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Abstract: In this paper, a time dependent singularly per-
turbed differential-difference convection-diffusion equa-
tion is solved numerically by using an adaptive grid
method. Similar boundary value problems arise in compu-
tational neuroscience in determination of the behaviour
of a neuron to random synaptic inputs. The mesh is
constructed adaptively by using the concept of entorpy
function. In the proposed scheme, prior information of
the width and position of the layers are not required.
The method is independent of perturbation parameter
ε and gives us an oscillation free solution, without any
user introduced parameters. Numerical examples are pre-
sented to show the accuracy and efficiency of the proposed
scheme.
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1 Introduction
Singularly perturbed partial differential equations arise in
a wide variety of application fields such as biosciences,
economics,material science,medicine, robotics etc. [5, 14,
20] and in the last few decades there has been a growing
interest in the study of delay differential equations [3, 4, 9].
In 1965 Stein [19] proposed a mathematical model of neu-
ronal variability to study the stochastic movement of neu-
ron. Later he generalized the model to study the distribu-
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tion of past synaptic potential amplitudes. In 1991 Musila
and Lansky [13] generalised the Stein’s model and given
the following mathematical model:

− ∂u∂t =
σ2
2
∂2u
∂x2 +

(︁
µD −

x
τ

)︁∂u
∂x + λsu(x + as , t)

+ ωsu(x + is , t) − (λs + ωs)u(x, t).

Here, due to exponential decay between two consecutive
jumps caused by the input processes, the first derivative
termwill occur. The membrane potential decays exponen-
tially to the resting level with a membrane time constant
τ and µD and σ are diffusion moments of Wiener process
characterizing the influence of the dentritic synapses on
the cell excitability. The reaction terms correspond to the
superposition of excitatory and inhibitory inputs and we
can assume that they are Poissonian. The excitatory in-
put contributes to the membrane potential by amplitude
as with intensity λs and similarly the inhibitory input con-
tributes by amplitude is with intensity ωs. This model
makes available time evolution of the trajectories of the
membrane potential.

Lange and Miura [11], studied the asymptotic analy-
sis of singularly perturbed boundary value problems for
differential-difference equations in ordinary differential
equations. This studymotivatedmany researchers to work
onnumerics of singularly perturbeddifferential-difference
equations in ordinary differential equations and partial
differential equations. Here we are concerned with the
partial differential equations of convection-diffusion type
with general shift arguments, which are singularly per-
turbed. It is noticeable that the behavior of the solution
of singularly perturbed partial differential equations with
shift arguments are essentially different from those of
without shift arguments.

Ramesh and Kadalbajoo [15] proposed a numeri-
cal scheme based on classical finite differences on the
Shishkin mesh for solving singularly perturbed partial
differential-difference equations with small shift argu-
ments. The method is found to be uniformly convergent
with respect to the perturbation parameter. Kumar and
Kadalbajoo [9] had given a B-spline collocation method
on fitted mesh for solving singularly perturbed partial
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differential-difference equations with small shift argu-
ments. In [9, 15], they approximated the shifted terms by
Taylor series and difference schemes are applied. Such
methods will work when shifts are smaller than perturba-
tion parameter and fails in the case when shifts are big-
ger than perturbation parameter. Bansal et. al.[3, 4] de-
veloped parameter uniform numerical schemes to find the
approximate solution of time dependent singularly per-
turbed convection-diffusion-reaction problems with gen-
eral shift arguments in space variable, which work for
small shifts as well as large shifts. Rao and Chakravarthy
[16] had given a fitted numerical scheme for singularly
perturbed one-dimensional parabolic partial differential
equations with small shifts.

If we solve singularly perturbed partial differential
equations using central finite difference scheme on a uni-
form mesh, it gives oscillatory solution, which shows that
method is unstable. To deal with such situation, more
mesh points in boundary layer region is required. To cater
the need, layer adaptive meshes have been developed by
Bakhvalov [2], Gartland [8] and others. A special piece-
wise uniform meshes have been proposed by Miller and
Shishkin [12]. Shishkinmeshes are used widely because of
their simplicity. The major drawback of Shishkin meshes
is the requirement of prior information of the location of
the layer regions. To overcome this drawback, in this pa-
per, we proposed an adaptive meshmethod using the con-
cept of entropy function for solving convection-diffusion-
reaction singularly perturbed delay parabolic partial dif-
ferential equations. The method is independent of pertur-
bation parameter ε and gives us an oscillation free solu-
tion, without any user introduced parameters.

The paper is organized as follows: The problem un-
der consideration is stated and the sufficient compatibil-
ity conditions on the initial and boundary data to guaran-
tee the existence, uniqueness and appropriate regularity
of the solutions to the problem are presented in Section
2. Numerical scheme and variable mesh algorithm is pre-
sented in Section 3. Section 4 is devoted to the stability and
error analysis. To demonstrate the efficiency and applica-
bility of the proposed numerical scheme, numerical exper-
iments are carried out for three test problems and results
are given in Section 5. The paper ends with conclusions in
last section.

