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Abstract: A rigorous analysis of unsteady magnetohydro-
dynamic mixed convection and electrically conducting
nano�uidmodel with a stretching/shrinking wedge is pre-
sented. First, the governing partial di�erential equations
for momentum and energy conservation are converted
to coupled nonlinear ordinary di�erential equations by
means of exact similarity transformation. The homotopy
analysis method (HAM) is employed to obtain the analyti-
cal approximations for �ow velocity and temperature dis-
tributions of alumina-sodium alginate nao�uid. The so-
lution is found to be dependent on some parameters in-
cluding the nanoparticle volume fraction, unsteadiness
parameter, magnetic parameter, mixed convection param-
eter and the generalized prandtl number. A systematic
study is carried out to illustrate the e�ects of these pa-
rameters on the velocity and temperature distributions.
Also, the value of skin friction coe�cient and local Nusselt
number are compared with copper-sodium alginate and
titania-sodium alginate nano�uids.

Keywords: Homotopy analysis method (HAM), Magnetic
parameter, MHD �ow, Nano�uid, Sodium alginate

1 Introduction
Nano�uid is formedby colloidal suspensionof nanometer-
sized solid particles (1-100nm diameter) into conventional
liquids such as water, ethylene glycol, or oil. Firstly, the
word “nano�uid” was introduced by Choi [1, 2], that rep-
resent the new class of �uid inwhich nanometer-scale par-
ticles are dispersed into conventional liquids. The thermal
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conductivity of base �uid can be increased upto 40 per-
cent with low concentration (1-5% by volume) of nanopar-
ticles in order to acheive higher heat transfer e�ciency
[3, 4]. Xuan [3] applied the hot wiremethod tomeasure the
thermal conductivity of copper-water nano�uid and found
that the thermal conductivity increases upto 43% if the vol-
ume fraction of the nanoparticle increases from 2.5% to
7.5%. The nano�uid is stable, however stabilizer such as
oleic acid, polyvinylpyrrolidone and laurate salt is added
in thenanoparticlemixture to stabilize thenano�uid [5, 6].
Nano�uid has ability to �ow through nanochannels and
occurs very less pressure drop.

Stagnation point �ow is due to no-slip condition in the
neighborhood of solid object. The heat transfer e�ciency
and pressure are at its maximun value and the nano�uid
is deposit on solid surface. Such �ow occurs in various
�uid engineering applications including submarine �ow,
turbo-machinery, aerofoil and oil ships. Hiemenz [7] in-
troduced the stagnation point �ow on the solid surface
in the �owing condition of �uid and reduced the Navier-
Stokes equation into non-linear ordinary di�erential equa-
tion using similarity transformation. The study of stagna-
tion �ow in viscous boundary-layer in two-dimensional or
axisymmetric stagnation region has gained attention by
several researchers which have studied in the literature
[8–11]. These studies were presented the basic behavior of
viscous �ow in stagnation region and applicability of sim-
ilarity transformation with high accurate approximations.

Mixed convection phenomena is the combination
of free convection and forced convection. The attention
on the studies of convective heat transfer on stretch-
ing/shrinking sheet has gained by several researchers in
past decade due to important phenomena in engineering
applications including solar collector, heat exchanger, nu-
clear reactor, gas-cooled electrical cable, thermal insula-
tion and atmospheric boundary-layer �ows. Ramachan-
dran et al. [12] analyzed the laminar mixed convection
�ow for the unsteady wall temperature and showed the
variation of surface heat �ux for two-dimensional Navier-
Stokes equation. Devi et al. [13] presented the study of
mixed convective boundary-layer �ow on vertical �at sur-
face. Ishak et al. [14] carried out the studies on mixed con-
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vection with magnetohydrodynamic (MHD) �ow on verti-
cal surface. Later on, the same rheological problem stud-
ied for convective surface under the e�ect ofmagnetic �eld
[15, 16].

The natural convective heat transfer of non-
Newtonian power-law model by means of �nite element
method was analyzed by Beg et al. [17] and Jin et al. [18]
carried out studies on Oldroyd-B and upper-convected
Maxwell models using �nite volume method. A well-like
analytic method is the perturbation technique which
frequently used in rheology problems [19]. Numerical
methods such as Di�erential transformation method [20],
Variational iteration method [21], Runge-Kutta method
and �nite di�erence techniques [22] are based on dis-
cretization technique and permit the accurate solutions
only for a certain period of time and space variables.
Several non-perturbative techniques have been worked
out on rheological problems such as arti�cial small
parameter [23], δ-expansion method [24] and adomian
decomposition method [25]. These perturbative and
non-perturbative methods are incapable to adjust the
convergence region and high order of a series solution.
Hence, Liao [26, 27] proposed the homotopy Analysis
Method (HAM) for nonlinear problems which may reduce
the complexity of convergence region of series solution.

