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Abstract: A two-dimensional mathematical model of mag-
netized unsteady incompressible Williamson �uid �ow 
over a sensor surface with variable thermal conductivity 
and exterior squeezing with viscous dissipation e�ect is in-
vestigated, numerically. Present �ow model is developed 
based on the considered �ow geometry. E�ect of Lorentz 
forces on �ow behaviour is described in terms of mag-
netic �eld and which is accounted in momentum equation. 
In�uence of variable thermal conductivity on heat trans-
fer is considered in the energy equation. Present investi-
gated problem gives the highly complicated nonlinear, un-
steady governing �ow equations and which are coupled 
in nature. Owing to the failure of analytical/direct tech-
niques, the considered physical problem is solved by us-
ing Runge-Kutta scheme (RK-4) via similarity transforma-
tions approach. Graphs and tables are presented to de-
scribe the physical behaviour of various control param-
eters on �ow phenomenon. Temperature boundary layer 
thickens for the amplifying value of Weissenberg parame-
ter and permeable velocity parameter. Velocity pro�le de-
creased for the increasing squeezed �ow index and perme-
able velocity parameter. Increasing magnetic number in-
creases the velocity pro�le. Magnifying squeezed �ow in-
dex magni�es the magnitude of Nusselt number. Also, RK-
4 e�ciently solves the highly complicated nonlinear com-
plex equations that are arising in the �uid �ow problems. 
The present results in this article are signi�cantly match-
ing with the published results in the literature.
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1 Introduction
Due to the substantial development in the modern tech-
nology, a keen attention has been given to analyze the
heat transfer characteristics of squeezing �ows in vari-
ous geometries. Since, squeezed �ows have good num-
ber of signi�cant practical and industrial applications in
various �elds of science and engineering such as, poly-
mer processing, food engineering, injection molding, lu-
brication systems, formation of foam, blood �ow inside
the vessels, cooling towers, bi-axial expansion of bub-
ble boundaries, hydro-dynamicalmachines, compression,
moisturemigration, chemical engineering, dampers, heat-
ing/cooling processes and many others. However, the ap-
plied normal stresses to themoving surfaces/plates results
the squeezing �ow. The detailed literature and applica-
tions of squeezing �ows can be found in [1, 2]. Another
considerable example of squeezing �ow is the movement
of diarthrodial joints and valves in the human body and
which is associatedwith the �eld ofmathematical bioengi-
neering and biomedicine [3]. In the present biological and
chemical technology, the sensors with stretching surfaces
as their sensing elements playing a key role in determi-
nation of various diseases, hazardous and bio-warfare el-
ements. In practical, the above mentioned problems are
tackled by using a micro-cantilever which bends upon the
binding of the target molecules with the receptor coating
ononeof its surfaces. Clearly, in practical applications, the
micro-cantilever is usually positioned in a �lm of thin �u-
idic cells with external squeezing disturbance. This phys-
ical situation of �uid motion over a micro-cantilever is
modeled as �ow about a sensor surface. Literature [4, 5]
gives the detailed study of micro-cantilever, electrochem-
ical, biosensors and their applications in various �elds of
biomedicine.
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However, in the �eld of engineering sciences, the heat
transfer problems have plenty of scienti�c applications
in space cooling, climate engineering, metallurgical pro-
cesses, laser cooling, magnet and radiative cooling pro-
cess, cooling of nuclear reactor, petroleum industries, con-
duction of heat in tissues, thermal energy storage and
many others advantages. In this direction, Stefan [6] made
considerable contribution to the �eld of squeezing �ows
by developing amathematical model. Later, number of in-
vestigators continued the Stefan’s problem by consider-
ing the di�erent geometries with suitable modi�cations.
Kuzma [7] investigated the in�uence of inertia e�ects on
the squeeze �lm generated between two parallel plates.
Also, literature [7] gives the experimental validation of
the theoretical results. The squeezing �ow between two
parallel plates with full unsteady Navier-Stokes in terms
of radial and rectilinear �ow was studied by Gupta and
Gupta [8]. It is observed from their investigation that, the
obtained self-similar solutions holds when the length be-
tween the plates changes as a square root of linear func-
tion of time. Wang and Watson [9] investigated the ther-
modynamic behaviour of squeezed�owbetween two ellip-
tic parallel plates by assuming the length between plates
change as inverse square root of time. Further, the liter-
ature [9] modeled the two-point boundary value problem
and which is being solved by using suitable mathematical
techniques such as, perturbation scheme and homotopy
analysismethod (HAM). Their study shows that, for higher
values of squeezed number, there occurs a boundary layer
on the plates with negligible viscosity. Usha and Sridha-
ran [10] numerically investigated the arbitrary squeezed
�ow of viscous incompressible �uid �ow in a channel
with time-dependent length between two elliptic parallel
plates. Their study utilizes the multifold series method to
solve the governing �uid �ow equations and it is remarked
from their analysis that, the magnifying Reynolds num-
ber upsurge the �uid motion in the vicinity of plate sur-
face. Bhattacharyya and Pal [11] studied the magnetized
squeezing �ow of viscous incompressible electrically con-
ducting �uid �lm generated between two parallel discs.
Further, their study assumes that, the lower disc will ro-
tate with transient arbitrary angular velocity. Also, the lit-
erature [11] utilizes the standard Hermitian �nite di�er-
ence scheme to generate the numerical solutions. How-
ever, it is noticed from their investigation that, the increas-
ing length between plates enhance the load and also the
increasing magnetic number and angular velocity ampli-
�es the torque on the lower disc.

