
Open Access. © 2019 M. Alimoradzadeh et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution alone 4.0 License.

Nonlinear Engineering 2019; 8: 250–260

Mehdi Alimoradzadeh, Mehdi Salehi*, and Sattar Mohammadi Esfarjani

Nonlinear Dynamic Response of an Axially
Functionally Graded (AFG) Beam Resting on
Nonlinear Elastic Foundation Subjected to Moving
Load
https://doi.org/10.1515/nleng-2018-0051
Received January6, 2018; revised June 1, 2018; accepted June7, 2018.

Abstract: In recent years, structures made of Functionally
Graded materials (FGMs) are used in industries due to the
continuously compositional variation of the constituents
in FGMs along di�erent directions. In order to develop
FGMs, nonlinear vibration analysis to study dynamic be-
havior is needed. This study proposes nonlinear vibration
analysis of a simply supported axially functionally graded
(AFG) beam subjected to a moving harmonic load as an
Euler-Bernoulli beam utilizing Green’s strain tensor. Ax-
ial variation of material properties of the beam is based
on the power law. The governing equations of motion are
derived via Hamilton’s principle. The Galerkin’s method
is implemented to reduce the nonlinear partial di�eren-
tial equations of the system to a number of nonlinear ordi-
nary di�erential equations. He’s variational method is ap-
plied to obtain approximate analytical expressions for the
nonlinear frequency and the nonlinear dynamic response
of the AFG beam. The e�ect of some parameters such as
the power index and sti�ness coe�cients, among others,
on the nonlinear natural frequency has been investigated.
The in�uence of above mentioned parameters as well as
the velocity of themoving harmonic load on the nonlinear
dynamic response has been studied. The results indicate
that these parameters have a considerable e�ect on both
nonlinear natural frequency and response amplitude.
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1 Introduction
Functionally graded materials (FGMs) are considered as
one of the modern generation of composite materials.
FGMs are characterized by continuous variation in compo-
sition over the volume of the material. This type of materi-
als,whichareusually a ceramic onone side shifting gradu-
ally to a puremetal on the other side, provide speci�c ben-
e�ts on both of the constituents. They can be de�ned as
inhomogeneous composites which are made from a mix-
ture of two di�erent materials, usually a metal and ce-
ramic, with desired continuous variations of properties as
a function of position along certain position. The continu-
ously compositional variation of the constituents in FGMs
along di�erent directions is the great bene�ts of FGMs.
This property o�ers a solution to damage problems due
to shear stress in laminated composites, where two di�er-
ent materials are bonded together. Nowadays, structures
made of FGMs have a great practical role in engineering
and industrial �elds [1–5].

