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Abstract: A rigorous analysis of unsteady magnetohydro-
dynamic mixed convection and electrically conducting
nanofluid model with a stretching/shrinking wedge is pre-
sented. First, the governing partial differential equations
for momentum and energy conservation are converted
to coupled nonlinear ordinary differential equations by
means of exact similarity transformation. The homotopy
analysis method (HAM) is employed to obtain the analyti-
cal approximations for flow velocity and temperature dis-
tributions of alumina-sodium alginate naofluid. The so-
lution is found to be dependent on some parameters in-
cluding the nanoparticle volume fraction, unsteadiness
parameter, magnetic parameter, mixed convection param-
eter and the generalized prandtl number. A systematic
study is carried out to illustrate the effects of these pa-
rameters on the velocity and temperature distributions.
Also, the value of skin friction coefficient and local Nusselt
number are compared with copper-sodium alginate and
titania-sodium alginate nanofluids.

Keywords: Homotopy analysis method (HAM), Magnetic
parameter, MHD flow, Nanofluid, Sodium alginate

1 Introduction

Nanofluid is formed by colloidal suspension of nanometer-
sized solid particles (1-1100nm diameter) into conventional
liquids such as water, ethylene glycol, or oil. Firstly, the
word “nanofluid” was introduced by Choi [1, 2], that rep-
resent the new class of fluid in which nanometer-scale par-
ticles are dispersed into conventional liquids. The thermal
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conductivity of base fluid can be increased upto 40 per-
cent with low concentration (1-5% by volume) of nanopar-
ticles in order to acheive higher heat transfer efficiency
[3, 4]. Xuan [3] applied the hot wire method to measure the
thermal conductivity of copper-water nanofluid and found
that the thermal conductivity increases upto 43% if the vol-
ume fraction of the nanoparticle increases from 2.5% to
7.5%. The nanofluid is stable, however stabilizer such as
oleic acid, polyvinylpyrrolidone and laurate salt is added
in the nanoparticle mixture to stabilize the nanofluid [5, 6].
Nanofluid has ability to flow through nanochannels and
occurs very less pressure drop.

Stagnation point flow is due to no-slip condition in the
neighborhood of solid object. The heat transfer efficiency
and pressure are at its maximun value and the nanofluid
is deposit on solid surface. Such flow occurs in various
fluid engineering applications including submarine flow,
turbo-machinery, aerofoil and oil ships. Hiemenz [7] in-
troduced the stagnation point flow on the solid surface
in the flowing condition of fluid and reduced the Navier-
Stokes equation into non-linear ordinary differential equa-
tion using similarity transformation. The study of stagna-
tion flow in viscous boundary-layer in two-dimensional or
axisymmetric stagnation region has gained attention by
several researchers which have studied in the literature
[8-11]. These studies were presented the basic behavior of
viscous flow in stagnation region and applicability of sim-
ilarity transformation with high accurate approximations.

Mixed convection phenomena is the combination
of free convection and forced convection. The attention
on the studies of convective heat transfer on stretch-
ing/shrinking sheet has gained by several researchers in
past decade due to important phenomena in engineering
applications including solar collector, heat exchanger, nu-
clear reactor, gas-cooled electrical cable, thermal insula-
tion and atmospheric boundary-layer flows. Ramachan-
dran et al. [12] analyzed the laminar mixed convection
flow for the unsteady wall temperature and showed the
variation of surface heat flux for two-dimensional Navier-
Stokes equation. Devi et al. [13] presented the study of
mixed convective boundary-layer flow on vertical flat sur-
face. Ishak et al. [14] carried out the studies on mixed con-
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vection with magnetohydrodynamic (MHD) flow on verti-
cal surface. Later on, the same rheological problem stud-
ied for convective surface under the effect of magnetic field
[15, 16].

The natural convective heat transfer of non-
Newtonian power-law model by means of finite element
method was analyzed by Beg et al. [17] and Jin et al. [18]
carried out studies on Oldroyd-B and upper-convected
Maxwell models using finite volume method. A well-like
analytic method is the perturbation technique which
frequently used in rheology problems [19]. Numerical
methods such as Differential transformation method [20],
Variational iteration method [21], Runge-Kutta method
and finite difference techniques [22] are based on dis-
cretization technique and permit the accurate solutions
only for a certain period of time and space variables.
Several non-perturbative techniques have been worked
out on rheological problems such as artificial small
parameter [23], §-expansion method [24] and adomian
decomposition method [25]. These perturbative and
non-perturbative methods are incapable to adjust the
convergence region and high order of a series solution.
Hence, Liao [26, 27] proposed the homotopy Analysis
Method (HAM) for nonlinear problems which may reduce
the complexity of convergence region of series solution.