HAM overcomes the limitations of perturbation meth-
ods as it provides freedom to choose an auxiliary parame-
ter (~) which leads to increase in the convergence results.
The solution to a condensation �lm in three dimensions on
an inclined rotating disk was analytically done by Rashidi
et al. [28]. Ziabakhsh et al. [29] applied HAM to compute
the solution of hydromagnetic viscous �ow. The diverse
range of rheological problems shows the capability, valid-
ity, e�ectiveness, �exibility and wide variety applications
of HAM.

This paper deals with the use of homotopy Anal-
ysis Method (HAM) in order to compute the analyti-
cal solutions of unsteady magnetohydrodynamic (MHD)
and mixed convection nano�uid model over a stretch-
ing/shrinking wedge. Also, the in�uence of various pa-
rameters viz. nanoparticle volume fraction, unsteadiness
parameter, magnetic parameter, mixed convection param-
eter and the generalized prandtl number (pr) are analyzed
on the velocity and temperature distributions for alumina-
sodium alginate nano�uid. The values of skin-friction co-
e�cient and local Nusselt number for alumina-sodium al-
ginate nano�uid are tabulatedwith di�erent Prandtl num-
ber and and compared from sodium alginate nano�uids
withnanoparticle copper (Cu) and titaniumdioxide (TiO2).
The residual error illustrates the simplicity andaccuracyof

HAM. The residual error illustrates the simplicity and ac-
curacy of HAM.

2 Problem statement and
mathematical model

In this manuscript, we consider the unsteady two-
dimensional viscous �ow over a stretching/shrinking
wedge of electrically conducting and incompressible
nano�uid with magnetic �eld e�ect. The x axis is mea-
sured along the normal of wedge and in positive direction
from the wedge to the nano�uid whereas y axis is consid-
ered along the wedge surface. The �ow velocity is consid-
ered by V∞ = by/(1 − at) and the stretching/shrinking
velocity of wedge is assumed by vw(y, t) = cy/(1 − at),
where c denotes the stretching/shrinking ratewith c < 0 or
c > 0 for shrinking or stretching wedge surface condition
respectively, b is constant and a > 0 shows the stagnation
�ow strength. The surface temperature (Tw) is de�ned as
Tw(y, t) = T∞ + T0y/(1 − at)2. Lok et al. [30] showed that
the assisting �owoccurs due to the heated upper half plate
and the reason of opposing �ow is cooled lower half plate.
That’s why the �ow move upward near the heated wedge
and tends to move down near the cooled wedge, see Fig-
ure 1.

Fig. 1: Coordinate system of �ow con�guration.

Tiwari and Das [31] presented the MHD nano�uid model
with the assumption that the base �uid (sodium alginate)
is in thermal equilibrium with nanoparticle, the govern-
ing equations for mass, momentum and energy in carte-
sian coordinates are

∂u
∂x + ∂v∂y = 0, (2.1)
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Table 1: Thermophysical properties of base �uid and nanoparticles [32].

Cp ρ k α x 107 β x 10−5
Base fluid and nanoparticles (J/Kg K) (Kg/m3) (W/m K) (m2/s) (1/K)

Sodium Alginate (C6H9NaO7) 4175 989 0.6376 1.62 23
Copper (Cu) 385 8933 400 1163.1 1.67

Titanium dioxide (TiO2) 686.2 4250 8.954 30.7 0.9
Alumina (Al2O3) 765 3970 40 131.7 0.85

∂v
∂t + u

∂u
∂x + v ∂v∂y = µnfρnf

∂2v
∂x2 −

1
ρnf

dp
dy −

σF2
ρnf

v

+ ϕρsβs + (1 − ϕ)ρf βfρnf
ag(T − T∞), (2.2)

∂T
∂t + v

∂T
∂y + u ∂T∂x = αnf

∂2T
∂x2 , (2.3)

The appropriate boundary conditions are

t < 0 : u = v = 0, T = T∞, for any x, y,
t ≥ 0 : v = vw(y, t), u = U*w(t), T = Tw(y, t) at x = 0,
x → 0 : v → v∞(y, t), T → T∞.

(2.4)
Using generalized Bernoulli’s equation, Eq. (2) will be as
follows

dv∞
dt + v∞ dv∞dy = − 1

ρnf
dp
dy −

σF2
ρnf

v∞. (2.5)

By substituting Eq. (5), Eq. (2) can be presented as

∂v
∂t + u

∂u
∂x + v ∂v∂y = µnfρnf

∂2v
∂x2 + dv∞dt + v∞ dv∞dy

+ σF
2

ρnf
(v∞ − v) +

ϕρsβs + (1 − ϕ)ρf βf
ρnf

ag(T − T∞).
(2.6)

The velocity components are denoted by u and v along
x and y axis respectively. Magnetic �eld applied along x-
axis. The thermal expansion coe�cients of solid nanopar-
ticle and base �uid are showed by βs and βf respectively.
The uniform surface mass �ux U*w corresponds to suction,
injection and impermeable surface for the case U*w < 0,
U*w > 0 and U*w > 0 respectively. The viscosity (µnf ), ther-
mal di�usivity (αnf ), density (ρnf ) and heat capacitance
(ρCp)nf of nano�uid are de�ned as