Furthermore, nonlinear vibration analysis to study dy-
namic behavior at large amplitudes has been an interest-
ing topic among researchers. N. D. Duc et al, studied an
analytical approach on the nonlinear response of thick
functionally graded circular cylindrical shells surrounded
by elastic foundations subjected to mechanical and ther-
mal loads [6]. By applying Galerkin method and using a
proper stress function, explicit relations of thermal load–
de�ection curves of the S-FGM shells were determined.
They demonstrated that Elastic foundations enhance the
stability and load-carrying capacity of S-FGM thick cir-
cular cylindrical shells. In another paper, an analytical
model on nonlinear thermal dynamic behavior of imper-
fect functionally graded circular cylindrical shells eccen-
trically reinforced by outside sti�eners and surrounded on
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elastic foundations using the Reddy’s third order shear
deformation shell theory in thermal environment devel-
oped [7]. It indicates that the sti�ener system strongly im-
pacts on the dynamic response of the FGM shells and
the elastic foundations, outside sti�eners and temper-
ature strongly a�ected the dynamic response of the S-
FGM circular cylindrical shells. N. D. Duc et al in another
study, pursued an analytical approach to investigate the
nonlinear dynamic response and vibration of imperfect
functionally graded thick circular cylindrical shells rest-
ing on elastic foundation using the third order shear de-
formation shell theory [8]. It was shown that the tem-
perature, geometrical parameters and imperfection have
noticeable in�uence on the dynamic behavior of the S-
FGM thick circular cylindrical shell. Study on nonlin-
ear dynamic response of higher order shear deformable
sandwich functionally graded circular cylindrical shells
with outer surface-bonded piezoelectric actuator on elas-
tic foundations subjected to thermo-electro-mechanical
loading is addressed in [9]. As reported by N. D. Duc [9],
by applying the TSDT and stress function, the Galerkin
and the Runge–Kutta techniques, the dynamic response of
the thick piezoelectric S-FGM shells was determined. The
amplitude–time curves for nonlinear dynamic analysis of
the circular cylindrical shells were also obtained. Nonlin-
ear vibration of FG beams based on the Euler-Bernoulli
beam theory and von Kármán’s geometric nonlinearity
was studied by J. Ding et al. [10]. It was shown that in-
creasing the parameter m will reduce the sti�ness of FG
beam, and consequently leads to an increase in the de-
�ections and a reduction of the natural frequencies, un-
like results for increasing Poisson’s ratios, Span-to-depth
ratios and Young’s modulus ratio [10]. In a recent paper
by N. D. Duc et al. [11], nonlinear dynamic analysis and vi-
bration of eccentrically sti�ened S-FGM elliptical cylindri-
cal shells based on elastic foundations in thermal environ-
ments were investigated. Using stress function, Galerkin
method, Runge–Kutta method and analytical approach,
the nonlinear dynamic responses of the ES-SFGM eliptical
shells were determined by explicit relations of material,
geometrical parameters, temperature, outside sti�eners
and elastic foundations parameters, so they could actively
control dynamic response and vibration of the elliptical
cylindrical shells by suitable pre-selection of these pa-
rameters [11]. Post-buckling and nonlinear free vibration
analysis of geometrically imperfect functionally graded
beams resting on nonlinear elastic foundationwas investi-
gated by Yaghoobi and Torabi [12]. Their study was within
the framework of Euler-Bernoulli beam theory and von-
Karman type displacement-strain relationship. They con-
cluded that an increase in sti�ness of linear and shear lay-