The problem of incompressible rectilinear time-
dependent, two-dimensional magnetized viscous
squeezed �ow through an in�nite channel with ho-

motopy analysis technique was investigated by Siddiqui
et al. [12]. Their study shows that, decaying magnetic
�eld describes the viscous behaviour of considered �uid.
Rashidi et al. [13] studied the analytical solution of the
squeezing �ow between circular plates by semi-numerical
technique such as homotopy analysis method. Further,
the enhanced Reynolds number shows the cross �ow
behaviour on axial velocity pro�le. The problem of
incompressible transient viscous squeezed �ow of two-
dimensional �uid between two parallel plates under the
impact of chemical reaction and viscous dissipation was
investigated by Mustafa et al. [14] through HAM. Litera-
ture [14] depicts that the magnifying squeezing number
diminishes the concentration �eld and increases the
momentum transport coe�cient. Dogonchi and Ganji [15]
analyzed the impact of Brownian motion on radiative
squeezing �ow of nano�uid between two non-parallel
stretching surfaces under the steady-state condition
with heat source/sink. Their investigation depicts that,
temperature pro�le decreases with enhancing radiation
parameter. Hayat et al. [16] demonstrated the magnetized
time-dependent, two-dimensional, incompressible, cou-
ple stress nano�uid �ow between two parallel plates with
chemical reaction e�ects. Their study shows that, the
increasing squeezing �ow parameter diminish the ther-
mal �eld. Also, the axial velocity pro�le shows the cross
�ow behaviour with larger magnetic parameter values in
the solution regime. Further, the pioneering work in this
direction can be found in the literature [17–21].

Due to the immense development in the bioengineer-
ing technology, the magnetic �ows attracted the interest
of many investigators because of their wide-spread ap-
plications. Also, the �ow and heat transfer characteris-
tics are tuned according to the requirement by applying
the magnetic �eld. In the modern biomedicine �eld, the
principles of MHD (magneto-hydrodynamic) are strongly
employed to cure the tedious pathological situations. Be-
cause of these reasons, the concept of MHDhas good prac-
tical advantageous in thepresent days. The theoretical and
experimental investigation to explore the e�ect of mag-
netic number on lubrication �ows between two parallel
plates was studied by Maki et al. [22]. Further, their inves-
tigation shows that the e�ects of �uid inertia on �ow be-
haviour. Also, their study demonstrates the validation of
theoretical results with the experimental ones. The mag-
netized three dimensional bidirectional �ow of nano�uid
under steady-state condition with second order slip and
chemical reaction e�ects was studied by Hayat et al. [23].
The semi-analytical investigation in the literature [23] de-
picts that the amplifying magnetic parameter decay the
�ow �eld. Further, the concentration pro�le enhances for
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the increasing heterogeneous chemical reaction parame-
ter. Khan et al. [24] analyzed the magnetized incompress-
ible viscous squeezed �owbetween two parallel plates un-
der steady-state condition. Their study shows that the in-
creasing magnetic parameter results the dual behaviour
for velocity �eld. Khan et al. [25] studied the e�ect of
magnetic �eld on incompressible two-dimensional Casson
�uid �ow between two parallel plates with HPM scheme.
Their investigation shows that the decaying velocity �eld
corresponds to the increasing magnetic parameter.