µnf =
µf

(1 − ϕ)2.5 , (2.7)

ρnf = (1 − ϕ)ρf + ϕρs , (2.8)

(ρCp)nf = (1 − ϕ)(ρCp)f + ϕ(ρCp)s , (2.9)

αnf =
knf

(ρCp)nf
, (2.10)

The thermal conductivity of nano�uid (knf ) are given by
Maxwell-Garnett model [32], which is presented as follows

knf
kf

= (ks + 2kf ) − 2ϕ(kf − ks)
(ks + 2kf ) + ϕ(kf − ks)

, (2.11)

where ϕ shows the solid volume fraction of nano�uid, ρf
and ρs are the density of base �uid and solid nanoparticle
respectively, µf is the viscosity of base �uid, kf and ks are
the thermal conductivity of base �uid and nanoparticle re-
spectively.

The development process of this model exhibit the
transformation of governing equations to η, ξ system. The
similar variable η involves both x and y, while ξ is related
to x alone. Therefore, we assume ξ = 0 for any stream-wise
location and f is the function of only variable η. To pro-
ceed, we adopt the following similarity transformations.
The physical stream function is introduced as

ψ =
( buf
1 − at

)1/2
yf (η). (2.12)

The dimensionless temperature is de�ned as

θ(η) = T − T∞
Tw − T∞

. (2.13)

The transformed similar variable is

η =
( b
uf (1 − at)

)1/2
x. (2.14)

The stream function can be de�ned by

u = ∂ψ∂x , v = −∂ψ∂y . (2.15)

Using stream function, the velocity component u and v can
be derived as follows

u = −
( ub
1 − at

)1/2
f (η), (2.16)

v = by
1 − at f

′(η) = V∞(y, t)f ′(η). (2.17)
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The surface mass �ux U*w is transformed in term of wall
transpiration parameter:

U*w = −
( ub
1 − ct

)1/2
Uw . (2.18)

The mass conservation equation (1) is identically satis-
�ed with stream function. Under the transformation (7)-
(18), themomentum equation (6) and energy conservation
equation (3) reduce to the following nonlinear ordinary
di�erential equation:

1
(1 − ϕ)2.5(1 − ϕ + ϕ ρs

ρf )
f ′′′ + � ′′ − f ′2 + 1 + A(1 − f ′ − 1

2ηf
′′)

+ M
(1 − ϕ + ϕ ρs

ρf )
(1 − f ′) +

1 − ϕ + ϕ( ρsρf )(
βs
βf )

1 − ϕ + ϕ ρs
ρf

λθ = 0,

(2.19)

knf
kf

(1 − ϕ) + ϕ (ρCp)s
(ρCp)f

θ′′ + Pr
(
fθ′ − θf ′ − A

(
2θ + 1

2ηθ
′
))

= 0,

(2.20)
which are subjected to the transformed boundary condi-
tions:

η → 0 : f = Uw , f ′ = c/b = ε, η →∞ : f ′ = 1, (2.21a)

θ → 0 : θ = 1 η →∞ : θ = 0, (2.21b)

where Pr = υf /αf is the Prandtl number and magnetic
parameter is de�ned as M = σF2/ρf b. The unsteadiness
parameter (A = a/b) shows positive and negative accel-
eration for the case A > 0 and A < 0 respectively. The
ratio of stretching/shrinking rate wedge and strength of
stagnation �ow is denoted by velocity ratio parameter (ϵ),
which presents ϵ > 0, ϵ < 0 and ϵ = 1 for stretching
wedge, shrinking wedge and �ow without boundary layer
(vw = V∞) respectively. Mixed convection parameter (λ)
corresponds to assisting and opposing �ow with condi-
tions λ > 0 and λ < 0 respectively. It should be noticed that
λ = 0 shows the forced convection or absence of buoyancy
force condition,ϕ = 0 for pure base �uid, ϵ = 0 for station-
ary wedge, M = 0 with negligible magnetic e�ect, A = 0
shows steady state �owandUw = 0 for impermeable plate.

The buoyancy or mixed convection parameter (λ), lo-
cal Grashof number (Gry) and Reynold number (Rey) are
de�ned as

λ = Gry
Rey

= agβf c/b2, (2.22)

Gry = agβf (Tw − T∞)
y3

υ2f
, (2.23)

Rey = V∞yυf
. (2.24)

The skin-friction coe�cient is de�ned as

Cf =
τw

ρf v2/2
(2.25)

and the local Nusselt number is de�ned as

Nuy = yQw
kf (Tw − T∞)

, (2.26)

where the wall shear stress (τw) can be written as

τw = µnf
( ∂v
∂x

)
x=0

(2.27)

and the heat �ux (Qw) is

Qw = −knf
(∂T
∂x

)
x=0

. (2.28)