HAM overcomes the limitations of perturbation meth-
ods as it provides freedom to choose an auxiliary parame-
ter (A) which leads to increase in the convergence results.
The solution to a condensation film in three dimensions on
an inclined rotating disk was analytically done by Rashidi
et al. [28]. Ziabakhsh et al. [29] applied HAM to compute
the solution of hydromagnetic viscous flow. The diverse
range of rheological problems shows the capability, valid-
ity, effectiveness, flexibility and wide variety applications
of HAM.

This paper deals with the use of homotopy Anal-
ysis Method (HAM) in order to compute the analyti-
cal solutions of unsteady magnetohydrodynamic (MHD)
and mixed convection nanofluid model over a stretch-
ing/shrinking wedge. Also, the influence of various pa-
rameters viz. nanoparticle volume fraction, unsteadiness
parameter, magnetic parameter, mixed convection param-
eter and the generalized prandtl number (pr) are analyzed
on the velocity and temperature distributions for alumina-
sodium alginate nanofluid. The values of skin-friction co-
efficient and local Nusselt number for alumina-sodium al-
ginate nanofluid are tabulated with different Prandtl num-
ber and and compared from sodium alginate nanofluids
with nanoparticle copper (Cu) and titanium dioxide (TiO>).
The residual error illustrates the simplicity and accuracy of
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HAM. The residual error illustrates the simplicity and ac-
curacy of HAM.

2 Problem statement and
mathematical model

In this manuscript, we consider the unsteady two-
dimensional viscous flow over a stretching/shrinking
wedge of electrically conducting and incompressible
nanofluid with magnetic field effect. The x axis is mea-
sured along the normal of wedge and in positive direction
from the wedge to the nanofluid whereas y axis is consid-
ered along the wedge surface. The flow velocity is consid-
ered by Ve = by/(1 - at) and the stretching/shrinking
velocity of wedge is assumed by vy (y, t) = cy/(1 - at),
where ¢ denotes the stretching/shrinking rate with ¢ < O or
¢ > 0 for shrinking or stretching wedge surface condition
respectively, b is constant and a > 0 shows the stagnation
flow strength. The surface temperature (Ty) is defined as
Tw(y, t) = Teo + Toy/(1 — at)?. Lok et al. [30] showed that
the assisting flow occurs due to the heated upper half plate
and the reason of opposing flow is cooled lower half plate.
That’s why the flow move upward near the heated wedge
and tends to move down near the cooled wedge, see Fig-
ure 1.
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Fig. 1: Coordinate system of flow configuration.

Tiwari and Das [31] presented the MHD nanofluid model
with the assumption that the base fluid (sodium alginate)
is in thermal equilibrium with nanoparticle, the govern-
ing equations for mass, momentum and energy in carte-
sian coordinates are

ou av=

3 + 3y 0, (2.7)
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Table 1: Thermophysical properties of base fluid and nanoparticles [32].

Cp p k ax107 Bx107°
Base fluid and nanoparticles (J/Kg K) (Kg/m3) (W/mK) (m?2/s) (1/K)
Sodium Alginate (C¢H9NaO7) 4175 989 0.6376 1.62 23
Copper (Cu) 385 8933 400 1163.1 1.67
Titanium dioxide (TiO,) 686.2 4250 8.954 30.7 0.9
Alumina (Al,03) 765 3970 40 131.7 0.85
oV ou  _ov Mg d®v 1 dp OF? Qnf = o , (210)
U Vo= - S v (0Cpns
ot ox Oy  Puf OX2  pPupdy  Prf .. ) .
bpsBs + (1 - P)psB The thermal conductivity of nanofluid (k) are given by
+ ’ Ll ag(T - Teo), (2.2) Maxwell-Garnett model [32], which is presented as follows
nf
knf (ks + Zkf) - 2¢(kf - ks)
oT _ oT oT _  o°T T - et 2k) T bk — k)’ (2.11)
W+V7y+u$_a”fﬁ’ (2.3) e fh lsd f ‘7: f Sf e
. - where ¢ shows the solid volume fraction of nanofluid, p¢
The appropriate boundary conditions are
PPIOPTL unaary conditions and ps are the density of base fluid and solid nanoparticle
t<0: u=v=0, T=Te, foranyx,y, respectively, yy is the viscosity of base fluid, kf and ks are
t20: v=va(y,t), u=U,t), T=Tuly,t) atx=0, the thermal conductivity of base fluid and nanoparticle re-
o .0, T—T spectively.
X—= Ui Ve Vel)h U T e 2.4) The development process of this model exhibit the