Shah et al. [26] thermodynamically demonstrated the
impact of Lorentz forces on two-dimensional squeezed
�ow of electrically conducting �uid through a channel un-
der transient condition via homotopy analysis technique.
Their investigation shows that, the increasing squeez-
ing number increases the axial velocity �eld. Uddin et
al. [27] studied the transient magnetized of bio-nano �uid
�ow over a stretching sheet with heat and mass trans-
fer process. Their analysis shows that the enhancing mag-
netic parameter increases the temperature and concentra-
tion pro�les. The phenomena of peristaltic heat and mass
transport in a channel �ow of magneto-hydrodynamic
nano�uid under unsteady state condition with nano�uid
properties was investigated numerically using HAM by
Hayat et al. [28]. Their investigation shows that the en-
hancing magnetic number diminishes the thermal pro-
�le. Dogonchi and Ganji [29] discussed the magnetized
unsteady nano�uid �ow between two parallel plates us-
ing Duan-Rach approach. Their study shows that the en-
hanced heat generation parameter magni�es the Nusselt
number. Akmal et al. [30] described the impact of Lorentz
forces on �ow and heat transfer behaviour of nano�uid
under the squeezing conditions with entropy e�ect. Their
numerical study shows that the enhancing thermal relax-
ation time parameter decays the entropy generation rate
and thermal �eld in the �ow region. The detailed study in
this direction can be found in the available literature [31–
36].

Khaled and Vafai [37] studied the magnetized two-
dimensional electrically conducting �ow behaviour of vis-
cous �uid inside a thin �lm of channel under the oscil-
latory squeezing conditions. Their investigation explored
that the magnifying Reynolds number corresponds to the
enhanced instabilities in the �uid motion. Khaled and
Vafai [38] investigated the impact of normal magnetic
�eld on squeezed �ow of electrically conducting Newto-
nian �uid �ow about a sensor surface under the external
squeezing condition. It is clear from their analysis that,
the magnifying Prandtl number decays the thermal pro-
�le. Haq et al. [39] studied the two-dimensional mathe-
matical modeling of magnetized squeezed nano�uid �ow

about a sensor surface with unsteady conditions. Their
numerical analysis shows that the increased nanoparticle
volume fraction diminishes the temperature �eld. Khan et
al. [40] numerically studied the impact of Lorentz forces
on thermal characteristics of squeezed �ow of Carreau
�uid past a sensing surface with time-dependent condi-
tions with respect to external squeezing via RK-4 tech-
nique. Their study remarks that the magnifying Weis-
senbergnumber decays the axial velocity pro�le. The time-
dependentmathematicalmodel ofmagnetized electrically
conducting squeezed �ow of Carreau-Yasuda �uid about
a sensor surface with external squeezing was studied by
Salahuddin et al. [41] using RKF technique. Their study ex-
plored that the increasing permeable velocity parameter
decays the local momentum transport coe�cient. The im-
pact of transverse magnetic �eld on squeezed hyperbolic
tangent �uid and its thermal �ow behaviour about a sen-
sor surface under external squeezingwith unsteady condi-
tionswas investigated by Kumar et al. [42] via RKF scheme.
Their analysis shows that the enhanced squeezed �ow in-
dex suppresses the velocity pro�le.

Ahmad et al. [43] studied the e�ect of Cattaneo-
Christov heat �ux model on the stagnation point �ow of
micropolar nano�uid over a stretching surfacewith slip ef-
fects for single-wall carbon nanotube and multi-wall car-
bon nanotube. It is observed from their analysis that, the
Bejan number is a decreasing function of Brinkman pa-
rameter in the �ow region. Ramesh et al. [44] investigated
the �ow and heat transfer characteristics of Sakiadis and
Blasius �ow ofWilliamson �uid with convective boundary
condition over a �at plate. It is noticed from their anal-
ysis that, the Blasius �ow gives the thicker temperature
boundary layer when compared to the Sakiadis �ow. Usha
et al. [45] numerically analyzed the impacts of Cattaneo-
Christov double di�usion heat and mass �ux models on
the transient nano�uid �ow between two parallel plates
with Joule heating and chemical reaction. It is remarked
from their study that, the concentration pro�le is a decay-
ing function of thermophoresis parameter and increasing
function of Brownian motion parameter. Mishra et al. [46]
demonstrated the e�ect of non-uniform heat source on
magnetized power-law �uid �ow over a stretching sheet
with non-Darcian porous medium. Their investigation il-
lustrated that, the power-law �uid shows a dual property
in the presence of applied magnetic �eld.

Authors have motivated by the above cited liter-
ature review and advantageous of squeezing �ow in
various branches of science and engineering including
biomedicine and biology. In view of this reason authors
have made an attempt to investigate the �ow and heat
transfer behaviour of unsteady Williamson �uid over a
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horizontal sensor surface under the external squeezing
with transverse magnetic �eld. The present literature re-
view witnessed that, the current problem is of very much
engineering interest. Based on the present literature re-
view, the present investigation is yet to be report. Fur-
ther, the current physical situation in this article is math-
ematically devised by utilizing considered �ow con�gura-
tion and resulting nonlinear systemwas solved by employ-
ingRK-4 technique. Also, the self-similar non-dimensional
numerical solutions are presented with the help of graphs
and tables. Finally, the accuracy of present results is ac-
counted.