Using similarity variables Eq. (12)-(17), the skin-friction co-
e�cient and Nusselt number can be presented in the form

Cf [Rey]1/2 =
1

(1 − ϕ)2.5 f
′′(0), (2.29)

Nuy[Rey]−1/2 = −
knf
kf
θ′(0). (2.30)

3 Basic idea of HAM
Let us consider the nonlinear di�erential equation,

N[x(t)] = 0, (3.1)

where N is a nonlinear operator, t is an independent vari-
able and x(t) is the solution of equation. The function
ϕ(t, q) is introduce as

limϕ(t, q
q→0

) = x0(t), (3.2)

where q ∈ [0, 1] denotes the embedding parameter and
x0(t) shows the initial approximationwhich ful�lls the pri-
mary condition and the solution of equation is

limϕ(t, q
q→1

) = x(t). (3.3)

Using the Liao’s homotopy Analysis Method (HAM), the
zeroth-order deformation equation,

(1 − q)L[ϕ(t, q) − x0(t)] = q~H(t)N[ϕ(t, q)], (3.4)

where ~ is convergence-control parameter,H(t) is the aux-
iliary function and L is the linear operator. HAM provides
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a way to select auxiliary parameter ~, auxiliary function
H(t), initial approximation x0(t) and linear operator L as
the HAM establishes a promise to evaluate solutions with
high accuracy. When the q increases from 0 to 1, the solu-
tion ϕ(t, q) varies from initial approximation x0(t) to the
solution x(t). Then, x(t, q) can be express in the form of
Taylor series as

ϕ(t, q) = x0(t) +
∞∑
m=1

x(t)q
m (3.5)

and
x[m]0 (t) = ∂

mϕ(t; q)
∂qm

∣∣∣∣
q=0

, (3.6)

where
x0(t) =

x[m]0
m! = 1

m!
∂mϕ(t; q)
∂qm

∣∣∣∣
q=0

. (3.7)

Now, introducing the vector expression,

#»x m = { #»x 1, #»x 2, #»x 3......., #»x m}. (3.8)

Di�erentiating Eq. (30) for m times w.r.t. q, put q = 0 and
divide by m!, we will obtain the m-th order deformation
equation,

L[xm(t) − χmxm−1(t)] = ~H(t)R( #»x m−1), (3.9)

where

Rm( #»x m−1) =
1

(m − 1)!
∂m−1N[ϕ(t; q)]

∂qm−1

∣∣∣∣
q=0

(3.10)

and

χm =
{
0, m ≤ 1
1 m > 1

. (3.11)

Using the inverse linear operator in Eq. (30), we can com-
pute the solution of equations in simpli�ed way.

4 HAM Solutions
The initial guess f (η) and θ(η) of the transformed Eqs. (19)
and (20) are choosen for HAM solutions as follows

f0(η) = Uw − (1 − ε) + η + (1 − ε)e−η , (4.1)

θ0(η) = e−η (4.2)

and we consider the linear operators:

Lf =
∂3f
∂η3 −

∂f
∂η , (4.3a)

Lθ =
∂2θ
∂η2 − θ. (4.3b)

Introducing a embedding parameter q ∈[0,1] and
convergence-control parameter ~, the zeroth-order
deformation equations can be written as

(1 − q)Lf [f (η; q) − f0(η)] = q~Hf (η)Nf [f (η; q)], (4.4)

f (0; q) = Uw , f ′(0; q) = ε, f ′(∞; q) = 1, (4.5)

(1 − q)Lθ[θ(η; q) − θ0(η)] = q~Hθ(η)Nθ[θ(η; q)], (4.6)

θ(0; q) = 1, θ′(∞; q) = 0. (4.7)
In which the nonlinear operators are presented as

Nf =
1

(1 − ϕ)2.5(1 − ϕ + ϕ ρs
ρf )

(
∂3f (η; q)
∂η3

)

+ f (η; q)
(
∂2f (η; q)
∂η2

)
−
(
∂f (η; q)
∂η

)2
+ (1 − χm)

+ A
(
1 − ∂f (η; q)∂η − 1

2η
∂2f (η; q)
∂η2 − χm

)
+ M
(1 − ϕ + ϕ ρs

ρf )

(
1 − ∂f (η; q)∂η

)

+
1 − ϕ + ϕ( ρsρf )(

βs
βf )

1 − ϕ + ϕ ρs
ρf

λθ(η; q),

(4.8)

Nθ =
knf
kf

(1 − ϕ) + ϕ (ρCp)s
(ρCp)f

(
∂2θ(η; q)
∂η2

)

+ Pr
(
f (η; q)∂θ(η; q)∂η − θ(η; q)∂f (η; q)∂η

− A
(
2θ(η; q) + 1

2η
∂θ(η; q)
∂η

))
,

(4.9)