ers of foundation decreases the frequency ratio of the im-
perfect FG beam. But, as the nonlinear foundation sti�-
ness gets stronger, the frequency ratio and post-buckling
load were progressively increased. Moreover, the imper-
fection was found to be signi�cant when investigating the
vibrations and post-buckling that take place in the vicin-
ity of a de�ected position. Nonlinear buckling and post-
buckling of imperfect piezoelectric S-FGM circular cylin-
drical shells with metal–ceramic–metal layers in thermal
environment using Reddy’s third-order shear deformation
shell theory were studied by N. D. Khoa et al. [13]. Numer-
ical results were given to highlight the in�uences of ge-
ometrical parameters, material properties, imperfection,
elastic foundations, temperature, electrical and mechan-
ical loads on the nonlinear buckling and post buckling
response of the piezoelectric S-FGM shells [13]. In [14],
nonlinear response of a shear deformable S-FGM shallow
spherical shell with ceramic-metal-ceramic layers resting
on an elastic foundation in a thermal environment was
investigated. It was observed that the nonlinear response
of the S-FGM spherical shell is complex and greatly in�u-
enced by the material and geometric parameters and in-
plane restraint [14]. In another paper, thermal buckling
analysis of FGM sandwich truncated conical shells rein-
forced by FGM sti�eners resting on elastic foundations us-
ing FSDT were investigated by N. D. Duc et al. [15]. It was
shown that the critical thermal buckling loadof FGMstruc-
ture under both uniform temperature rise and linear tem-
perature distribution across the shell thickness was lower
than that of pure ceramic conical shells and higher than
the pure metallic conical shells [15]. In [16] an analytical
approach to large amplitude vibration and post-buckling
of functionally graded beams resting on non-linear elas-
tic foundationwasdeveloped throughvariational iteration
method. Results indicated that the in�uence of linear and
shear layers sti�ness is to weaken the non-linear behavior
of the FG beam, whereas the e�ect of the non-linear foun-
dation sti�nesswas toharden thebeamresponse [16]. Sim-
sek et.al. investigated the in�uence of material distribu-
tion, velocity of the moving load and excitation frequency
on thedynamic response of anAFGbeamexcitedbyamov-
ing load [17]. It was observed that the above-mentioned ef-
fects play signi�cant role in the dynamic behavior of the
AFG beam [17]. In [18], large amplitude free vibration be-
havior of AFG thin tapered beamwith various taper pro�le
and material gradation was investigated by H. Lohar et al.
Backbone curves of parabolic tapered AFG beam for CC,
CF, CS, SS boundary conditions are supplied at given ta-
per parameter and spring sti�ness. For all combinations
of the system parameters, hardening type of nonlinearity
was observed [18]. Nonlinear vibration and post-buckling
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analysis of beams made of functionally graded materials
(FGMs) resting on nonlinear elastic foundation subjected
to thermo-mechanical loading were studied by Yaghoobi
et al. [19]. Results showed that the thermal loading has
a signi�cant e�ect on the vibration and post-buckling re-
sponse of FGbeams [19]. In [20], the �rst-order shear defor-
mation theory was used to derive theoretical formulations
illustrating the nonlinear dynamic response of function-
ally graded porous plates under thermal and mechanical
loading supported by a Pasternak elastic foundation. Nu-
merical results illustrate the in�uence of geometrical con-
�gurations, volume faction index, porosity, elastic foun-
dation properties, mechanical and thermal loads on the
nonlinear dynamic response of the plates [20]. He [21] de-
scribed a new kind of analytical technique for nonlinear
problems called Variational Iteration Method (VIM) and
used to give approximate solutions for some well-known
nonlinear problems. He and Wu [22] reviewed trends and
developments in the use of the VIM and its applications
to nonlinear problems arising in various engineering ap-
plications. Rafei et al. [23] applied the VIM to nonlinear
oscillators with discontinuities and showed that the VIM
is an e�ective and convenient method leading to high ac-
curacy solutions in the �rst iteration. Ke et al. [24] investi-
gated the nonlinear free vibrations of FG beams based on
Euler–Bernoulli beam theory and von Karman geometric
nonlinearity employing the direct numerical integration
and Runge Kutta methods. The e�ects of material property
distribution and di�erent end supports on nonlinear dy-
namic behavior are discussed showing di�erent vibration
behavior due to presence of quadratic nonlinearity. Lai et
al. [25] derived accurate analytical solutions for large am-
plitude vibrations of thin FG beams in accordancewith the
Euler–Bernoulli beam theory and the von Karman type ge-
ometric nonlinearity. Ansari et al. [26, 27] studied vibra-
tionof a�nite Euler–Bernoulli beam traversedbyamoving
load; the solutionwas obtainedusing theGalerkinmethod
in conjunction with the Multiple Scales Method.Ding et
al. [28] introduce an investigation of the convergenceof
the Galerkin method for the dynamic response of a uni-
form beam resting on a nonlinear foundation with vis-
cous damping subjected to a moving concentrated load.
Abdelghany et al. [29] obtained the dynamic response of
non-uniformEuler–Bernoulli simply supported beam. The
beam is subjected to moving load and rested on a nonlin-
ear viscoelastic foundation.

In this paper, non-linear dynamic response of an Ax-
ially Functionally Graded (AFG) Euler–Bernoulli simply
supported beam is obtained. The beam subjected to mov-
ing harmonic load and rested on a nonlinear elastic foun-
dation. The lack of considerable contribution in existing

papers to nonlinear vibration analysis of AFG beams with
such a support and loading condition motivated this pa-
per. The in�uence of power index, linear and non-linear
sti�ness of foundation and the velocity of passing load on
free vibration and non-linear dynamic response is be stud-
ied. Considering the e�ect of these whole parameters on
nonlinear response of an AFG beam can provide compli-
mentary information in the �eld to clarify the nonlinear
behavior of such systems.