2 Statement of the problem
Let Ω = (0, 1), D = Ω×(0, T], for some fixed time T and Γ =
Γl ∪ Γb ∪ Γr, where Γl = {(x, t) : −δ ≤ x ≤ 0, and 0 ≤ t ≤ T}

and Γr = {(x, t) : 1 ≤ x ≤ 1 + η, and 0 ≤ t ≤ T} are the left
and the right sides of the domain D and Γb = [0, 1].
In this paper, we consider a class of time dependent sin-
gularly perturbed partial differential difference equation
with initial condition and the interval boundary condi-
tions of the from:

∂u
∂t − ε

∂2u
∂x2 + a(x)∂u∂x + b(x)u(x, t) + c(x)u(x − δ, t)

+ d(x)u(x + η, t) = f (x, t), (1)

where (x, t) ∈ D,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u(x, 0) = ϕb(x), ∀x ∈ Γb = [0, 1],
u(x, t) = ϕl(x, t),
∀(x, t) ∈ Γl = {(x, t) : −δ ≤ x ≤ 0, and 0 ≤ t ≤ T},
u(x, t) = ϕr(x, t),
∀(x, t) ∈ Γr = {(x, t) : 1 ≤ x ≤ 1 + η, and 0 ≤ t ≤ T},

(2)
where 0 < ε ≪ 1 is the singular perturbation param-
eter, δ, η > 0 represent the shift parameters. The func-
tions a(x), b(x), c(x), d(x), f (x, t), ϕb(x), ϕl(x, t), ϕr(x, t)
are assumed to be smooth and bounded functions on D,
that satisfy the conditions b(x) + c(x) + d(x) ≥ α > 0 on
Γb = [0, 1], for some constant α. When δ = η = 0, the
above problem reduces to singularly perturbed partial dif-
ferential equation. If a(x) ≥ β > 0, for some constant β,
c(x) < 0 and d(x) < 0 for all x ∈ Γb = [0, 1], then the solu-
tion exhibits boundary layer along x=1.
The problem (1) with initial condition and the interval
boundary conditions (2), can be rewritten as

Lεu(x, t) = F(x, t),

where

Lεu(x, t) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t − ε

∂2u
∂x2 + a(x)

∂u
∂x + b(x)u(x, t)

+d(x)u(x + η, t),
if 0 < x ≤ δ, 0 < t ≤ T,

∂u
∂t − ε

∂2u
∂x2 + a(x)

∂u
∂x + b(x)u(x, t)

+c(x)u(x − δ, t) + d(x)u(x + η, t),
if δ < x < 1 − η, 0 < t ≤ T,

∂u
∂t − ε

∂2u
∂x2 + a(x)

∂u
∂x + b(x)u(x, t)

+c(x)u(x − δ, t),
if 1 − η ≤ x ≤ 1, 0 < t ≤ T,

(3)
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and

F(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x, t) − c(x)ϕl(x − δ, t),
if 0 < x ≤ δ, 0 < t ≤ T,

f (x, t),
if δ < x < 1 − η, 0 < t ≤ T,

f (x, t) − d(x)ϕr(x + η, t),
if 1 − η ≤ x ≤ 1, 0 < t ≤ T .

(4)

The existence and uniqueness of a solution of (1) can
be established under the assumption that the data are
Holder continuous and also satisfy appropriate compati-
bility conditions at the corner points (0, 0), (1, 0), (−δ, 0),
(1+η, 0) then the required compatibility conditions are[18]

ϕb(0) = ϕl(0, 0),

ϕb(1) = ϕr(1, 0), (5)

and

∂ϕl(0, 0)
∂t − ε ∂

2ϕb(0)
∂x2 + a(0)∂ϕb(0)∂x + b(0)ϕb(0)

+ c(0)ϕl(−δ, 0) + d(0)ϕb(η) = f (0, 0),

∂ϕr(1, 0)
∂t − ε ∂

2ϕb(1)
∂x2 + a(1)∂ϕb(0)∂x + b(1)ϕb(1)

+ c(1)ϕb(1 − δ) + d(1)ϕr(1 + η, 0) = f (1, 0). (6)

These conditions guarantee that there exists a constant C
independent of ε such that ∀(x, t) ∈ D,

|u(x, t) − u(x, 0)| = |u(x, t) − ϕb(x)| ≤ Ct,

and |u(x, t) − u(0, t)| = |u(x, t) − ϕl(0, t)| ≤ C(1 − x).

Lemma 2.1. (Maximum principle) Let the function
φ(x, t) ∈ C2,1(D), such that Lεφ(x, t) ≥ 0 in D and
φ(x, t) ≥ 0 for all (x, t) ∈ (D − D). Then φ(x, t) ≥ 0 for all
(x, t) ∈ (D).

Proof. Let there exists (xp , tq) ∈ D, for some positive inte-
ger p and q such that

φ(xp , tq) = min
(x,t)∈D

φ(x, t),

and also assume that φ(xp , tq) < 0. From our assumption
it is clear that (xp , tq) ∈ ̸ (D − D), which implies that
(xp , tq) ∈ D. Since at the point (xp , tq) function φ attains
minimum, so φt = φx = 0 , φxx ≥ 0 at point (xp , tq)
and b(x) + c(x) + d(x) > 0, c(x) < 0 and d(x) < 0 for all
x ∈ [0, 1]. Using differential operator Lε on φ(x, t), from

(3) we have

for 0 < xp ≤ δ and 0 < tq ≤ T,

Lεφ(xp , tq) =
∂φ
∂t − ε

∂2φ
∂x2 + a(xp)

∂φ
∂x + b(xp)φ(xp , tq)

+ d(xp)φ(xp + η, tq)

= − ε ∂
2φ
∂x2 + b(xp)φ(xp , tq) + d(xp)φ(xp + η, tq)

= − ε ∂
2φ
∂x2 + b(xp)φ(xp , tq) + d(xp)φ(xp + η, tq)

+ d(xp)φ(xp , tq) − d(xp)φ(xp , tq)

= − ε ∂
2φ
∂x2 + (b(xp) + d(xp))φ(xp , tq)

+ d(xp)(φ(xp + η, tq) − φ(xp , tq))
<0,

for δ < xp < 1 − η and 0 < tq ≤ T

Lεφ(xp , tq) =
∂φ
∂t − ε

∂2φ
∂x2 + a(xp)