2 Williamson fluid model
For the �ow of viscous incompressible Williamson
�uid [47–50], the governing equations of continuity and
momentum are given as follows:

div V = 0 (1)

ρ
(
dV
dt

)
= div S + ρc (2)

In the above Eqs. (1) and (2), V be the velocity vector, ρ
indicate the density, Cauchy stress tensor is denoted with
S, body force vector is denoted with c and

(
d
dt

)
indicate

thematerial derivative with respect to time. The governing
Cauchy stress tensor and Williamson �uid �ow equations
are obtained as follows:

S = −pI + τ (3)

τ =
[
µ∞ + µo − µ∞

1 − ΓΥ̇

]
A1 (4)

In the above Eqs. (3) and (4), p be the pressure, I indicate
the identity vector, τ be the extra stress tensor, µo and µ∞
are the zero and in�nite shear rate viscosities, time con-
stant is denoted with Γ > 0 and A1 be the Rivlin-Erickson
�rst tensor. Further, the symbol Υ̇ is determined as below:

Υ̇ =
√

1
2π where, π = trace(A1)2 (5)

Υ̇ =
[
2
(
∂u
∂x

)2
+
(
∂u
∂y + ∂v∂x

)2
+ 2
(
∂v
∂y

)2] 1
2

(6)

In the above Eq. (5), the second invariant strain tensor is
denoted with π. Also, µ∞ = 0 and ΓΥ̇ < 1 be the cases

considered in the present paper. With these assumptions,
the tensor de�ned in Eq. (4) takes following form:

τ =
[

µo
1 − ΓΥ̇

]
A1 (7)

With the help of binomial expansion, the Eq. (7) is written
as follows:

τ = µo
[
1 + ΓΥ̇

]
A1 (8)

Thus, following are the components of extra stress tensor
τ.

τxx = 2µo(
1 + Γ

{[
2
(
∂u
∂x

)2
+
(
∂u
∂y +

∂v
∂x

)2
+ 2
(
∂v
∂y

)2] 1
2
})(

∂u
∂x

)
,

τxy = τyx = µo(
1 + Γ

{[
2
(
∂u
∂x

)2
+
(
∂u
∂y +

∂v
∂x

)2
+ 2
(
∂v
∂y

)2] 1
2
})(

∂u
∂y +

∂v
∂x

)
,

τyy = 2µo(
1 + Γ

{[
2
(
∂u
∂x

)2
+
(
∂u
∂y +

∂v
∂x

)2
+ 2
(
∂v
∂y

)2] 1
2
})(

∂v
∂y

)
.


(9)

3 Mathematical formulation
A two-dimensional mathematical model of magnetized
time-dependent, viscous incompressible, electrically con-
ducting Williamson �uid �ow about a sensor surface with
variable thermal conductivity and exterior squeezing with
viscous dissipation e�ect is investigated, numerically. Fig-
ure 1 illustrates the �ow con�guration of the present prob-
lem (closed squeezed channel) with all necessary con-
ditions. Also, h(t) be the time-dependent height of the
closed channel taken as 0 to h and which is much larger
than boundary layer thickness. Further, the microcan-
tilever sensor of length L is enclosed inside the channel
and the upper surface of the channel is squeezed but the
lower surface is �xed. However, it is quite obvious to as-
sume that, the squeezing process is presumed to be initi-
ates from the tip of the sensor surface to the free stream
�uid. The �uid �ow is driven by the external free stream
velocity U (x, t) and the magnetic �eld of strength Bo is
applied normal to the channel. Further, the thermody-
namic behaviour of current physical situation is tackled
with the help of well-established rectangular coordinate
system in which x-coordinate is taken along axial direc-
tion and y-axis is chosen normal to x-direction. Thus, by
making the use of above assumptions and by considering
the Williamson �uid model as described in the Section 2
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along with τxz = τyz = τzx = τzy = τzz = 0, laws of �uid
motion are de�ned as follows [38–42, 47–50].
Equation of continuity:

∂u
∂x + ∂v∂y = 0 (10)

Momentum equation:

∂u
∂t + u

∂u
∂x + v ∂u∂y = −1ρ

(
∂p
∂x

)
+ ν ∂

2u
∂y2 + 2νΓ ∂u∂y

∂2u
∂y2

−
(
σB2o
ρ

)
u (11)

Free stream equation:

∂U
∂t + U ∂U∂x = −1ρ

(
∂p
∂x

)
−
(
σB2o
ρ

)
U (12)