2 Governing equations
Consider a straight Euler-Bernoulli Axially Functionally
Graded (AFG) beam of length L in X direction with rect-
angular cross-section of width b and thickness h in Y and
Z direction, respectively. The beam is resting on nonlin-
ear elastic foundation, Fig. 1 and subjected to moving har-
monic load q(x,t).

Fig. 1: AFG beam based on a three-layered nonlinear elastic founda-
tion [30]

The reaction force of the elastic foundation acting on
the beam can be expressed as [31]:

p (x, t) = KLw (x, t) + KNLw3 (x, t) + KS
∂2w(x, t)
∂x2 (1)

Where p (x, t) distributed transverse force component, KL
and KNL are the linear and nonlinear coe�cient of elastic
foundation, respectively, and KS stands for the coe�cients
of shear sti�ness of the elastic foundation and t is the time.
It is assumed that material properties , i, e, Young, s mod-
ulus (E) , density (ρ) of the AFG beam vary continuously
through the length of the beamaccording to the power-law
as follows [30]:

E(x) = ER + (EL − ER)
(
1 − xL

)n
(2)

ρ(x) = ρR + (ρL − ρR)
(
1 − xL

)n
(3)

Where n is the volume fraction exponent which dictate
the material variations pro�le through the length of the
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beam and subscripts L and R refer to the left and the right
end of the beam, respectively. The poisson’s ratio is as-
sume to be constant (ν = 0) in this study. According to
the Euler-Bernoully beam theory, axial and transverse dis-
placements of an arbitrary point in the beam, i,e, u and
w along X and Z direction, respectively, can be expressed
as [30]:

ux (x, z, t) = u (x, t) − z
∂w(x, t)
∂x (4)

uz (x, z, t) = w(x, t) (5)

Where u (x, t) and w(x, t) are the displacement compo-
nents in the mid-plane along X and Z direction, respec-
tively, and ∂w(x,t)

∂x is the rotation angle about Y-axis.
The strain energyof thebeam in termsof the stress and

the strains can be expressed as [32]:

Us =
∫
v

σijϵijdv (6)

Where σij is the stress tensor, ϵij is the strain tensor. these
tensors are given by:

σij = λϵkkδij + 2µϵij (7)

The nonlinear strain-displacement relations are given
by Green’s strain tensor as follows [33]:

ϵij =
1
2

[(
∂ui
∂xj

+
∂uj
∂xi

)
+
(
∂uk
∂xi

∂uk
∂xj

)]
, i, j, k = x, y, z

(8)

Where λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) are the lame’s con-
stant. Substituting Eq (4) and Eq. (5) into Eq. (8) yields to:

ϵxx =
∂u(x, t)
∂x + 1

2

(
∂w(x, t)
∂x

)2
− z ∂

2w(x, t)
∂x2 (9)

And substituting Eq. (7) and Eq. (9) into Eq. (6) yields
to:

Us =
1
2

L∫
0

E(x)A
(∂u

∂x + 1
2

(
∂w(x, t)
∂x

)2
)2


+E(x)I
[(

∂2w(x, t)
∂x2

)2]}
dx (10)

Where A = b.h and I = 1
12bh

3 are the cross-section and
second moment of area of the beam, respectively.

The strain energy induced by the nonlinear elastic
medium uel can be written as [30]:

uel =
l∫

0

(12 kLw
2 + 1

2 kp(
∂w
∂x )

2
+ 1
4 kNw

4)dx (11)

The kinetic energy of the Euler-Bernoulli AFG beam
(T), [34], and the external work (V) done by the moving
harmonic load q (x, t) = q0sinω0t,can be written down as
follows:

T = 1
2

L∫
0

ρ (x)A
[(

∂u(x, t)
∂t

)2
+
(
∂w(x, t)
∂t

)2
]
dx (12)