∂φ
∂x + b(xp)φ(xp , tq)

+ c(xp)φ(xp − δ, tq) + d(xp)φ(xp + η, tq)

= − ε ∂
2φ
∂x2 + b(xp)φ(xp , tq) + c(xp)φ(xp − δ, tq)

+ d(xp)φ(xp + η, tq)

= − ε ∂
2φ
∂x2 + (b(xp) + c(xp) + d(xp))φ(xp , tq)

+ c(xp)φ((xp − δ, tq) − φ(xp , tq)) + d(xp)φ((xp + η, tq)
− φ(xp , tq))

<0,

for 1 − η ≤ xp ≤ 1 and 0 < tq ≤ T

Lεφ(xp , tq) =
∂φ
∂t − ε

∂2φ
∂x2 + a(xp)

∂φ
∂x + b(xp)φ(xp , tq)

+ c(xp)φ(xp − δ, tq)

= − ε ∂
2φ
∂x2 + b(xp)φ(xp , tq) + c(xp)φ(xp − δ, tq)

= − ε ∂
2φ
∂x2 + b(xp)φ(xp , tq) + c(xp)φ(xp − δ, tq)

+ c(xp)φ(xp , tq) − c(xp)φ(xp , tq)

= − ε ∂
2φ
∂x2 + (b(xp) + c(xp))φ(xp , tq) + c(xp)(φ(xp + η, tq)

− φ(xp , tq))
<0,

which contradict our assumption as Lεφ(x, t) ≥ 0 in D. So
we have φ(x, t) ≥ 0 for all (x, t) ∈ (D).

Lemma 2.2. If u(x,t) satisfies the maximum principle then
for n=0,1 and 2, the derivatives of the exact solution u(x,t) of
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the model problem (1) satisfy the following bound⃒⃒⃒⃒
∂nu(x, t)
∂tn

⃒⃒⃒⃒
≤ C, (x, t) ∈ D

where C is a generic positive constant independent of ε.

Proof. First we prove the bound for n=0. We have,

|u(x, t) − u(x, 0)| = |u(x, t) − ϕb(x)| ≤ Ct, ∀(x, t) ∈ D

|u(x, t)| ≤ |ϕb(x)| + Ct,

since ϕb(x) ∈ C2(D) and t is bounded.

|u(x, t)| ≤ C1, for some constant C1.

Now we have to prove the bound for n=1,
we have u ≡ 0 along x = 0 and x = 1, therefore ux ≡ 0 and
uxx ≡ 0. Now for t=0,

∂u
∂t − ε

∂2u
∂x2 + a(x)∂u∂x + b(x)u(x, 0) + c(x)u(x − δ, 0)

+ d(x)u(x + η, 0) = f (x, 0),

using above conditions on u, we have

∂u(x, 0)
∂t = f (x, 0)

⃒⃒⃒∂u(x, 0)
∂t

⃒⃒⃒
≤ C, for some constant C.

Apply the differential operator Lε on ut(x, t)

Lεut(x, t) = Ft(x, t)

which implies that,⃒⃒⃒
Lεut(x, t)

⃒⃒⃒
=
⃒⃒⃒
Ft(x, t)

⃒⃒⃒
≤ C, ∀(x, t) ∈ D,

using maximum principle,⃒⃒⃒∂u(x, t)
∂t

⃒⃒⃒
≤ C, ∀(x, t) ∈ D.

Similarly one can prove the result for n=2.

Theorem 2.3. For n=0,1,2,3 and 4, the derivatives of the
exact solution u(x,t) of the model problem (1) satisfy the
following bound⃒⃒⃒⃒
∂nu(x, t)
∂xn

⃒⃒⃒⃒
≤ C

(︂
1 + ε−nexp(−β(1 − x)/ε)

)︂
, (x, t) ∈ D

where C is a generic positive constant independent of ε.

Proof. The proof of this theorem can be found in [3].

3 Numerical Scheme
In this section, we present a numerical scheme which
works nicely when the delay and advance parameters
are larger than perturbation parameter. To describe the
method, we consider the linear singularly perturbed
partial differential equation (1) subject to the initial and
interval boundary conditions (2). Let the time interval
[0, T] be partitioned into N equal parts with constant step
size ∆t. Let 0 = t0, t1, ...tN = T be the mesh points. Then
we have tj = j TN , j = 0, 1, ..., N.

Applying backward Euler formula for time derivative
in equation (1) we obtain

U j(x) − U j−1(x)
∆t − ε d

2U j(x)
dx2 + a(x)dU

j(x)
dx + b(x)U j(x)

+ c(x)U j(x − δ) + d(x)U j(x + η) = f (x, tj),

where U j = U(x, tj) ≃ u(x, tj), for j = 1, 2, ..., N .
After rearranging the terms in above equation, we get

U j(x)
∆t − ε d

2U j(x)
dx2 + a(x)dU

j(x)
dx + b(x)U j(x) + c(x)U j(x − δ)

+ d(x)U j(x + η) = f (x, tj) +
U j−1(x)
∆t . (7)

This can be rewritten as

L*εU(x, tj) = G(x, tj) (8)

where

L*εU(x, tj) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε d
2U j(x)
dx2 + a(x) dU

j(x)
dx +

(︀
b(x) + 1

∆t
)︀
U j(x)

+d(x)U j(x + η),
if 0 < x ≤ δ,

−ε d
2U j(x)
dx2 + a(x) dU

j(x)
dx +

(︀
b(x) + 1

∆t
)︀
U j(x)

+c(x)U j(x − δ) + d(x)U j(x + η),
if δ < x < 1 − η,

−ε d
2U j(x)
dx2 + a(x) dU

j(x)
dx +

(︀
b(x) + 1

∆t
)︀
U j(x)

+c(x)U j(x − δ),
if 1 − η ≤ x ≤ 1.