Using generalized Bernoulli’s equation, Eq. (2) will be as
follows

AdVeo

AV | dVeo
dt

y 1dp oF

P dy Py

Voo. (2.5)

By substituting Eq. (5), Eq. (2) can be presented as

O L U OV My O dve | dve
ot "Oox Oy pppoxZ dt T dy 26)
2 1- .
+ i(vw -V)+ Ppshs + (1~ Ploshy ag(T - Teo).
Pnf Pnf

The velocity components are denoted by u and v along
x and y axis respectively. Magnetic field applied along x-
axis. The thermal expansion coefficients of solid nanopar-
ticle and base fluid are showed by s and B respectively.
The uniform surface mass flux Uy, corresponds to suction,
injection and impermeable surface for the case Uy, < 0,
Uy, > 0and Uy, > O respectively. The viscosity (i), ther-
mal diffusivity (a,s), density (p,f) and heat capacitance
(pCp)ns of nanofluid are defined as

I
Hnf = W, 2.7

Pnf = (1= @)pg + Pps, (2.8)
(0Cpns = (1 = P)Cp)s + P(pCp)s, 2.9)

transformation of governing equations to 7, ¢ system. The
similar variable 7 involves both x and y, while ¢ is related
to x alone. Therefore, we assume & = O for any stream-wise
location and f is the function of only variable 5. To pro-
ceed, we adopt the following similarity transformations.
The physical stream function is introduced as

bUf 1/2
V= (1) . 212)
The dimensionless temperature is defined as
T-Te
0(n) = Ty —Tw (2.13)
The transformed similar variable is
b 1/2
n = (m) X. (2.14)
The stream function can be defined by
_9% __9¥
u= 3x’ V= oy (2.15)

Using stream function, the velocity component u and v can
be derived as follows

w=-(£2) 1o,

(2.16)

V)

- 2.17)

f') = Vesly, Of ().
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The surface mass flux U,, is transformed in term of wall
transpiration parameter:

U = _<1libct)l/zUW'

The mass conservation equation (1) is identically satis-
fied with stream function. Under the transformation (7)-
(18), the momentum equation (6) and energy conservation
equation (3) reduce to the following nonlinear ordinary
differential equation:

(2.18)

1 " /7 9 A
(1_¢)2.5(1_¢+¢%)f /i +1+A(1‘f—§ﬂf)
M L 1-p o)
+W(l_f)+ WAG_
(2.19)
i 1
gy Pr(f@’ —of —A(26+ 7'29,)) _o,
(1-9)+ ey 2
(2.20)

which are subjected to the transformed boundary condi-
tions:

n—0:f=Uw, f'=c/lb=¢g, n—ooo: f =1, (221a)

0—-0: =1 n—o0:60=0, (2.21b)

where Pr = vf/ay is the Prandtl number and magnetic
parameter is defined as M = oF? /pgb. The unsteadiness
parameter (A = a/b) shows positive and negative accel-
eration for the case A > 0 and A < O respectively. The
ratio of stretching/shrinking rate wedge and strength of
stagnation flow is denoted by velocity ratio parameter (€),
which presents € > 0, € < 0 and € = 1 for stretching
wedge, shrinking wedge and flow without boundary layer
(vw = V) respectively. Mixed convection parameter (A)
corresponds to assisting and opposing flow with condi-
tions A > 0 and A < O respectively. It should be noticed that
A = 0 shows the forced convection or absence of buoyancy
force condition, ¢ = 0 for pure base fluid, € = O for station-
ary wedge, M = 0 with negligible magnetic effect, A = 0
shows steady state flow and Uy = O forimpermeable plate.

The buoyancy or mixed convection parameter (A), lo-
cal Grashof number (Gry) and Reynold number (Rey) are
defined as

Gry 2
A = Riey = agﬁfc/b ’ (2.22)
y3
Gry = agﬁf(TW - TM)ﬁ’ (2.23)
f
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Rey = V=Y. (2.24)
Vr
The skin-friction coefficient is defined as
and the local Nusselt number is defined as
)/Qw
Nuy=-——>—"—"—, 2.26

where the wall shear stress (ty) can be written as

ov
Tw = ]Jnf(&)xzo (227)
and the heat flux (Qw) is
oT
Qu = —kyy (a7)x=o (2.28)