V =
L∫

0

[
q (x, t) δ (x − vt)w(x, t)

]
dx (13)

Where δ(x−vt) is theDirac delta function used to dealwith
the moving concentrated harmonic load q (x, t), q0 is the
amplitude of the moving harmonic load, ω0 is the magni-
tude of the excitation frequency of the moving harmonic
load and v is the speed of themoving harmonic load.In or-
der to derive the governing equation of motion of the AFG
Euler-Bernoulli beam, resting onnonlinear elastic founda-
tion and subjected tomoving harmonic load, theHamilton
principle is utilized as [30]:

δ
T∫

0

[T −
(
Us + Uel) + V

]
dt = 0 (14)

Substituting Eq. (10), Eq. (11) , Eq. (12) and Eq. (13)
into Eq. (14),the governing equations and the correspond-
ing boundary conditions can be achived as:

∂
∂x

[
E (x)A

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)]

= ρ (x)A ∂
2u
∂t2 (15)

− ∂2

∂x2

[
E (x) (I) ∂

2w
∂x2

]
+ ∂
∂x

[
E (x)A

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)]

∂w
∂x

+ E (x)A
[
∂u
∂x + 1

2

(
∂w
∂x

)2
]
∂2w
∂x2 − kLw

− kNLw3 + ks
∂2w
∂x2 +q0δ (x − vt) sinω0t = ρ (x)A

∂2w
∂t2

(16)

The correspondingboundary conditions arede�nedat
x = 0 and x = L as follows:

E (x)A
(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
= 0 or δu = 0 (17)

E (x) (I) ∂
2w
∂x2 = 0 or δ

(
∂w
∂x

)
= 0 (18)
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− E (x)A
(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
∂w
∂x + ∂

∂x

[
E (x) (I) ∂

2w
∂x2

]
− ks

∂w
∂x = 0 or δw = 0 (19)

As seen from Eq. (15) and Eq. (16), the governing equa-
tions are coupled with respect to the displacements u
and w. thus in order to reduced the equations to a sin-
gle equation in terms of w, the in-plane inertia can be ne-
glected, [35, 36] and Eq. (16) can be rewritten as:

∂
∂x

[
E (x)A

(
∂u
∂x + 1

2

(
∂w
∂x

)2
)]

= 0 (20)

Integration of Eq. (20),with respect to x gives

E (x)A
(
∂u
∂x + 1

2

(
∂w
∂x

)2
)
= C (21)

or
∂u
∂x = c

E (x)A
− 1
2

(
∂w
∂x

)2
(22)

Where c is the integration constant to be calculated with
respect to the boundary conditions. It is assumed that the
AFG beam has immovable supports in the axial direction.
Thus the boundary conditions related to the axial motion
are expressed as [32]:

u (l, t) = u (0, t) = 0 (23)

Integrating both side of Eq. (22), from 0 to L together
with the above boundary conditions yields to:

C = A
2L

L∫
0

(
E(x)

(
∂w
∂x

)2
)
dx (24)

The governing equation is derived in terms of w by
substituting Eq. (21), In to Eq. (16) as follows

∂2

∂x2

[
E (x) (I) ∂

2w
∂x2

]
−

 A
2L

L∫
0

(
E(x)

(
∂w
∂x

)2
)
dx

 ∂2w
∂x2

+ kLw + kNLw3 − kS
∂2w
∂x2 + ρ (x)A ∂

2w
∂t2

= q0δ (x − vt) sinω0t (25)

3 Solution of the problem

3.1 Galerkin’s method

In order to apply the Galerkin method, the displacement
function w(x,t) can be expanded into �nite series as fol-
lows [31]:

w (x, t) = α (x) β(t) (26)

Where β(t) is the unknown time-dependent coe�cient to
be determined and α (x) is the basis (test) function which
must satisfy the kinematic boundary conditions. The fol-
lowing test function can be chosen for simply supported
(pin-pin) boundary conditions [31]:

α (x) = sin
(π
L x
)

(27)