(9)
and

G(x, tj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x, tj) + U j−1(x)
∆t − c(x)ϕl(x − δ, tj),

if 0 < x ≤ δ,
f (x, tj) + U j−1(x)

∆t ,
if δ < x < 1 − η,

f (x, tj) + U j−1(x)
∆t − d(x)ϕr(x + η, tj),

if 1 − η ≤ x ≤ 1.

(10)
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3.1 Finite difference operators for a
non-uniform mesh

The first order forward, backward and central difference
operators in space on non-uniform mesh(adaptive mesh)
points xi are defined as

D+
xui =

ui+1 − ui
xi+1 − xi

, D−xui =
ui − ui−1
xi − xi−1

,

and D0
xui =

ui+1 − ui−1
xi+1 − xi−1

,

respectively and the second order central difference oper-
ator D+

xD−x in space is defined as

D+
xD−xui =

2(D+ui − D−ui)
xi+1 − xi−1

.

Using above finite difference operators on a non-uniform
mesh, we have

L*εU(x, tj) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εD+
xD−xU j(x) + a(x)D0

xU j(x) +
(︀
b(x) + 1

∆t
)︀

U j(x) + d(x)U j(x + η),
if 0 < x ≤ δ,

−εD+
xD−xU j(x) + a(x)D0

xU j(x) +
(︀
b(x) + 1

∆t
)︀

U j(x) + c(x)U j(x − δ) + d(x)U j(x + η),
if δ < x < 1 − η,

−εD+
xD−xU j(x) + a(x)D0

xU j(x) +
(︀
b(x) + 1

∆t
)︀

U j(x) + c(x)U j(x − δ),
if 1 − η ≤ x ≤ 1.

(11)
The initial and interval boundary conditions can be rewrit-
ten as

U(x, 0) = ϕb(x), x ∈ [0, 1],

U(x, tj) = ϕl(x, tj), −δ ≤ x ≤ 1, j = 0, 1, ..., N,

U(x, tj) = ϕr(x, tj), 1 ≤ x ≤ 1 + η, j = 0, 1, ..., N . (12)

We solve (11) along with the conditions (12) using central
difference scheme with minimum number of mesh points
on uniform mesh in space direction. The presence of the
singular perturbation parameter ε leads to occurrences of
wild oscillation in the numerical solution. In order to avoid
such oscillations, a large number of mesh points are re-
quired in layer region, when ε is very small. To overcome
this, we generated a variablemesh using entropy function.
The strategy for generating an adaptive mesh is given in
the following subsection.

3.2 Mesh Selection Strategy

Now, we define, the entropy production equation by mul-
tiplying with an appropriate test function. From the the-
ory of scalar conservation law, we know that U2 is always
an appropriate entropy variable and therefore 2U(x, tj) is
a suitable multiplying test function [10]. On multiplying
with the test function, we obtain

L*εU(x, tj) * 2U(x, tj) = G(x, tj) * 2U(x, tj). (13)

After simplifying, equation (13) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε
(︀
Z′′ − 2(U′2)

)︀
+ a(x)Z′ + 2

(︀
b(x) + 1

∆t
)︀
Z + 2U j(︂

c(x)ϕl(x − δ) + d(x)U j(x + η) − f (x, tj) − U j−1(x)
∆t

)︂
= 0,

if 0 < x ≤ δ,
−ε

(︀
Z′′ − 2(U′2)

)︀
+ a(x)Z′ + 2

(︀
b(x) + 1

∆t
)︀
Z + 2U j(︂

c(x)U j(x − δ) + d(x)U j(x + η) − f (x, tj) − U j−1(x)
∆t

)︂
= 0,

if δ < x < 1 − η,
−ε

(︀
Z′′ − 2(U′2)

)︀
+ a(x)Z′ + 2

(︀
b(x) + 1

∆t
)︀
Z + 2U j(︂

c(x)U j(x − δ) + d(x)ϕr(x + η) − f (x, tj) − U j−1(x)
∆t

)︂
= 0,

if 1 − η ≤ x ≤ 1,

where Z = U2.
The above equation can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εZ′′ + a(x)Z′ + 2U j
(︂
c(x)ϕl(x − δ) + d(x)U j(x + η)

−f (x, tj) − U j−1(x)
∆t

)︂
= −2

(︀
b(x) + 1

∆t
)︀
Z − 2ε(U′2),

if 0 < x ≤ δ,

−εZ′′ + a(x)Z′ + 2U j
(︂
c(x)U j(x − δ) + d(x)U j(x + η)

−f (x, tj) − U j−1(x)
∆t

)︂
= −2

(︀
b(x) + 1

∆t
)︀
Z − 2ε(U′2),

if δ < x < 1 − η,

−εZ′′ + a(x)Z′ + 2U j
(︂
c(x)U j(x − δ) + d(x)ϕr(x + η)

−f (x, tj) − U j−1(x)
∆t

)︂
= −2

(︀
b(x) + 1

∆t
)︀
Z − 2ε(U′2).

if 1 − η ≤ x ≤ 1,
(14)

The right-hand side of the equation(14) is considered as
our entropy function and is always negative for all values
x ∈ [0, 1]. As we know that, if we solve equation (11) by
using central differencemethod, we get oscillations inside
and near the boundary layer region. We calculate the dis-
crete analogue of left hand side part in (14) using the same
central difference operator by taking Zi = U2

i , where Ui is
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the central difference computed solution of equation (11).
If wewrite the right hand side part of (14) at themesh point
(xi , tj), as