For q = 0 and q = 1, we have respectively

q = 0 : f (η; 0) = f0(η), θ(η; 0) = θ0(η), (4.10)

q = 1 : f (η; 1) = f (η), θ(η; 1) = θ(η). (4.11)

f (η; p) varies from f0(η) to f (η) and θ(η; p) varies from
θ0(η) to θ(η), when q increases from 0 to 1. Using Eqs. (51)-
(52) and Taylor’s theorem, f (η; q) and θ(η; q) can be pre-
sented in a power series form

f (η; q) = f0(η) +
∞∑
m=1

fm(η)qm , (4.12)
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fm(η) = 1
m!
∂m f (η; q)
∂qm

∣∣∣∣
q=0

(4.13)

and
θ(η; q) = θ0(η) +

∞∑
m=1

θm(η)qm , (4.14)

θm(η) = 1
m!
∂mθ(η; q)
∂qm

∣∣∣∣
q=0

. (4.15)

In which the auxiliary parameter ~ is selected such the se-
ries is convergent at q = 1. Liao [26] pointed out that the
convergence-region depends on a convergence-control pa-
rameter ~. Then, Eqs. (53) and (55) are as follows

f (η) = f0(η) +
∞∑
m=1

fm(η), (4.16)

θ(η) = θ0(η) +
∞∑
m=1

θm(η). (4.17)

The mth-order deformation equations:

L[fm(η) − χm fm−1(η)] = ~Hf (η)Rfm(η), (4.18)

L[θm(η) − χmθm−1(η)] = ~Hθ(η)Rθm(η), (4.19)

η = 0 : fm = Uw , f ′m = ε, η = ∞ : fm = 1, (4.20)

θ = 0 : θm = 1, θ = ∞ : θm = 0, (4.21)
where Rfm(η) and Rθm(η) are de�ned as

Rfm(η) =
1

(1 − ϕ)2.5(1 − ϕ + ϕ ρs
ρf )

(
∂3fm−1(η; q)

∂η3

)

+
m−1∑
n=0

[
fn(η; q)∂

2fm−1−n(η; q)
∂η2 − ∂fn(η; q)∂η

∂fm−1−n(η; q)
∂η

]
+ (1 − χm) + A

(
1 − ∂fm−1(η; q)∂η − 1

2η
∂2fm−1(η; q)

∂η2 − χm
)

+ M
(1 − ϕ + ϕ ρs

ρf )

(
1 − ∂fm−1(η; q)∂η

)

+
1 − ϕ + ϕ( ρsρf )(

βs
βf )

1 − ϕ + ϕ ρs
ρf

λθm−1(η; q),

(4.22)

Rθm(η) =
knf
kf

(1 − ϕ) + ϕ (ρCp)s
(ρCp)f

(
∂2θm−1(η; q)

∂η2

)

+ Pr
( m−1∑
n=0

[
fn(η; q)∂θm−1−n(η; q)∂η − ∂fn(η; q)∂η θm−1−n(η; q)

]
− A
(
2θm−1(η; q) +

1
2η

∂θm−1(η; q)
∂η

))
.

(4.23)

we consider the auxiliary function as Hf (η),Hθ(η) = 1.
The calculation are made for sodium alginate nano�uid
with alumina as nanoparticle with Pr = 6.2 as considered
in Tiwari and Das [31] nano�uid model. The parameters of
nano�uid are assumed as A = 0.5, λ = 1,M = 1, Uw = 0.5
and ϕ = 0.2 to obtain the solution of coupled equations
with appropriate boundary conditions.

f1(η) = − 0.5 + e−η − 1.5892~ + 1.5892e−η~
+ 1.5892e−η~η + 0.1875e−η~η2, (4.24a)

θ1(η) =e−η + 4.9092e−η~η + 1.1625e−η~η2, (4.24b)

f2(η) = − 1.5892~ + 1.5892e−η~ − 7.5388~2

− 0.0625e−2η~2 + 7.6013e−η~2 + 1.5892e−η~η
+ 7.4763e−η~2η + 0.1875e−η~η2 + 2.6405e−η~2η2

+ 0.35925e−η~2η3 + 0.0175e−η , ~2η4
(4.25a)

θ2(η) =12.234e−2η~2 − 12.234e−η~2 + 4.9092e−η~η
+ 4.03e−2η~2η + 24.0522e−η~2η + 1.1625e−η~η2

+ 14.6007e−η~2η2 + 4.806e−η~2η3

+ 0.6757e−η~2η4,
(4.25b)

Similarly, the computation of 15th order approximation of
HAM are executed on MATHEMATICA 7.0 software with
BVPh 2.0 package.

5 Convergence of the HAM
solutions

The family of solutions presented by HAM is expressed in
the form of an auxiliary parameter. The convergence re-
gion and rate of approximation strongly depends on the
convergence-control parameter (~), as stated by Liao [27].
By means of plotting the ~-curves that represents the ac-
cepted range of ~, the convergence rate and region can
be adjusted. The horizontal line segment where the series
converges is the acceptable region of ~. Figures 2 depicts
the ~-curves of dimensionless velocity & temperature ob-
tained from Eqs. (19) and (20) based on the 10th order ap-
proximation. Based on the convergence-region of ~-curves
for alumina-sodium alginate nano�uid the acceptable val-
ues of ~ are tabulated in table 2.
To �nd out an optimal value of an convergence-control pa-
rameter ~, the averaged residual square error can be writ-
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Fig. 2: The ~ curves of dimensionless velocity and dimension-
less temperature for alumina-sodium alginate nano�uid with
A = 0.5,M = 1, Uw = 0.5, ε = 0, Pr = 6.2, ϕ = 0.2, λ = 1.