Substituting the approximate solution in Eq. (26) into
Eq. (25), then multiplying both sides of resulting equation
with α (x) integrating over the domain (0, L) yields to:

β̈ (t) + ϵ1β (t) + ϵ2β3 (t) = F0sinω0t sin
πvt
L (28)

Where β̈ (t) is the second derivative of β (t) with respect to
time. The coe�cients ϵ1, ϵ2 and F0 in Eq. (28), can be ex-
pressed as:

ϵ1 =

∫ L
0

{
I
[
∂2E(x)
∂x2

∂2α(x)
∂x2 + E (x) ∂

4α(x)
∂x4

]
+ KLα (x) − KS ∂

2α(x)
∂x2

}
α (x) dx∫ L

0 ρ (x) Aα2(x)dx
(29)

ϵ2 =

∫ L
0

{
KNLα3 (x) − g1 ∂

2α(x)
∂x2

}
α (x) dx∫ L

0 ρ (x)Aα2(x)dx
(30)

F0 =
q0∫ L

0 ρ (x)Aα2(x)dx
(31)

Where

g1 =
A
2L

L∫
0

E(x)
(
∂α(x)
∂x

)2
dx (32)

3.2 Approximate analytical solution for
nonlinear free vibration

The beam is subjected to following initial conditions:

β (0) = γ, ∂β(0)
∂t = 0 (33)

Where γ is the maximum vibration amplitude of the
beam. The exact solution of nonlinear di�erential equa-
tion is very limited and very time consuming, for this rea-
son, approximate methods are inevitable to solve nonlin-
ear di�erential equations [31]. By using He’s variational
method [37], and omitting the forcing F0, for free vibration
analysis, Eq. (28) can be rewritten as follows:

β̈ (t) + f (t) = 0 (34)

Where

f (t) = ϵ1β (t) + ϵ2β3 (t) (35)
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Its variational formula can be readily obtain as fol-
lows [37]:

J (β) =

T
4∫

0

(
−12 β̇

2 + F (β)
)
dt (36)

Where T is the period of the nonlinear oscillator and ∂F
∂β =

f .

J (β) =

T
4∫

0

(
−12 β̇

2 + ϵ12 β
2 + ϵ24 β

4
)
dt (37)

Assume that its approximate solution can be ex-
pressed as [37]:

β (t) = γ cos (ωn t) (38)

Where γand ωn are the amplitude and nonlinear natural
frequency of the nonlinear oscillator, respectively. By sub-
stituting Eq. (38) in to Eq. (37), and considering the trans-
formation θ = ωn t, one can obtain

J (γ, ωn)

=

π
2∫

0

1
ωn

(
−
1
2
γ2ωn2(sinθ)2 +

ϵ1
2
γ2(cosθ)2 +

ϵ2
4
{γ4(cosθ)4

)
dt

(39)

According to the Ritz method, the stationary condi-
tions ∂J

∂γ = 0and ∂J
∂ωn = 0, shouldbe satis�ed in order to ob-

tainωn. However, this approachgenerally gives inaccurate
results for nonlinear oscillators [37], and He [37],modi�ed
this conditions in to a simple form ∂J

∂γ = 0. The stationary
condition ∂J

∂γ = 0, results in

∂J
∂γ

= 1
ωn

π
2∫

0

(
−γωn2(sinθ)2 + ϵ1γ(cosθ)2 + ϵ2γ3(cosθ)4

)
dθ

= 0 (40)

After some mathematical amendment, Eq. (40), takes
the following form

ωn2 =

∫ π
2
0

(
ϵ1(cosθ)2 + ϵ2γ2(cosθ)4

)
dθ∫ π

2
0

(
(sinθ)2

)
dθ

(41)

The nonlinear natural frequency ωn = ωNL can be
found by performing the integral expression in Eq. (41), as
follows:

ωNL =

√(
ϵ1 +

3
4 ϵ2γ

2
)

(42)