Using similarity variables Eq. (12)-(17), the skin-friction co-
efficient and Nusselt number can be presented in the form

CrlRey]"/? = - ¢)2 e f"(0), (2.29)
Nuy[Re,]™V/? = —%9'(0). (2.30)
f
3 Basic idea of HAM
Let us consider the nonlinear differential equation,
N[x(6)] = G

where N is a nonlinear operator, t is an independent vari-
able and x(t) is the solution of equation. The function
¢(t, @) is introduce as

lime(¢, g ) = xo(t), B.2)

q—0
where g € [0, 1] denotes the embedding parameter and
Xo(t) shows the initial approximation which fulfills the pri-
mary condition and the solution of equation is

limg(t, q )= x(¢). (3.3)

qg—1
Using the Liao’s homotopy Analysis Method (HAM), the
zeroth-order deformation equation,

(1 - Llg(t, @) — xo(t)] = ghH(ON[(t, 9)], (3.4)

where 71 is convergence-control parameter, H(t) is the aux-
iliary function and £ is the linear operator. HAM provides
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a way to select auxiliary parameter 7, auxiliary function
F(t), initial approximation xq(t) and linear operator £ as
the HAM establishes a promise to evaluate solutions with
high accuracy. When the g increases from 0 to 1, the solu-
tion ¢(t, q) varies from initial approximation x¢(t) to the
solution x(t). Then, x(t, q) can be express in the form of
Taylor series as

ot q) = xo(t) + > x(pq™ (3.5)
m=1
and oMt )
[m] t;q
Xg(t) = ——"| (3.6)
0 aqm 4=0
where
xo(f) Xg)m] 1 0™¢(t; q) (7)
0 = = —— < .
m!  m! ogm 4=0
Now, introducing the vector expression,
Ym ={71, 72, 73 ....... ) Ym}. (3.8)

Differentiating Eq. (30) for m times w.r.t. g, put ¢ = 0 and
divide by m!, we will obtain the m-th order deformation
equation,

Lxm(® = YmXm-1 (O] = BHORR m-1),  (39)
where
Rm(Z 1) = (mi o am_lal\;[md’_(f; cl B (3.10)
and
Xm = {(1) r:15>11 . (3.11)

Using the inverse linear operator in Eq. (30), we can com-
pute the solution of equations in simplified way.

4 HAM Solutions

The initial guess f(n) and 6(n) of the transformed Egs. (19)
and (20) are choosen for HAM solutions as follows

fo) =Uw -1 -e)+n+(1-ee™, 4.1
Bo(n) =" (4.2)
and we consider the linear operators:
oO°f _of
f = 67}'13 - %, (4-33)
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0%0
Le = 67112 - 9. (4.3b)
Introducing a embedding parameter g €[0,1] and

convergence-control parameter #4, the zeroth-order
deformation equations can be written as

(1 - @Lflf(n; @) - fo(m)] = qhIH(Nf[f (s @)1, (44)
fO;9)=Uw, fO;q=¢, fleo59)=1, (45)

(1 - q@)Lel6(n; 9) - Bo(n)] = ghHe(MNe[6(n; @)],  (4.6)
0(0;q) =1, 6'(e059)=0 (4.7)

In which the nonlinear operators are presented as

N - 1 (63f(n;q))
Ta-epsa-g+ei)\ o
azf(n;q)> B (af(n;q)>2 ()

on? on
_Xm>

+f(n;q)<

of(sq) 1_0*f(n;q)
+A<1_ o271 op2
M of(1:q)
+(1—q!>+qbf’s)<1 6n>
1-¢+p(5)(5)
+ I A

ﬁf A0
ey (n; 9),
(4.8)
N - i3 (629('1; CI))
(1—¢)+¢%¢;§; on?

0009 o of(n;q)  (49)
+Pr(f(n,q) on 9(n,q)T
—A(ze(n;q)+ ;naegqn q)>),

For ¢ = 0 and g = 1, we have respectively
q=0: f;0) =fo(n),  6(n;0) = 6o(n), (4.10)
g=1: fo; 1) =f),  6(p;1) =6(n).  (411)

f(n; p) varies from fo(n) to f(n) and 6(x; p) varies from
0o(n) to 6(1), when g increases from 0 to 1. Using Egs. (51)-
(52) and Taylor’s theorem, f(n; ¢) and 6(n; q) can be pre-
sented in a power series form

fO; @) = folp) + > fmg™, (4.12)
m=1
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1 0"f(n; q)

fu) = ooy oqm

(4.13)

q=0

and -
00 @) = 0o(m) + 3 Om(n)™, (4.14)
m=1
_ 1 0M0(n;9)
em(rl) = Waqim qzo. (4.15)