Energy equation:

∂T
∂t + u

∂T
∂x + v ∂T∂y = ∂

∂y

(
α (T) ∂T∂y

)
+ µ
ρCp

(
1 + Γ ∂u∂y

)(
∂u
∂y

)2
(13)

In the above Eqs. (10)-(13), u and v, be the velocity compo-
nents along x and y directions, free stream velocity along
axial �ow path is described with U, �uid temperature de-
noted with T, t be the time, working �uid density is de-
noted with ρ, Γ be the time constant, α (T) be the vari-
able thermal conductivity, ν be the kinematic viscosity
of the working liquid and Bo be the magnetic strength.
Also, Eqs. (11) and (13) satis�es the necessary �ow con-
ditions within the boundary layer region considered for
the present study. Further, Eq. (12) governs the outer free
stream �ow (u → U, v → 0) which is assumed to be in-
visid and uniform with respect to the normal coordinate.
However, error in the above prediction was eradicated by
considering the small sensor length in accordance with
channel height [38]. Finally, the following required �ow
equation is obtained by eliminating the pressure term in
Eq. (11) using Eq. (12) as

∂u
∂t + u

∂u
∂x + v ∂u∂y = ∂U∂t + U ∂U∂x + ν ∂

2u
∂y2

+ 2νΓ ∂u∂y
∂2u
∂y2 + σB

2
o
ρ (U − u) (14)

Thus, the considered �ow equations Eqs. (13) and (14) are
simpli�edwith respect to hydromagnetic & thermal condi-
tions as listed below [38–42].

u (x, 0, t) = 0, v (x, 0, t) = vo(t),
−k ∂T(x, 0, t)∂y = q (x) at y = 0
u (x, ∞, t) = U (x, t) , T (x, ∞, t) = T∞ at y = ∞


(15)

The symbols used in the Eq. (15) are de�ned as,
U (x, t) , T∞ be the ambient �uid velocity and temper-
ature, the surface heat �ux is indicated with q(x). Fur-
ther, in the present case, the variable thermal conductiv-
ity α (T) is expressed as α (T) = α∞ (1 + ϵθ), where ϵ be
the small quantity. Suppose that, if sensor surface behaves
as a function surface heat �ux q(x), then vo(t) describe
the reference velocity adjacent to the surface when wall
is considered to be permeable. However, by making the
use of appropriate similarity transformations, the set of
coupled two-dimensional transient Williamson �uid �ow
Eqs. (13) and (14) with necessary conditions Eq. (15) are
transformed to set of nonlinear ordinary di�erential equa-
tions. Thus, to achieve this objective the following similar-
ity transformations are used.

U = ax, u = axf ′ (η) , η = y
√ a

ν , ψ = f (η) x
√
aν,

a = 1
s+bt v = −f (η)

√
aν, θ (η) = T−T∞

qo x
k
√ ν

a
,

vo (t) = vi
√
a, q (x) = qox


(16)

In the above Eq. (16), s be the arbitrary constant,
squeezed �ow strength is denoted with a, qo be the sur-
face heat �ux and k be the thermal conductivity. Further,
the motion of channel height satis�es the equation h (t) =

1
(s+bt)

1
b
when b > 0 and h (t) = hoe−st when b = 0, ho be the

constant [38]. Also, it is quite obvious that, the velocity fo
enhanced for decaying time twith b > 0, since, the squeez-
ing velocitiesmagni�es for thedecreasing time twithin the
boundary layer region. However, ψ holds continuity rela-
tion with u = ∂ψ

∂y and v = − ∂ψ∂x . Finally, the substitution
of Eq. (16), into the Eqs. (13)-(15) gives the following non-
dimensional �ow system in view of η.

f
′′′
(η) +

(
f (η) + bη

2

)
f
′′
(η) −

(
f
′
(η)
)2

+2Wef ′′ (η) f
′′′
(η) +M

(
1 − f ′ (η)

)
+ b
(
f
′
(η) − 1

)
+1 = 0


(17)

(1 + ϵθ (η)) θ
′′
(η) + Pr

(
f (η) + bη

2

)
θ
′
(η)

−Pr
(
f
′
(η) + b

2

)
θ (η) + ϵ

(
θ
′
(η)
)2

+ PrEc
(
f
′′
(η)
)2

+PrEcWe
(
f
′′
(η)
)3


(18)

Following are the transformed boundary conditions with
respect to η.

f (0) = −fo , f
′
(0) = 0, θ

′
(0) = −1 at η = 0

f
′
(∞) = 1 θ (∞) = 0 at η = ∞

}
(19)

In the above Eq. (17)-(19), the superscript “prime” portray
the derivative with respect to η. Further, the governing
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physical parameters controlling the �uid �ow are de�ned
as follows.