3.3 Approximate analytical solution for
nonlinear forced vibration

As previously discussed, the response of the AFG beam,
resting on nonlinear elastic foundation under the action
ofmoving harmonic load is assumed to be governed by the
equation below:

β̈ (t) + ϵ1β (t) + ϵ2β3 (t) = F0sinω0t sin
πvt
L (43)

β (0) = γ, ∂β(0)
∂t = 0 (44)

its correction functional can be written down as fol-
lows [2]:

βn+1 (t) = βn (t)

+
t∫

0

λ
[
d2βn (τ)
dτ2

+ ϵ1βn (τ) +ϵ2βn
3 (τ) − F0sinω0τ sin

πvτ
L

]
dτ

(45)

Where λ is lagrange multiplier. Making the above correc-
tion functional stationary and noticing that δβ (0) = 0 [2].

δβn+1 (t) = δβn (t)

+ δ
t∫

0

λ
[
d2βn (τ)
dτ2

+ ϵ1βn (τ) +ϵ2βn
3 (τ) − F0sinω0τ sin

πvτ
L

]
dτ

= 0 (46)

Yields to the following stationary conditions:

d2λ(τ)
dτ2 + ϵ1λ (τ) = 0 (47)

1 − dλ(τ)dτ = 0, at τ = t (48)

λ (τ) − 0, at τ = t (49)

The multiplier can be obtained as λ (τ) =
1√ϵ1 sin (

√ϵ1 (τ − t)), and the following variational
iteration formula can be obtained:

βn+1 (t) = βn (t)

+ 1√ϵ1

t∫
0

sin
(√
ϵ1 (τ − t)

) [d2βn (τ)
dτ2 + ϵ1βn (τ) +ϵ2βn

3 (τ)

−F0sinω0τ sin
πvτ
L

]
dτ (50)

Assuming that its approximate solution has the
form [2]:

β0 (t) = γ cos
(√
ϵ1αt

)
(51)
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Where α(ϵ2)is a non-zero unknown function of ϵ2, with
α (0) = 1, [2]. The substitution 0f Eq. (50), in Eq. (43), result
in the following residual:

R0 =γϵ1
((

1 − α2
)
+ 3ϵ2γ2

4ϵ1

)
cos
(√
ϵ1αt

)
+ ϵ2γ

3

4 cos
(
3
√
ϵ1αt

)
− F0sinω0t sin

πvt
L (52)

Generally speaking, the residual Eq. (51), isn’t equal to
zero. the right- hand of Eq. (51), would have to vanish if
β0 (t) were to be a solution of Eq. (43).we may, however, at
the least assure the vanishing of the factor of cos (

√ϵ1αt)
by setting [2]:

α(ϵ2) =

√(
1 + 3ϵ2

4ϵ1
γ2
)

(53)

Then by iteration formula (49), we obtain:

β1 (t) = γ cos
(√
ϵ1αt

)
+ ϵ2γ3
4ϵ1(9α2 − 1)

(
cos
(
3
√
ϵ1αt

)
− cos

(√
ϵ1t
))

+ F02

(
cos ( πvL − ω0)t
ϵ1 − ( πvL − ω0)2

−
cos ( πvL + ω0)t
ϵ1 − ( πvL + ω0)2

)
(54)

4 Numerical results
The properties of the AFG beam, foundation and the mov-
ing harmonic load are listed in Table 1.

4.1 Nonlinear Free Vibration Results

The nonlinear natural frequency ωNL versus amplitude
γ by changing the values of power-index (n), nonlinear
sti�ness (KNL), linear sti�ness (KL), and shear sti�ness
(Ks) are shown in Figs. 2-5, respectively. As they are seen,
by the increase of the value of power index, (Fig. 2), the
nonlinear natural frequency ofωNL is decrease and by the
increase of the values of nonlinear sti�ness (KNL), linear
sti�ness (KL), and shear sti�ness (Ks) in Figs. 3-5, respec-
tively, the nonlinear natural frequency of ωNL is increase.