In which the auxiliary parameter 7 is selected such the se-
ries is convergent at ¢ = 1. Liao [26] pointed out that the
convergence-region depends on a convergence-control pa-
rameter 4. Then, Egs. (53) and (55) are as follows

FO) = fo) +>_ fn(m), (4.16)
m=1
6(n) = 6o(n) + Z Om(n) (4.17)
m=1
The mth-order deformation equations:
LIfm() = XmFm-1 (D] = KHpDR (), (4.18)
L10m() = XmOm-1 ()] = EHo(R (), (4.19)
N=0:fm=Uw, fm=6 N=o00:fm=1, (4.20)
6=0: 0m=1, O=00: O =0, (4.21)
where R{n(n) and an(n) are defined as
R.(p) = 1 <a3fm_1(n; q))
WG grsa-grepI\ o
m-1

2 .
+ |:fn(fl;CI)a fm—l—n(rl’ Q) _

Ofn(1; q) Of m-1-n(1; q)}
n=0 arlz

on on

. 2 .
raoxw a1 Tu D2, Phaa) )
. M ( _6fm71(n;q)>

(1-0+7) on

1 Ps ﬁs
+ m/lem 113 @),

1-¢+
(4.22)
by :
RY ke <0 9m-1(n;Q)>
P g L om
m-1
+Pr(z [fn(n;q)ae’”‘g;("’q) af"é'; D, H(n;q)}
n=0
—A<29m 1(39) + 5 ! W))
4.23)
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we consider the auxiliary function as J(¢(n), Hy(n) =
The calculation are made for sodium alginate nanofluid
with alumina as nanoparticle with Pr = 6.2 as considered
in Tiwari and Das [31] nanofluid model. The parameters of
nanofluid are assumedas A = 0.5,A =1, M =1, Uy = 0.5
and ¢ = 0.2 to obtain the solution of coupled equations
with appropriate boundary conditions.

fil)) =-0.5+e-1.5892h+1.5892e” A

+1.5892e7""hn +0.1875e hin?, (4.24a)

601(n) = + 4.9092e iy + 1.1625e "hn?,  (4.24b)

fo() =-1.5892h + 1.5892e "1 — 7.5388h*
- 0.0625e2"h* + 7.6013e 1% + 1.5892¢ hn
+7.4763e7h*n +0.1875e i’ + 2.6405e " h*n?

+0.35925e 7 h%n> +0.0175e7", h?n*
(4.25a)

0,(n) =12.234e 2"h? - 12.234e7"h* + 4.9092¢ M hn
+4.03e”21h%n + 24.0522e7 0%y + 1.1625e " hn?
+14.6007e "R’ n? + 4.806e h*n’
+0.6757e7h* ",

(4.25b)

Similarly, the computation of 15th order approximation of

HAM are executed on MATHEMATICA 7.0 software with
BVPh 2.0 package.

5 Convergence of the HAM
solutions

The family of solutions presented by HAM is expressed in
the form of an auxiliary parameter. The convergence re-
gion and rate of approximation strongly depends on the
convergence-control parameter (%), as stated by Liao [27].
By means of plotting the #-curves that represents the ac-
cepted range of £, the convergence rate and region can
be adjusted. The horizontal line segment where the series
converges is the acceptable region of h. Figures 2 depicts
the A-curves of dimensionless velocity & temperature ob-
tained from Egs. (19) and (20) based on the 10th order ap-
proximation. Based on the convergence-region of i-curves
for alumina-sodium alginate nanofluid the acceptable val-
ues of 7 are tabulated in table 2.

To find out an optimal value of an convergence-control pa-
rameter f, the averaged residual square error can be writ-
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S0, (o)

Fig. 2: The £ curves of dimensionless velocity and dimension-
less temperature for alumina-sodium alginate nanofluid with
A=0.5M=1,Uy=05,£6=0,Pr=6.2,¢=02,A=1.

Table 2: Acceptable values of & for alumina-sodium alginate
nanofluid withA =0.5,M =1, Uy =0.5,Pr=6.2,¢ = 0.2, = 1.

Series Acceptable Range
f') -0.25 < h < -0.05
0(n) -0.18 < i< -0.1

ten as

Eys - ;}i (Nf [i fi(ij)Dz, 5.)

i=0

K 1 2

1 .