M = σB
2
o

ρa

(Magnetic number), We = ΓU
√ a

ν (Weissenberg number),
b (squeezed �ow index), fo = vi√

ν (permeable velocity pa-
rameter), Pr = ν

α (Prandtl number), ϵ (small parameter)
and Ec = U2

Cp( qo xk )
√ ν

a
(Eckert number).

The Prandtl number is an example of a dimensionless
number that is an intrinsic property of a �uid. Fluids with
small Prandtl numbers are free-�owing liquids with high
thermal conductivity and are therefore a good choice for
heat conducting liquids. It is clear that, the liquid metals
are very good heat transfer liquids. Interestingly, air is a
decent heat transfer liquid aswell,whereas typical organic
solvents are not.With increasing viscosity, themomentum
transport dominates over the heat transport, whichmakes
these liquids a bad choice for heat conduction. Hence,
Prandtl number is taken to be small for non-Newtonian
�uids. The Eckert number is used to characterize the in-
�uence of self-heating of a �uid as a consequence of dissi-
pation e�ects.

The engineering quantities of interest namely, skin-
friction coe�cient and heat transfer rate contributes sig-
ni�cant outcomes in many of the technical applications.
Hence, we have calculated computer generated numerical
values for skin-friction coe�cient and heat transfer rate in
this paper and which are tabulated in Table 1 and Figures
13-15. However, with the help of de�ned thermodynamic
conditions, the wall shear stress and heat transfer rate are
given below.

Cf =
2τw
ρU2 (20)

Nux = xqw
qox
√ ν

a
(21)

In the above Eqs. (20) and (21), the values of τw and qw are
obtained as follows:

τw = µo

(
∂u
∂y + Γ

(
∂u
∂y

)2)
y=0

and qw = −k
(
∂T
∂y

)
y=0
(22)

Finally, in view of similarity variable η, the equations of
skin-friction coe�cient and Nusselt number are obtained
by using the Eqs. (16) and (22) into the Eqs. (20) and (21) as
follows:

1
2Cf

√
Rex = f

′′
(0) +We

(
f
′′
(0)
)2

(23)

Nux(Rex)
−1
2 = −θ

′
(0) (24)

Thus, the Eqs. (23) and (24) are the required equations
of skin-friction coe�cient and Nusselt number. Further,
Rex = x

√ a
ν in the above Eqs. (23) and (24) denotes the

local Reynolds number.

4 Solution methodology
A two-dimensional magnetized Williamson �uid �ow
about a sensor surface with variable thermal conductiv-
ity and exterior squeezing with viscous dissipation ef-
fect gives the highly complicated nonlinear system of �ow
equations and which are reduced to a simpli�ed form by
imposing suitable similarity transformations with appro-
priate initial boundary conditions. Since, analytical meth-
ods fails solve theEqs. (13) and (14)with relevant boundary
conditions Eq. (15). Hence, the present problem is solved
with the help of e�cient RK-4 technique [51–56]. Further,
the considered numerical scheme begun by converting the
higher order ordinary di�erential Eqs. (17) and (18) into
the set of �rst order ordinary di�erential equations. Also,
a care has been taken to choose the boundary of the �ow
region. However, we taken η = 4 be the boundary and
which is considerably far from momentum and thermal
boundary layers corresponding to η∞. Additionally, it is
assumed that, the value of η = 4 is suitable to determine
the boundary layer behaviour of di�erent control parame-
ters and which is described in Table 1. Finally, the reduced
�rst order ordinary di�erential equations corresponding to
Eq. (17) are listed below and which are used in the present
numerical simulations.

f (η) = Ω1
f
′
(η) = Ω

′

1 = Ω2
f
′′
(η) = Ω

′

2 = Ω3
f
′′′
(η) = Ω

′

3 = Ω4

 (25)

In the above Eq. (25) the value of Ω4 is obtained through
the Eq. (17) as follows:

Ω4 =
(

1
1 + 2We Ω3

)
[
Ω2
2 −
(
Ω1 +

b
2 η
)
Ω3 + b (1 − Ω2) +M (Ω2 − 1) − 1

]
(26)

Also, the set �rst order ordinary di�erential equations ob-
tained from Eq. (18) are as follows:

θ
′
(η) = Ω

′

5 = Ω6
θ
′′
(η) = Ω

′

6 = Ω7

}
(27)
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In the above Eq. (27) the value of Ω7 is obtained through
the Eq. (18) as follows:

Ω7 =
(

1
1 + ϵ Ω5

)[
Pr
(
Ω2 +

b
2

)
Ω5 − Pr

(
Ω1 +

b
2 η
)
Ω6

−ϵΩ6
2 − PrEc

(
Ω3

2 +WeΩ3
3
)]

(28)

Further, the related boundary conditions of the Eqs. (17)
and (18) are taken as follows:

Ω1 (η) = −fo , Ω2 (η) = 0, Ω6 (η) = −1 at η = 0
Ω2 (η) = 1, Ω5 (η) = 0 at η = ∞

}
(29)

In order to apply Runge-Kutta method to solve these
transformed ordinary di�erential equations Eqs. (25)-(28),
�ve initial conditions are highly essential. Butwith Eq. (29)
it is clear that, only three initial conditions are known at
η = 0. However, the other two initial conditions are ob-
tained by the substitute of Ω2 (η) → 1, Ω5 (η) → 0 at η →
∞. Thus, this substitution is assumed to be Ω2 (0) = m1,
Ω5 (0) = m2. Further, the Newton-Raphson’s technique is
e�ectively used to �nd the appropriate values of m1 and
m2 for the given set of physical parameters and ambient
�uid conditions within the boundary layer region. Finally,
the obtained values ofm1 andm2 are improved, in order to
satisfy the boundary conditions for η → ∞. Accordingly,
the transformed initial value problem is simpli�ed by us-
ing RK-4 technique. Additionally, h = 0.01 be the step size
and 10−5 is convergence criteria in the present study.�� ���� ����� ���	
���	
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Figure 1: Physical con�guration of the present problem

5 Results analysis
In this section, the physical behaviour of the various em-
beddingparameters on�owofWilliamson�uid over a sen-

Figure 2: E�ect ofWe on f ′ (η)

Figure 3: Impact ofWe on θ (η)

Figure 4: E�ect of b on f ′ (η)



Usha Shankar et al., E�ect of magnetized variable thermal conductivity on flow | 345

Table 1: Computer generated numerical values of momentum transport coe�cient for di�erent values of flow parameters

We b M fo ϵ Pr Ec f ′′ (0) + We
(
f ′′ (0)

)2
0.2
0.4
0.6
0.8

0.1 0.1 -0.1 0.1 1.5 0.1

1.397482
1.473727
1.539065
1.596947

0.5

0.0
0.3
0.6
0.9

1.541918
1.437657
1.330346
1.219788

0.2
0.4
0.6
0.8

1.557436
1.653918
1.746399
1.835401

-0.4
-0.3
-0.2
0.0
0.2
0.3
0.4

1.702894
1.636349
1.571197
1.445290
1.325600
1.268215
1.212536

0.2
0.3
0.4
0.5

1.507493
1.507493
1.507493
1.507493

0.5
1.0
1.5
2.0

1.507493
1.507493
1.507493
1.507493

0.2
0.3
0.4
0.5

1.507493
1.507493
1.507493
1.507493

Table 2: Comparison of present similarity solutions with previously published results of Khaled and Vafai [38] for θ(0) with M = fo = ϵ = 0

Prandtl number (Pr) Squeezed flow (b) index Khaled and Vafai [38] Present numerical results
0.71
2.0
5.0
6.7

1.0

1.03228
0.65412
0.43561
0.38182

1.032282821145898
0.654123423120187
0.435614607270683
0.381823375689146

6.7

0.5
1.0
1.5
2.0

0.46313
0.38182
0.33084
0.29544

0.463137508447626
0.381823375689146
0.330840498714310
0.295440261684154

sor surface under squeezing condition is analyzed in view
of velocity and temperature pro�les, momentum trans-
port coe�cient andNusselt number. Further, the in�uence
of Weissenberg number (We), squeezed �ow index (b),
permeable velocity parameter (fo), magnetic number (M),
small parameter (ϵ), Eckert number (Ec) and Prandtl num-
ber (Pr) on velocity and temperature pro�les are described
in the Figures 2-12. Also, the variations noticed in momen-
tum and heat transfer rateswithin the region study for var-
ious values of �owparameters are shown in theTable 1 and

Figures 13-15. Further, Table 2 provides the validationof the
present numerical solutions.
(i) Impact of Weissenberg number (We) on f

′
(η) and

θ (η)
The in�uence of Weissenberg number on velocity and

temperature �elds are described in the Figures 2 and 3.
Figure 2 portrays that, the axial velocity pro�le dimin-
ished with rising values of Weissenberg number. Physi-
cally Weissenberg number is the ratio of relaxation time
to the speci�c process time. Here, the magnifying values
of Weissenberg number amplify the �uid relaxation time
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Figure 5: Impact of b on θ (η)