4.2 Results for nonlinear forced vibration

The maximum de�ection of Wmax , (x = L/2) versus
time t by changing the values of power-index (n), veloc-
ity (v), nonlinear sti�ness (KNL), linear sti�ness (KL), and
shear sti�ness (Ks) are shown in Figs. 6-10, respectively.

Fig. 2: Variations of ωNL versus amplitude with respect to variations
of n

Fig. 3: Variations of ωNL versus amplitude with respect to variations
of KNL

Fig. 4: Variations of ωNL versus amplitude with respect to variations
of KL

As they are seen, by the increase of the value of power in-
dex, (Fig. 6), and velocity (Fig. 7), themaximumde�ection
of the system is increase. By the increase of the values of
nonlinear sti�ness (Fig. 8), the periodically of the system
is reduce. Also by the increase of the values of linear sti�-
ness (Fig. 9), and shear sti�ness (Fig. 10), the maximum
de�ection of the system is decrease.
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Table 1: Properties of beam, foundation and load

Item Notation Load
Young’s modulus at the left end (METAL) EL 210GPa

Young’s modulus at the right end
(CERAMIC)

ER 393GPa

Mass density at the left end (METAL) ρL 7850 kg/m3

Mass density at the right end (CERAMIC) ρR 3960 kg/m3

Cross-sectional area A 7.69 × 10−3m2

Second moment of area I 3.055 × 10−5m4

Length L 18 m
Mean (linear) sti�ness KL 3.5 × 107N/m2

Nonlinear sti�ness KNL 4 × 1014N/m4

Shear sti�ness Ks 3 × 107N/m2

Amplitude of the moving harmonic load q0 65 × 103
Excitation frequency ω0 2955rad/s

speed v 10m/s
Power index n 0.50
Amplitude γ 0.005 m

Fig. 5: Variations of ωNL versus amplitude with respect to variations
of Ks

Fig. 6: The maximum de�ection versus t with respect to variations
of n

Fig. 7: The maximum de�ection versus t with respect to variations
of v

Fig. 8: The maximum de�ection versus t with respect to variations
of KNL

5 Conclusion
In this paper, non-linear dynamic response of Axially
Functionally Graded (AFG) material Euler–Bernoulli sim-
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Fig. 9: The maximum de�ection versus t with respect to variations
of KL

Fig. 10: The maximum de�ection versus t with respect to variations
of KS

ply supported beam was obtained. The beams subjected
to moving harmonic load and rested on a nonlinear elas-
tic foundation. Also the in�uence of n (power index), k_L
(linear sti�ness), k_NL (non-linear sti�ness)and v (veloc-
ity) on free vibration and non-linear dynamic response
was studied. The results shown that in a nonlinear AFG
Euler-Bernoulli beam resting on nonlinear elastic founda-
tion and subjected tomoving harmonic load, increasing of
power index causes an increasing of maximum de�ection
(maximum dynamic response) and decreasing the nonlin-
ear natural frequency. Increasing of linear sti�ness coef-
�cient and shear sti�ness coe�cient cause an increasing
of nonlinear natural frequency and decreasing the maxi-
mumdynamic response (maximumde�ection). Increasing
of nonlinear sti�ness coe�cient cause an increasing the
nonlinear natural frequency and decreasing periodically
of the oscillation. Also increasing of velocity of the mov-
ing harmonic load cause an increasing of the maximum
dynamic response

Nomenclatures

Young’s modulus at the left end(METAL) EL GPa
Young’s modulus at the right end(CERAMIC) ER GPa
Mass density at the left end(METAL) ρL Kg/m3

Mass density at the right end(CERAMIC) ρR Kg/m3

Cross-sectional area A m2

Second moment of area I m4

Length L 18 m
Mean (linear) sti�ness KL N/m2

Nonlinear sti�ness KNL N/m4

Shear sti�ness Ks N/m2

Amplitude of the moving harmonic load q0 –
Excitation frequency ω0 rad/s
speed v m/s
Power index n –
Amplitude γ m
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