () + a3 foke

2 2 2
+aiPoke + 2apazBoke + 2a0a1 frke + adBrke + 2a1a2B1ke + aipoke + 200022 ke - az il - a3l
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-2a,B0B21-2a1 8181 =0,

a1B36k*1og? (@) — a2 B18,6k*11og? (a) + a3 B ke
+2a1a2B2ke — a1 B51 - 2a,81 821 = 0,

a3Brke — af31=0.

which its solution yields

set-1 ag = 7 LoVOLS@ o _, 2if1VBllog(a)
if2+/6llog(a) B2 i
a, =g PV O8L gy = PL e L
’ 4Boc & “4Po Vélog(a)
set-2 a0=0, a1:$w, o =0,
pi 1
LS U . S
& 4Bo :F\/glog(a)

Thus, from set-1 and set-2, the following new exact solu-
tions to conformable space-time FEW equation can be writ-
ten as

161 log(a)($%zea2‘r + 218 5 by

2
f—éoazf +B1ad + Bo

U:1(8) = (15)

i X
V6 log(a) ¥V
tions for different y valuesand fo = ;1 =€e=6 =1=1are

graphed here.

where § = + - I%. The rational exponential solu-

:F
2
(rﬁlo)az"( +Bras + Bo

3B V/6l1og(a) a{
€

U,(8) = (16)

=71 X _ 42
where{—;\/glogm)y Iy.

4 Discussion

The conformable FEW and modified FEW equations are
important in mathematical physics as a model for the sim-
ulation of one-dimensional wave transmission in nonlin-
ear media with dispersion processes [33, 34]. The con-
formable derivatives and the complex fractional trans-
forms both are simple but effective to convert nonlinear
FDE into a nonlinear ODE. The exp, function approach for
nonlinear FDEs with fractional complex transforms has its
own benefits: direct, concise, and straightforward; and it
can be used for many other nonlinear equations [29, 30].
A series of new rational exponential solutions with their
numerical simulation of conformable FEW equations has
been accomplished through symbolic soft computation
softwares.
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5 Conclusion

The exact rational exponential solutions to conformable
space-time FEW and modified FEW equations have been
explored via exp 4 function approach. The obtained solu-
tions are entirely different from those given in [35]. These
solutions are verified by inserting back in the reduced
equations with the aid of symbolic computation in Math-
ematica. Furthermore, the numerical simulation of some
solutions has been left for the reader to visualize them.
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