Eio= % Z <N9 [ZeioAx)D . (5.2)
j=1 i=0

where Ax = 10/K, K = 20 for transformed Egs. (19) and

(20). The optimal value of # is evaluated by minimizing

the average residual square error Ey; corresponding to the

transformed nonlinear equations

dE;f
an =0, (5.3)
dE; ¢ B
ar =0. (5.4)

Table 3 exhibit the comparison of the averaged resid-
ual square error and optimal value of 7 for velocity
and temperature distributions of alumina-sodium alginate
nanofluid with increasing the order of approximations.

The accuracy and validity of the HAM can be demonstrated
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by the residual square error curves which are plotted in fig-
ure 3 and figure 4 for f” and 8 with several values of auxil-
iary parameter for alumina-sodium alginate nanofluid.

= —0.16
h=—0.17
#=—0.18
#= —0.21 (optimal)

h=-023

=]
=]
b
T

Fig. 3: Residual error for non-dimensional velocity for alumina-
sodium alginate nanofluid withA = 0.5,M = 1, U, = 0.5, Pr =
6.2, =0.2,1=1.

- A=-0.1
- #=-0.11
- #=-0.12
— #=—0.14 optimal
#=-0.17

0.004 -

0.003 -

Fen ¢

0.002 -

0.001 -

0.000 E#

Fig. 4: Residual error for non-dimensional temperature for alumina-
sodium alginate nanofluid withA = 0.5,M = 1, U, = 0.5, Pr =
6.2,=0.2,A=1.

Table 4 exhibit the value of skin fiction coefficient and lo-
cal Nusselt number for different values of Prandtl number
in order to illustrate the validity and efficiency of HAM.

6 Results and Discussion

HAM has been effectively applied to evaluate the analyt-
ical solution for transformed nonlinear ordinary differ-
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Table 3: Optimal value of # for alumina-sodium alginate nanofluid with4A = 0.5, M =1, Uy =0.5,Pr=6.2,p = 6.2, 1 = 1.

f! f! 0 0
N Optimal value of i Value of E; ¢ Optimal value of i Value of Ej o
1 -0.2432 0.68499 -0.1729 2.1767 x 1072
2 -0.2385 0.16878 -1.31615 0.1735x 1072
3 -0.2174 0.15924 -1.38356 0.1587 x 102

N- order of approximation

Table 4: The values of skin friction coefficient and local Nusselt number for alumina-sodium alginate nanofluid with various values of Pr

whenA=0,e=0,M=0,Uy =0, =0,A=1.

Pr Re}/*c; NuyRe;'/?
0.7 1.8573 0.8521
1 1.7520 0.8872
1.7385 1.8036
10 1.6214 2.0145
20 1.5501 2.7326
40 1.4623 3.2214
50 1.3986 3.7048

ential equations (19)-(20) describing boundary-layer flow
and heat transfer for MHD mixed convection nanofluids
with some values including wall transpiration parameter
(Uw), mixed convection parameter (1), velocity ratio pa-
rameter (£), nanoparticle volume fraction (¢), unsteadi-
ness parameter (4) and magnetic parameter (M). In order
to illustrates the effects of these parameters, the velocity
and temperature profile has been presented from figures
(5)-(16) for alumina-sodium alginate nanofluid using 15th-
order of approximation. The value of Prandtl numberis
considered as 6.2 (for water) and the range of nanoparticle
volume fraction parameter varies from O (Newtonian fluid)
to 0.2 as pointed out by Oztop and Abu-Nada [32]. Figure
5 and figure 6 show the velocity and temperature distri-
butions of nanofluid respectively over a stationary surface
(e = 0) with variation of magnetic parameter for two val-
ues of mixed convection parameter: A = 5 (assisting flow)
and A = -5 (opposing flow). Lorentz force is produced
by the application of vertical magnetic field to electrically
conducting nanofluid. Lorentz force slow down the flow
over the wedge which reduces the thickness of hydrody-
namic boundary-layer. According to the explanation, fig-
ure 5 and figure 6 show that as the magnetic parameter
increases for alumina-sodium alginate nanofluid, the ve-
locity increases and the temperature slightly decreases re-
spectively. Also, it can be analyzed from figures that as the
positive mixed convection parameter enhances, the veloc-

ity increases while the temperature of nanofluid decreases
slightly.

Figure 7 and figure 8 illustrate the effects of unsteadi-
ness parameter on the nanofluid velocity profile and tem-
perature distribution over a stationary wedge for both op-
posing A > 0 and assisting flow A < 0. Figure 7 shows
that increase in unsteadiness parameter (4) leads to in-
crease in velocity of nanofluid due to higher acceleration.
Figure 8 reveals that the temperature increases for lower
acceleration. Since the transformed equations (19)-(20) are
coupled together only with the mixed convection param-
eter. Grashof number accelerates the fluid, so the veloc-
ity increases and temperature decreases with increase in
Grashof number and mixed convection parameter.