Table 2: Acceptable values of ~ for alumina-sodium alginate
nano�uid with A = 0.5,M = 1, Uw = 0.5, Pr = 6.2, ϕ = 0.2, λ = 1.

Series Acceptable Range
f ′(η) −0.25 ≤ ~ ≤ −0.05
θ(η) −0.18 ≤ ~ ≤ −0.1

ten as

El,f =
1
K

K∑
j=1

(
Nf
[ l∑
i=0

fi(j4x)
])2

, (5.1)

El,θ =
1
K

K∑
j=1

(
Nθ
[ l∑
i=0

θi(j4x)
])2

. (5.2)

where 4x = 10/K, K = 20 for transformed Eqs. (19) and
(20). The optimal value of ~ is evaluated by minimizing
the average residual square error Em corresponding to the
transformed nonlinear equations

dEl,f
d~ = 0, (5.3)

dEl,θ
d~ = 0. (5.4)

Table 3 exhibit the comparison of the averaged resid-
ual square error and optimal value of ~ for velocity
and temperature distributions of alumina-sodiumalginate
nano�uid with increasing the order of approximations.
The accuracy andvalidity of theHAMcanbedemonstrated

by the residual square error curveswhich are plotted in �g-
ure 3 and �gure 4 for f ′ and θ with several values of auxil-
iary parameter for alumina-sodium alginate nano�uid.

Fig. 3: Residual error for non-dimensional velocity for alumina-
sodium alginate nano�uid with A = 0.5,M = 1, Uw = 0.5, Pr =
6.2, ϕ = 0.2, λ = 1.

Fig. 4: Residual error for non-dimensional temperature for alumina-
sodium alginate nano�uid with A = 0.5,M = 1, Uw = 0.5, Pr =
6.2, ϕ = 0.2, λ = 1.

Table 4 exhibit the value of skin �ction coe�cient and lo-
cal Nusselt number for di�erent values of Prandtl number
in order to illustrate the validity and e�ciency of HAM.

6 Results and Discussion
HAM has been e�ectively applied to evaluate the analyt-
ical solution for transformed nonlinear ordinary di�er-
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Table 3: Optimal value of ~ for alumina-sodium alginate nano�uid with A = 0.5,M = 1, Uw = 0.5, Pr = 6.2, ϕ = 6.2, λ = 1.

f ′ f ′ θ θ
N Optimal value of ~ Value of El,f Optimal value of ~ Value of El,θ
1 −0.2432 0.68499 −0.1729 2.1767 x 10−2
2 −0.2385 0.16878 −1.31615 0.1735 x 10−2
3 −0.2174 0.15924 −1.38356 0.1587 x 10−2

N- order of approximation

Table 4: The values of skin friction coe�cient and local Nusselt number for alumina-sodium alginate nano�uid with various values of Pr
when A = 0, ε = 0,M = 0, Uw = 0, ϕ = 0, λ = 1.

Pr Re1/2x Cf NuxRe−1/2x
0.7 1.8573 0.8521
1 1.7520 0.8872
7 1.7385 1.8036
10 1.6214 2.0145
20 1.5501 2.7326
40 1.4623 3.2214
50 1.3986 3.7048

ential equations (19)-(20) describing boundary-layer �ow
and heat transfer for MHD mixed convection nano�uids
with some values including wall transpiration parameter
(Uw), mixed convection parameter (λ), velocity ratio pa-
rameter (ε), nanoparticle volume fraction (ϕ), unsteadi-
ness parameter (A) and magnetic parameter (M). In order
to illustrates the e�ects of these parameters, the velocity
and temperature pro�le has been presented from �gures
(5)-(16) for alumina-sodium alginate nano�uid using 15th-
order of approximation. The value of Prandtl numberis
considered as 6.2 (for water) and the range of nanoparticle
volume fraction parameter varies from0 (Newtonian �uid)
to 0.2 as pointed out by Oztop and Abu-Nada [32]. Figure
5 and �gure 6 show the velocity and temperature distri-
butions of nano�uid respectively over a stationary surface
(ε = 0) with variation of magnetic parameter for two val-
ues of mixed convection parameter: λ = 5 (assisting �ow)
and λ = −5 (opposing �ow). Lorentz force is produced
by the application of vertical magnetic �eld to electrically
conducting nano�uid. Lorentz force slow down the �ow
over the wedge which reduces the thickness of hydrody-
namic boundary-layer. According to the explanation, �g-
ure 5 and �gure 6 show that as the magnetic parameter
increases for alumina-sodium alginate nano�uid, the ve-
locity increases and the temperature slightly decreases re-
spectively. Also, it can be analyzed from �gures that as the
positive mixed convection parameter enhances, the veloc-

ity increases while the temperature of nano�uid decreases
slightly.