− 2
(︁
b(xi) +

1
∆t

)︁
(Ui+1,j .Ui−1,j) − 2ε

(︁Ui,j − Ui−1,j
xi − xi−1

)︁
(︁Ui+1,j − Ui,j

xi+1 − xi

)︁
, (15)

we get the positive value whenever the oscillations oc-
cur, where Ui is the central difference computed solution.
To generate the variable mesh, first we calculate entropy
function with minimum number of initial uniform mesh
points in space direction. To handle the delay and advance
terms, we construct a special mesh, so that the terms con-
taining the shifts lie on nodal point after discretization on
uniform mesh. We find out the mesh point, where the en-
tropy is maximum and positive. We add mesh points, one
to the left and other to the right side of the mesh point
where entropy is maximum and positive. Now, we com-
pute the solution with newly generated mesh points (non
uniformmesh) using central difference method and check
whether the entropy is positive or negative through out the
interval of integration. If the entropy is positive,wepickup
the mesh point where the entropy is maximum and posi-
tive and we repeat the process of adding mesh points both
sides. We repeat this process till we get entropy negative
through out the interval of integration.

4 Stability and Error analysis
Use the difference operators for a non-uniform mesh in
(11), since hi = xi+1 − xi, hi−1 = xi − xi−1 and hi + hi−1 =
xi+1 − xi−1. For 1 < k, l < M, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε 2(D
+Ui,j−D−Ui,j)
xi+1−xi−1 + ai

Ui+1,j−Ui−1,j
xi+1−xi−1

+
(︀
bi + 1

∆t
)︀
Ui,j + diUi+l,j ,

if i = 1, 2, ..., k,
−ε 2(D

+Ui,j−D−Ui,j)
xi+1−xi−1 + ai

Ui+1,j−Ui−1,j
xi+1−xi−1

+
(︀
bi + 1

∆t
)︀
Ui,j + ciUi−k,j + diUi+l,j ,

if i = k + 1, k + 2, ...,M − l − 1,
−ε 2(D

+Ui,j−D−Ui,j)
xi+1−xi−1 + ai

Ui+1,j−Ui−1,j
xi+1−xi−1

+
(︀
bi + 1

∆t
)︀
Ui,j + diUi+l,j ,

if i = M − l,M − l + 1, ...,M,

(16)

and

Gi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi,j +
Ui,j−1
∆t − ciϕl(i − k, j),

if i = 1, 2, ..., k,
fi,j +

Ui,j−1
∆t ,

if i = k + 1, k + 2, ...,M − l − 1,
fi,j +

Ui,j−1
∆t − diϕr(i + l, j),

if i = M − l,M − l + 1, ...,M.

(17)

On rearrangement, the Equation (16)-(17) can bewritten as

EiUi−1,j + FiUi,j +HiUi+1,j + IiUi−k,j + JiUi+l,j = fi,j +
Ui,j−1
∆t ,
(18)

where

Ei =
⃒⃒⃒⃒

−2ε
hi−1(hi + hi−1)

− ai
hi + hi−1

⃒⃒⃒⃒
Fi =

⃒⃒⃒⃒
2ε

hi(hi + hi−1)
+ 2ε
hi−1(hi + hi−1)

+ bi +
1
∆t

⃒⃒⃒⃒
Hi =

⃒⃒⃒⃒
−2ε

hi(hi + hi−1)
+ ai
hi + hi−1

⃒⃒⃒⃒
Ii =

⃒⃒
ci
⃒⃒

Ji =
⃒⃒
di
⃒⃒

and ⃒⃒
Ei
⃒⃒
+
⃒⃒
Hi

⃒⃒
= 2ε
hihi−1

,

provided |ai| ≤ 2ε/hi−1 and |ai| ≤ 2ε/hi.
For i = 1, 2, ..., k and j = 1, 2, ..., N,

EiUi−1,j + FiUi,j + HiUi+1,j + JiUi+l,j = fi,j

+
Ui,j−1
∆t − ciϕl(i − k, j)

⃒⃒
Fi
⃒⃒
−
⃒⃒
Ei
⃒⃒
−
⃒⃒
Hi

⃒⃒
−
⃒⃒
Ji
⃒⃒
=
⃒⃒⃒⃒

2ε
hihi−1

+ bi +
1
∆t

⃒⃒⃒⃒
−
⃒⃒⃒⃒

2ε
hihi−1

⃒⃒⃒⃒
− di

= bi +
1
∆t − di

since bi > 0 and di < 0 on [0, 1] and ∆t is step size in
temporal direction. We have⃒⃒

Fi
⃒⃒
>
⃒⃒
Ei
⃒⃒
+
⃒⃒
Hi

⃒⃒
+
⃒⃒
Ji
⃒⃒
. (19)

For i = k + 1, k + 2, ...,M − l − 1, and j = 1, 2, ..., N,

EiUi−1,j + FiUi,j + HiUi+1,j + IiUi−k,j + JiUi+l,j = fi,j +
Ui,j−1
∆t

⃒⃒
Fi
⃒⃒
−
⃒⃒
Ei
⃒⃒
−
⃒⃒
Hi

⃒⃒
−
⃒⃒
Ii
⃒⃒
−
⃒⃒
Ji
⃒⃒
=
⃒⃒⃒⃒

2ε
hihi−1

+ bi +
1
∆t

⃒⃒⃒⃒
−
⃒⃒⃒⃒

2ε
hihi−1

⃒⃒⃒⃒
− ci − di

= bi +
1
∆t − ci − di ,
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since bi > 0,ci < 0 and di < 0 on [0, 1] and ∆t is step size
in temporal direction. We have⃒⃒