The influence of the unsteadiness parameter and mag-
netic parameter on the velocity and temperature distri-
butions for alumina-sodium alginate nanofluid are de-
picted from figures (9)-(12) with shrinking (¢ = —0.5) and
stretching (¢ = 0.5) sheet cases. Figures show the simi-
lar behaviour of thermal and boundary layer of nanofluid
as described previously for figures (5)-(8). It can be ana-
lyzed that the hydrodynamic boundary-layer thickness de-
creases strongly for stretching sheet.

The influence of the unsteadiness parameter and mag-
netic parameter on the velocity and temperature distribu-
tions for alumina-sodium alginate nanofluid are depicted
from figures (13)-(16) with suction (U, > 0) and injection
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Fig. 5: The velocity distribution for alumina-sodium alginate Fig. 7: The velocity distribution for alumina-sodium alginate
nanofluid for different values of mixed convection and magnetic nanofluid for different values of mixed convection and unstediness
parameters with A = 0.5, Uy = 0.5, =0, Pr = 6.2, ¢ = 0.2. parameters with M = 1, Uy = 0.5, =0,Pr=6.2,¢ = 0.2.
Lo M=0, 1=5
M=2, 1=5
M=4, 1=5
0.8 M=0, 1=-3
M=2, 1=-3
M=4, 1=-3
0.6
=
04
02
10 A=0, =3
A=2 1=3
0.0 - A=4 1=3
0.0 0.2 04 0.6 0.8 1.0 08 A=0 =5
" A:E: A=-3
A=4 1=-3
Fig. 6: The temperature distribution for alumina-sodium alginate 05
nanofluid for different values of mixed convection and magnetic =
parameters with A = 0.5, Uy = 0.5, £ = 0, Pr = 6.2, ¢p = 0.2. = 0s
(Uw < 0) cases. Figures depict the similar behaviour qual- 02
ity of flow characterstics as explained previously but it is
worth mentioning that the thermal boundary-layer thick- 0o
ness decreses sensibly for suction. T 00 0.2 0.4 0.6 038 1.0

Fig. 8: The temperature distribution for alumina-sodium alginate
nanofluid for different values of mixed convection and unstediness
parameters with M = 1, Uy = 0.5, =0,Pr=6.2,¢ =0.2.
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Fig. 9: The velocity distribution for alumina-sodium alginate
nanofluid for different values of magnetic and velocity ratio pa-
rameters with A = 0.5, Uy = 0.5,A=1,Pr=6.2,¢ = 0.2.
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Fig. 10: The temperature distribution for alumina-sodium alginate
nanofluid for different values of magnetic and velocity ratio parame-
terswith A = 0.5, Uy = 0.5,A=1,Pr=6.2,¢ = 0.2.

Table (5)-(7) present the values of skin friction coefficient
and local Nusselt number with nanoparticle volume frac-
tion (¢) in case of stretching/shrinking sheet and asssist-
ing/opposing flows. Tables reveal that value of skin fric-
tion coefficient and local Nusselt number are higher for Cu
as nanoparticle compared to Al,03 and TiO, nanoparti-
cles.
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Fig. 11: The velocity distribution for alumina-sodium alginate
nanofluid for different values of unsteadiness and velocity ratio
parameters with M = 1, Uy = 0.5,A=1,Pr=6.2,¢ = 0.2.
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Fig. 12: The temperature distribution for alumina-sodium alginate
nanofluid for different values of unsteadiness and velocity ratio
parameters with M = 1, Uy = 0.5,A=1,Pr=6.2,¢ = 0.2.

7 Concluding Remarks

Based on the results and discussions on the MHD
nanofluid flow over a stretching/shrinking sheet, the fol-
lowing conclusions have been arrived for alumina-sodium
alginate nanofluid:

o With increase in magnetic parameter as well as
unsteadiness parameter, the velocity increases
whereas the temperature decreases.

. With increase in Grashof number and mixed convec-
tion parameter , the temperature decreases whereas
the velocity increases.

o With increase in velocity ratio parameter (), the ve-
locity increases whereas the temperature decreases
but the magnetic parameter and unsteadiness pa-
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Table 5: The effect of the nanoparticle volume fraction on the skin friction coefficient and local Nusselt number for copper-sodium alginate
nanofluid with A = 0.5, M = 1, Uy, = 0.5.