Figure 7 and �gure 8 illustrate the e�ects of unsteadi-
ness parameter on the nano�uid velocity pro�le and tem-
perature distribution over a stationary wedge for both op-
posing λ > 0 and assisting �ow λ < 0. Figure 7 shows
that increase in unsteadiness parameter (A) leads to in-
crease in velocity of nano�uid due to higher acceleration.
Figure 8 reveals that the temperature increases for lower
acceleration. Since the transformedequations (19)-(20) are
coupled together only with the mixed convection param-
eter. Grashof number accelerates the �uid, so the veloc-
ity increases and temperature decreases with increase in
Grashof number and mixed convection parameter.

The in�uence of the unsteadiness parameter andmag-
netic parameter on the velocity and temperature distri-
butions for alumina-sodium alginate nano�uid are de-
picted from �gures (9)-(12) with shrinking (ε = −0.5) and
stretching (ε = 0.5) sheet cases. Figures show the simi-
lar behaviour of thermal and boundary layer of nano�uid
as described previously for �gures (5)-(8). It can be ana-
lyzed that the hydrodynamic boundary-layer thickness de-
creases strongly for stretching sheet.

The in�uence of the unsteadiness parameter andmag-
netic parameter on the velocity and temperature distribu-
tions for alumina-sodium alginate nano�uid are depicted
from �gures (13)-(16) with suction (Uw > 0) and injection
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Fig. 5: The velocity distribution for alumina-sodium alginate
nano�uid for di�erent values of mixed convection and magnetic
parameters with A = 0.5, Uw = 0.5, ε = 0, Pr = 6.2, ϕ = 0.2.

Fig. 6: The temperature distribution for alumina-sodium alginate
nano�uid for di�erent values of mixed convection and magnetic
parameters with A = 0.5, Uw = 0.5, ε = 0, Pr = 6.2, ϕ = 0.2.

(Uw < 0) cases. Figures depict the similar behaviour qual-
ity of �ow characterstics as explained previously but it is
worth mentioning that the thermal boundary-layer thick-
ness decreses sensibly for suction.

Fig. 7: The velocity distribution for alumina-sodium alginate
nano�uid for di�erent values of mixed convection and unstediness
parameters with M = 1, Uw = 0.5, ε = 0, Pr = 6.2, ϕ = 0.2.

Fig. 8: The temperature distribution for alumina-sodium alginate
nano�uid for di�erent values of mixed convection and unstediness
parameters with M = 1, Uw = 0.5, ε = 0, Pr = 6.2, ϕ = 0.2.
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Fig. 9: The velocity distribution for alumina-sodium alginate
nano�uid for di�erent values of magnetic and velocity ratio pa-
rameters with A = 0.5, Uw = 0.5, λ = 1, Pr = 6.2, ϕ = 0.2.

Fig. 10: The temperature distribution for alumina-sodium alginate
nano�uid for di�erent values of magnetic and velocity ratio parame-
ters with A = 0.5, Uw = 0.5, λ = 1, Pr = 6.2, ϕ = 0.2.

Table (5)-(7) present the values of skin friction coe�cient
and local Nusselt number with nanoparticle volume frac-
tion (ϕ) in case of stretching/shrinking sheet and asssist-
ing/opposing �ows. Tables reveal that value of skin fric-
tion coe�cient and local Nusselt number are higher for Cu
as nanoparticle compared to Al2O3 and TiO2 nanoparti-
cles.

Fig. 11: The velocity distribution for alumina-sodium alginate
nano�uid for di�erent values of unsteadiness and velocity ratio
parameters with M = 1, Uw = 0.5, λ = 1, Pr = 6.2, ϕ = 0.2.

Fig. 12: The temperature distribution for alumina-sodium alginate
nano�uid for di�erent values of unsteadiness and velocity ratio
parameters with M = 1, Uw = 0.5, λ = 1, Pr = 6.2, ϕ = 0.2.

7 Concluding Remarks
Based on the results and discussions on the MHD
nano�uid �ow over a stretching/shrinking sheet, the fol-
lowing conclusions have been arrived for alumina-sodium
alginate nano�uid:

• With increase in magnetic parameter as well as
unsteadiness parameter, the velocity increases
whereas the temperature decreases.

• With increase in Grashof number andmixed convec-
tion parameter , the temperature decreases whereas
the velocity increases.

• With increase in velocity ratio parameter (ε), the ve-
locity increases whereas the temperature decreases
but the magnetic parameter and unsteadiness pa-
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Table 5: The e�ect of the nanoparticle volume fraction on the skin friction coe�cient and local Nusselt number for copper-sodium alginate
nano�uid with A = 0.5,M = 1, Uw = 0.5.