Fi
⃒⃒
>
⃒⃒
Ei
⃒⃒
+
⃒⃒
Hi

⃒⃒
+
⃒⃒
Ii
⃒⃒
+
⃒⃒
Ji
⃒⃒
. (20)

For i = M − l,M − l + 1, ...,M, and j = 1, 2, ..., N,

EiUi−1,j + FiUi,j + HiUi+1,j + IiUi+l,j = fi,j

+
Ui,j−1
∆t − diϕr(i + l, j)

⃒⃒
Fi
⃒⃒
−
⃒⃒
Ei
⃒⃒
−
⃒⃒
Hi

⃒⃒
−
⃒⃒
Ii
⃒⃒
=
⃒⃒⃒⃒

2ε
hihi−1

+ bi +
1
∆t

⃒⃒⃒⃒
−
⃒⃒⃒⃒

2ε
hihi−1

⃒⃒⃒⃒
− ci

= bi +
1
∆t − ci

since bi > 0 and ci < 0 on [0, 1] and ∆t is step size in tem-
poral direction. We have⃒⃒

Fi
⃒⃒
>
⃒⃒
Ei
⃒⃒
+
⃒⃒
Hi

⃒⃒
+
⃒⃒
Ii
⃒⃒
, (21)

which shows that the given system is diagonally domi-
nant. The scheme is stable and the unknown Ui.j must be
solved at each time level.

Truncation error : Let M* is number of mesh inter-
val on an adaptive mesh obtained using entropy function
concept. If xi is ith mesh point on M*. We define left hand
and right hand side distance by

hi−1 = xi − xi−1, hi = xi+1 − xi .

Using Taylors series expansion

u(xi − hi−1, tj) = u(xi , tj) − hi−1
∂u(xi , tj)
∂x + h

2
i−1
2!

∂2u(xi , tj)
∂x2

− h
3
i−1
3!

∂3u(xi , tj)
∂x3 + ...

u(xi + hi , tj) = u(xi , tj) + hi
∂u(xi , tj)
∂x + h

2
i
2!
∂2u(xi , tj)
∂x2

+ h
3
i
3!
∂3u(xi , tj)
∂x3 + ...

and

u(xi , tj − ∆t) = u(xi , tj) − ∆t
∂u(xi , tj)

∂t + ∆t
2

2!
∂2u(xi , tj)

∂t2

− ∆t
3

3!
∂3u(xi , tj)

∂t3 + ...,

using these expansions in Eq. (18), we get(︂
−2ε

hi−1(hi + hi−1)
− ai
hi + hi−1

)︂(︂
u(xi , tj) − hi−1

∂u(xi , tj)
∂x

+ h2i−1
∂2u(xi , tj)
∂x2 − h3i−1

∂3u(xi , tj)
∂x3 + ...

)︂
+
(︂

2ε
hi(hi + hi−1)

+ 2ε
hi−1(hi + hi−1)

+ bi +
1
∆t

)︂
u(xi , tj) +

(︂
−2ε

hi(hi + hi−1)

+ ai
hi + hi−1

)︂(︂
u(xi , tj) + hi

∂u(xi , tj)
∂x + h2i

∂2u(xi , tj)
∂x2

+ h3i
∂3u(xi , tj)
∂x3 + ...

)︂
+ ciu(xi − δ, tj) + diu(xi + η, tj)

− 1
∆t

(︂
u(xi , tj) − ∆t

∂u(xi , tj)
∂t + ∆t2

∂2u(xi , tj)
∂t2

− ∆t3
∂3u(xi , tj)

∂t3 + ...
)︂
= 0.

After simplification the terms, the truncation error is

T .E. =
∂u(xi , tj)

∂t − ε
∂2u(xi , tj)
∂x2 + b(xi)u(xi , tj)

+ a(xi)
∂u(xi , tj)
∂x + c(xi)u(xi − δ, tj) + d(xi)u(xi + η, tj)

− f (xi , tj) +
a(xi)(hi − hi−1)

2
∂2u(xi , tj)
∂x2 − ∆t2

∂2u(xi , tj)
∂t2

+
(︂
−ε(hi − hi−1)

3 + a(xi)(h
3
i−1 + h

3
i )

hi−1 + hi

)︂∂3u(xi , tj)
∂x3

+ ∆t
2

6
∂3u(xi , tj)

∂t3 ,

which can further be simplified to

T .E. = a(xi)(hi − hi−1)2
∂2u(xi , tj)
∂x2 − ∆t2

∂2u(xi , tj)
∂t2

+
(︂
−ε(hi − hi−1)

3 + a(xi)(h
3
i−1 + h

3
i )

hi−1 + hi

)︂∂3u(xi , tj)
∂x3

+ ∆t
2

6
∂3u(xi , tj)

∂t3 ,

as hi−1, hi → 0 and ∆t → 0 the T .E. → 0, which shows
that scheme is consistent and the truncation error of the
scheme is of order O(hi − hi−1, ∆t). The Lax equivalence
theorem says that a finite difference approximation for a
properly posed partial differential equation satisfying con-
sistency and stability are necessary and sufficient condi-
tions for convergence.

5 Numerical results
To demonstrate the efficiency and applicability of the pro-
posed numerical scheme, numerical experiments are car-
ried out for three test problemsof singularly perturbedpar-
tial differential equationswith large shifts parameters. The
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exact solution of the problems are not known, so the max-
imum point wise errors are calculated using the following
double mesh principle [6]:

EM
* ,N

ε = max
0≤i,j≤M* ,N

| UM
* ,N(xi , tj) − U2M* ,2N(x2i , tj) |,

where UM
* ,N(xi , tj), denote the numerical solution ob-

tained on a mesh containing M* + 1 points in spatial di-
rection and N + 1 points in temporal direction.
The numerical rate of convergence is calculated using the
formula

RM
* ,N

ε = log | EM
* ,N

ε − E2M
* ,2N

ε |
log 2 .