A= =-1

Parameter [0)] e=-0.5 £=0.5 £=-0.5 £=0.5
Rey?cy 0.00 3.0254 1.7859 2.8435 1.0527
0.10 4.7987 2.0231 3.7231 1.7868

0.20 5.6254 2.8457 5.2428 2.0135

NuyRe;'? 0.00 4.7135 5.7134 4.4237 5.5668
0.10 4.5387 6.0241 4.8268 6.0258

0.20 5.0264 6.8763 5.0124 6.7174

Table 6: The effect of the nanoparticle volume fraction on the skin friction coefficient and local Nusselt number for alumina-sodium algi-
nate nanofluid with A = 0.5, M = 1, Uy, = 0.5.

A= =-1

Parameter [0)] £=-0.5 £=0.5 £=-0.5 €=0.5
Re}/?cy 0.00 3.0254 1.7859 2.8435 1.0527
0.10 4.4632 1.7123 3.4037 1.4478

0.20 4.8724 2.0145 4.9521 1.7137

NuyRe;'? 0.00 4.7135 5.7134 4.4237 5.5668
0.10 4.3375 5.6214 4.5107 5.9807

0.20 4.8547 6.1114 4.5301 6.2528

Table 7: The effect of the nanoparticle volume fraction on the skin friction coefficient and local Nusselt number for titania-sodium alginate
nanofluid with A = 0.5, M = 1, Uy, = 0.5.

A=1 =-1

Parameter 0] £=-0.5 £=0.5 £=-0.5 €=0.5
Re}?Cy 0.00 3.0254 1.7859 2.8435 1.0527
0.10 4.5874 1.9852 3.8737 1.6897

0.20 5.2548 2.2647 5.0021 1.8962

NuyRe;'? 0.00 4.7135 5.7134 4.4237 5.5668
0.10 4.2958 5.5237 4.2790 5.7502

0.20 4.6250 6.0124 4.3875 6.0125

rameter strongly affect the velocity and temperature The results show the simplicity, efficiency and accuracy of
distribution in the case of stretching sheet (¢ > 0). HAM for evaluating various kind of rheological problems
o With increase in wall surface transpiration param- arising in fluid dynamics.
eter (Uw), the velocity increases whereas the tem-
perature decreases but the magnetic parameter and
unsteadiness parameter strongly affect the velocity
and temperature distribution in the case of suction NomenClature
(Uw > 0) compared to injection (Uy < 0).
J The tabulated results presented the highest value

. . A unsteadiness parameter
of skin friction and local Nusselt number for P

. . . a,b,c constant
copper-sodium alginate nanofluid as compared to ) .

. . . . . . dag acceleration due to gravity
alumina-sodium alginate and titania-sodium algi- L. .
) Cr skin-friction coefficient
nate nanofluids. ]
F magnetic field

f(n) dimensionless stream function
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Fig. 13: The velocity distribution for alumina-sodium alginate Fig. 15: The velocity distribution for alumina-sodium alginate
nanofluid for different values of magnetic and wall transpiration nanofluid for different values of unsteadiness and wall transpira-
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Fig. 16: The temperature distribution for alumina-sodium alginate
Fig. 14: The temperature distribution for alumina-sodium alginate nanofluid for different values of unsteadiness and wall transpiration
nanofluid for different values of magnetic and wall transpiration parameters with M = 1,6 =0,A=1,Pr=16.2,¢ =0.2.
parameters with A = 0.5, =0,A=1,Pr=6.2,¢ = 0.2.

Veo(y, t) free stream velocity
Gry local Grashof number vw(y, t) surface velocity
k thermal conductivity X,y Cartesian coordinates
M magnetic parameter Greek symbols
Nuy local Nusselt number a thermal diffusivity
Pr Prandtl number B thermal expansion coefficient
Quw surface heat flux n similarity variable
Rey local Reynold number A mixed convection parameter
T nanofluid temperature u dynamic viscosity
To characteristic temperature 0] nanoparticle volume fraction
T ambient temperature Y stream function
Tw(y, t) surface temperature p fluid density
u,v velocity component o electrical conductivity
Uw wall surface transpiration parameter Tw wall shear stress

*

Uy uniform surface mass flux 0(n) dimensionless temperature
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v kinematic viscosity

£ velocity ratio parameter
subsccripts

oo ambient condition

f base fluid

nf nanofluid

S solid nanoparticle

w condition at the surface of wedge
supersccripts

!

prime denotes the derivative with respect to n
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