λ = 1 λ = −1

Parameter ϕ ε = −0.5 ε = 0.5 ε = −0.5 ε = 0.5

Re1/2x Cf 0.00 3.0254 1.7859 2.8435 1.0527
0.10 4.7987 2.0231 3.7231 1.7868
0.20 5.6254 2.8457 5.2428 2.0135

NuxRe−1/2x 0.00 4.7135 5.7134 4.4237 5.5668
0.10 4.5387 6.0241 4.8268 6.0258
0.20 5.0264 6.8763 5.0124 6.7174

Table 6: The e�ect of the nanoparticle volume fraction on the skin friction coe�cient and local Nusselt number for alumina-sodium algi-
nate nano�uid with A = 0.5,M = 1, Uw = 0.5.

λ = 1 λ = −1

Parameter ϕ ε = −0.5 ε = 0.5 ε = −0.5 ε = 0.5

Re1/2x Cf 0.00 3.0254 1.7859 2.8435 1.0527
0.10 4.4632 1.7123 3.4037 1.4478
0.20 4.8724 2.0145 4.9521 1.7137

NuxRe−1/2x 0.00 4.7135 5.7134 4.4237 5.5668
0.10 4.3375 5.6214 4.5107 5.9807
0.20 4.8547 6.1114 4.5301 6.2528

Table 7: The e�ect of the nanoparticle volume fraction on the skin friction coe�cient and local Nusselt number for titania-sodium alginate
nano�uid with A = 0.5,M = 1, Uw = 0.5.

λ = 1 λ = −1

Parameter ϕ ε = −0.5 ε = 0.5 ε = −0.5 ε = 0.5

Re1/2x Cf 0.00 3.0254 1.7859 2.8435 1.0527
0.10 4.5874 1.9852 3.8737 1.6897
0.20 5.2548 2.2647 5.0021 1.8962

NuxRe−1/2x 0.00 4.7135 5.7134 4.4237 5.5668
0.10 4.2958 5.5237 4.2790 5.7502
0.20 4.6250 6.0124 4.3875 6.0125

rameter strongly a�ect the velocity and temperature
distribution in the case of stretching sheet (ε > 0).

• With increase in wall surface transpiration param-
eter (Uw), the velocity increases whereas the tem-
perature decreases but the magnetic parameter and
unsteadiness parameter strongly a�ect the velocity
and temperature distribution in the case of suction
(Uw > 0) compared to injection (Uw < 0).

• The tabulated results presented the highest value
of skin friction and local Nusselt number for
copper-sodium alginate nano�uid as compared to
alumina-sodium alginate and titania-sodium algi-
nate nano�uids.

The results show the simplicity, e�ciency and accuracy of
HAM for evaluating various kind of rheological problems
arising in �uid dynamics.

Nomenclature

A unsteadiness parameter
a, b, c constant
ag acceleration due to gravity
Cf skin-friction coe�cient
F magnetic �eld
f (η) dimensionless stream function
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Fig. 13: The velocity distribution for alumina-sodium alginate
nano�uid for di�erent values of magnetic and wall transpiration
parameters with A = 0.5, ε = 0, λ = 1, Pr = 6.2, ϕ = 0.2.

Fig. 14: The temperature distribution for alumina-sodium alginate
nano�uid for di�erent values of magnetic and wall transpiration
parameters with A = 0.5, ε = 0, λ = 1, Pr = 6.2, ϕ = 0.2.

Gry local Grashof number
k thermal conductivity
M magnetic parameter
Nuy local Nusselt number
Pr Prandtl number
Qw surface heat �ux
Rey local Reynold number
T nano�uid temperature
T0 characteristic temperature
T∞ ambient temperature
Tw(y, t) surface temperature
u, v velocity component
Uw wall surface transpiration parameter
U*w uniform surface mass �ux

Fig. 15: The velocity distribution for alumina-sodium alginate
nano�uid for di�erent values of unsteadiness and wall transpira-
tion parameters with M = 1, ε = 0, λ = 1, Pr = 6.2, ϕ = 0.2.

Fig. 16: The temperature distribution for alumina-sodium alginate
nano�uid for di�erent values of unsteadiness and wall transpiration
parameters with M = 1, ε = 0, λ = 1, Pr = 6.2, ϕ = 0.2.

V∞(y, t) free stream velocity
vw(y, t) surface velocity
x, y Cartesian coordinates
Greek symbols
α thermal di�usivity
β thermal expansion coe�cient
η similarity variable
λ mixed convection parameter
µ dynamic viscosity
ϕ nanoparticle volume fraction
ψ stream function
ρ �uid density
σ electrical conductivity
τw wall shear stress
θ(η) dimensionless temperature
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υ kinematic viscosity
ε velocity ratio parameter
subsccripts
∞ ambient condition
f base �uid
nf nano�uid
s solid nanoparticle
w condition at the surface of wedge
supersccripts
′ prime denotes the derivative with respect to η
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