We use the notation M, N for mesh intervals in space and
time direction, on uniformmesh andM* for final adaptive
mesh intervals in space direction.

Example 5.1[3] Consider the following singularly per-
turbed partial differential equation :

∂u
∂t − ε

∂2u
∂x2 + (2 − x2)∂u∂x + (x + 3)u(x, t) − u(x − δ, t)

− 2u(x + η, t) = 10t2e−tx(1 − x),

where (x, t) ∈ (0, 1) × (0, 3] and is subject to the following
interval boundary conditions and the initial condition,

u(x, t) = 0, ∀(x, t) ∈ Γl = {(x, t) : −δ ≤ x ≤ 0
and 0 ≤ t ≤ T},

u(x, t) = 0, ∀(x, t) ∈ Γr = {(x, t) : 1 ≤ x ≤ 1 + η
and 0 ≤ t ≤ T},

u(x, t) = 0, ∀x ∈ [0, 1].

The adaptive mesh generation with ε = 2−10, for this ex-
ample is plotted in Figure 1. The numerical solution of
the central finite difference scheme on uniform mesh and
on adaptive mesh for three different time levels with ε =
2−14,δ = 0.2 and η = 0.4, for this example, is plotted in
Figure 2a and Figure 2b. To examine the effect of shift pa-
rameters on the boundary layer behaviour of the solution,
surface plot of the solution of example 5.1 for different val-
ues of ε and δ and η, using adaptive mesh is plotted in
Figure 3a and Figure 3b. The maximum point wise errors
and rate of convergence are presented in Table 1 for this
boundary value problem for different values of perturba-
tion parameter ε.

Table 1:Maximum point wise errors of the solution and correspond-
ing rate of convergence for Example 5.1 by taking δ = 0.6, η = 0.7,
M=10 and N=20 for different values of ε.

ε Generated mesh Max. error Rate of Convergence
(M*) (RM* ,N )

2−10 22 2.3422e-02 2.2166
2−11 24 2.4004e-02 2.2086
2−12 26 2.4260e-02 2.2037
2−13 28 2.4377e-02 2.2012
2−14 30 2.4432e-02 2.1910
2−15 32 2.4460e-02 2.1993
2−16 34 2.4473e-02 2.1991
2−17 36 2.4479e-02 2.1989
2−18 38 2.4483e-02 2.1989
2−19 40 2.4484e-02 2.1988
2−20 42 2.4485e-02 2.1988
2−21 44 2.4485e-02 2.1988
2−22 46 2.4486e-02 2.1988
2−23 48 2.4486e-02 2.1988
2−24 50 2.4486e-02 2.1988
2−25 52 2.4486e-02 2.1988
2−26 54 2.4486e-02 2.1988
2−27 56 2.4486e-02 2.1988
2−28 58 2.4486e-02 2.1988
2−29 60 2.4486e-02 2.1988
2−30 62 2.4486e-02 2.1988

Fig. 1: Adaptive mesh generation for example 5.1 with ε = 2−10,
δ = 0.6, η = 0.7, M=10(initially) and N=20.

Example 5.2[3] Consider the following singularly per-
turbed partial differential equation :
∂u
∂t − ε

∂2u
∂x2 + (1 + x + x2)∂u∂x + (1 + x2)u(x, t)

−
(︂
1
4 + x

2

2

)︂
u(x − δ, t) − 1

4u(x + η, t) = sin πx(1 − x),

where (x, t) ∈ (0, 1) × (0, 1] and is subject to the following
interval boundary conditions and the initial condition,

u(x, t) = 0, ∀(x, t) ∈ Γl = {(x, t) : −δ ≤ x ≤ 0
and 0 ≤ t ≤ T},
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(a) Uniform mesh.

(b) Adaptive mesh.

Fig. 2: Numerical solution of example 5.1, using uniform mesh and
adaptive mesh for three different time level with ε = 2−14, δ =
0.2,η = 0.4, M=30 and N=20.

u(x, t) = 0, ∀(x, t) ∈ Γr = {(x, t) : 1 ≤ x ≤ 1 + η
and 0 ≤ t ≤ T},

u(x, t) = 0, ∀x ∈ [0, 1].

The adaptive mesh generation with ε = 2−20, for this ex-
ample is plotted in Figure 4. The numerical solution of the
central finite difference scheme on uniform mesh and on
adaptive mesh for three different time level with ε = 2−22,
δ = 0.7 and η = 0, for this example, is plotted in Figure 5a
and Figure 5b. To examine the effect of shift parameters on
the boundary layer behaviour of the solution, surface plot
of the solution of example 5.2 for different values of ε and δ
and η, using adaptivemesh is plotted in Figure 6a and Fig-
ure 6b. Themaximumpoint wise errors and rate of conver-
gence are presented in Table 2, 3, 4 for this boundary value
problem for different values of perturbation parameter ε.

(a) M* = 22, N = 20

(b) M* = 42, N = 20

Fig. 3: Surface plot of example 5.1, using adaptive mesh for different
values of ϵ,δ and η.

Table 2:Maximum point wise errors of the solution and correspond-
ing rate of convergence for Example 5.2 by taking δ = 0.6, η = 0.7,
M=10 and N=20 for different values of ε.

ε Generated mesh Max. error Rate of Convergence
(M*) (RM* ,N )

2−10 26 1.0006e-02 1.3435
2−15 36 1.0058e-02 1.3392
2−20 46 1.3391e-02 1.3391
2−25 58 1.0059e-02 1.3391
2−30 68 1.0059e-02 1.3391

Example 5.3[3] Consider the following singularly per-
turbed partial differential equation :

∂u
∂t − ε

∂2u
∂x2 +

(︂
1 − x

2

2

)︂
∂u
∂x + (x + 6)u(x, t) − 4u(x − δ, t)

− u(x + η, t) = x(1 − x),
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Table 3:Maximum point wise errors of the solution and correspond-
ing rate of convergence for Example 5.2 by taking δ = 0, η = 0.5,
M=10 and N=20 for different values of ε.

ε Generated mesh Max. error Rate of Convergence
(M*) (RM* ,N )

2−10 26 1.1246e-02 1.3077
2−15 36 1.1300e-02 1.3033
2−20 46 1.1302e-02 1.3031
2−25 58 1.1302e-02 1.3031
2−30 68 1.1302e-02 1.3031

Table 4:Maximum point wise errors of the solution and correspond-
ing rate of convergence for Example 5.2 by taking δ = 0.7, η = 0,
M=10 and N=20 for different values of ε.

ε Generated mesh Max. error Rate of Convergence
(M*) (RM* ,N )

2−10 26 1.0145e-02 1.3435
2−15 36 1.0193e-02 1.3392
2−20 46 1.0194e-02 1.3391
2−25 58 1.0194e-02 1.3391
2−30 68 1.0194e-02 1.3391

Fig. 4: Adaptive mesh generation for example 5.2 with ε = 2−20,
δ = 0, η = 0.5, M=10(initially) and N=20.

where (x, t) ∈ (0, 1) × (0, 3] and is subject to the following
interval boundary conditions and the initial condition,

u(x, t) = 0, ∀(x, t) ∈ Γl = {(x, t) : −δ ≤ x ≤ 0
and 0 ≤ t ≤ T},

u(x, t) = 0, ∀(x, t) ∈ Γr = {(x, t) : 1 ≤ x ≤ 1 + η
and 0 ≤ t ≤ T},

u(x, t) = 0, ∀x ∈ [0, 1].

The adaptive mesh generation with ε = 2−30, for this ex-
ample is plotted in Figure 7. The numerical solution of the

(a) Uniform mesh.

(b) Adaptive mesh.

Fig. 5: Numerical solution of example 5.2, using uniform mesh and
adaptive mesh for three different time level with ε = 2−22, δ =
0.7,η = 0, M=50 and N=20.

central finite difference scheme on uniform mesh and on
adaptive mesh for three different time level with δ = 0.1
and η = 0.2, for this example, is plotted in Figure 8a and
Figure 8b. To examine the effect of shift parameters on the
boundary layer behaviour of the solution, surface plot of
the solution of example 5.3 for different values of ε and δ
and η, using adaptivemesh is plotted in Figure 9a and Fig-
ure 9b. The maximum point wise errors and rate of con-
vergence are presented in Table 5 for this boundary value
problem for different values of perturbation parameter ε.

6 Conclusions
In this work, a time dependent singularly perturbed
differential-difference convection-diffusion equation is
solved numerically by using an adaptive grid method. To
discretize the domain, we used uniform mesh in the tem-
poral direction and an adaptive mesh has been generated
using the concept of entropy function for the spatial di-
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(a) M* = 26, N = 20

(b) M* = 68, N = 20

Fig. 6: Surface plot of example 5.2, using adaptive mesh for differ-
ent values of ϵ,δ and η.

Fig. 7: Adaptive mesh generation for example 5.3 with ε = 2−30,
δ = 0.1, η = 0.2, M=10(initially) and N=20.

rection. The method is based on central finite difference
scheme. It has been found that our algorithm gives oscil-
lation free solution with a minimum no of mesh points.
Numerical results are carried out to show the efficiency
and accuracy of the method. From the results it can be

Table 5:Maximum point wise errors of the solution and correspond-
ing rate of convergence for Example 5.3 by taking δ = 0.1, η = 0.2,
M=10 and N=20 for different values of ε.

ε Generated mesh Max. error Rate of Convergence
(M*) (RM* ,N )

2−10 20 4.0629e-03 0.7271
2−11 22 4.1600e-03 0.7421
2−12 24 4.2101e-03 0.7483
2−13 26 4.2353e-03 0.7514
2−14 28 4.2479e-03 0.7533
2−15 30 4.2542e-03 0.7544
2−16 32 4.2573e-03 0.7551
2−17 34 4.2589e-03 0.7555
2−18 36 4.2597e-03 0.7557
2−19 38 4.2600e-03 0.7558
2−20 40 4.2603e-03 0.7558
2−21 42 4.2604e-03 0.7559
2−22 44 4.2604e-03 0.7559
2−23 46 4.2604e-03 0.7559
2−24 48 4.2604e-03 0.7559
2−25 50 4.2604e-03 0.7559
2−26 52 4.2604e-03 0.7559
2−27 54 4.2604e-03 0.7559
2−28 56 4.2604e-03 0.7559
2−29 58 4.2604e-03 0.7559
2−30 60 4.2604e-03 0.7559

observed that, the method converges uniformly with re-
spect to the perturbation parameter ε. It is also observed
and shown in figures that how perturbation parameter ε
and shift parameters δ and η effect the boundary layer be-
haviour of solutions. From the numerical results, it is con-
cluded that our adaptive mesh offers a significant advan-
tagewith compare to Bakhvalov andShishkinmeshes. The
computation is simple and intuitive.
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