Figure 6: E�ect of fo on f ′ (η)

Figure 7: Impact of fo on θ (η)

Figure 8: E�ect of M on f ′ (η)

which in turn enhances the resistance to the Williamson
�uid �ow about sensor surface. Thus, this condition leads
tomagni�cation of resistance in the �ow region and result-
ing in a velocity drop as described in the Figure 2. Further,
the impact of Weissenberg number on thermal pro�le is il-
lustrated in the Figure 3. It is observed from Figure 3 that,
the temperature �eld enhanced with rising values ofWeis-
senberg number and which in turn enhance the thermal
boundary layer thickness in the �ow region. Thus, the tem-
perature pro�le is an increasing function of Weissenberg
number.

(ii) In�uence of squeezed �ow index (b) on f
′
(η)

and θ (η)
Figures 4 and 5 describe the impact of b on velocity

and thermal �elds, respectively. However, Figure 4 por-
trays that rising values of squeezed �ow index diminish
the velocity �eld. This decay in velocity pro�le is owing to
the fact that, an increment in squeezing process magni�es
the motion of Williamson �uid molecules in the �ow di-
rection. However, it is noticed that, there is a reverse rela-
tion between squeezed �ow index and strength of squeeze
�ow. Thus, this condition gives the diminished �ow ve-
locity with enhancing b. Also, due to the variations at the
boundary dual velocity behaviour is observed in the chan-
nel. Further, Figure 5 describes the impact of b on thermal
�eld in the �ow domain. It is important to observe that;
themagni�ed b suppressed the thermal pro�le. Physically,
larger b values reduce the squeezing force on velocity and
which in turndiminish the thermal �eld. It is clear that, the
temperature boundary layer thickness is decaying func-
tion of squeezed �ow index.
(iii) Impact of permeable velocity parameter (fo) on
f
′
(η) and θ (η)
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Figure 9: Impact of M on θ (η)

Figure 10: Impact of ϵ on θ (η)

Figure 11: E�ect of Pr on θ (η)

Figure 12: E�ect of Ec on θ (η)

Figure 13: E�ect of b on θ
′
(η)

Figure 14: E�ect of fo on θ
′
(η)
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Figure 15: E�ect of ϵ on θ
′
(η)

Figures 6 and 7 illustrate the e�ect of fo onvelocity and
temperature �elds, respectively. It is revealed from Figure
6 that, amplifying fo diminish the velocity �eld. This de-
cay in axial �ow �eld is because of reason that, for fo > 0
�uid is largely attached to the sensor surface. This physi-
cal condition decays the velocity �eld inside the channel.
Also, momentum boundary layer thickness is a decaying
function of permeable velocity parameter. Further, the in-
�uence of fo on temperature pro�le is portrayed in the Fig-
ure 7. Figure 7 show that, the increasingpermeable velocity
parameter enhances the thermal �eld. This situation de-
scribe the cooling of a sensor surface is enhanced under
the suction case (fo > 0). Also, the thickness of tempera-
ture boundary layer suppressed with rising value of per-
meable velocity parameter.
(iv) Impact of magnetic parameter (M) on f

′
(η) and

θ (η)
Figures 8 and 9 describe the impact of magnetic pa-

rameter on velocity and thermal pro�les, respectively. Fig-
ure 8 portrays that, the increasingmagnetic parameter en-
hance the velocity pro�le. Physically, rising magnetic pa-
rameter ampli�es the resistance along the axial �ow di-
rection, since, the upper plate is under squeezing condi-
tion, and consequently this physical situation eradicates
the impact of applied magnetic �eld strength on velocity
and leading to the enhanced velocity inside the channel.
Also, Figure 8 reveals that, the velocity boundary layer
thickness enhanced for the increasing values of magnetic
number. Figure 9 is devoted to explore the impact of mag-
netic number on thermal �eld. It is remarked from Figure
9 that, the enhanced Lorentz forces increases the thermal
pro�le. Also, the thickness of thermal boundary layer en-
hanced with rising values of magnetic parameter. Thus,

temperature �eld is an increasing function ofmagnetic pa-
rameter.
(v) E�ect of small parameter (ϵ) and Prandtl number
(Pr) on θ (η)

Figures 10 and 11 illustrate the thermodynamic be-
haviour of small parameter (ϵ) and Prandtl number (Pr)
on thermal pro�le, respectively. It is carefully observed
from Figure 10 that, the magnifying ϵ values enhanced
the thermal pro�le. Physically, an upsurge in ϵ magni-
�es the molecular motion of liquid molecules and this
fact produces the variation in the thermal �ow proper-
ties of Williamson �uid �ow over a sensor surface and
consequently the thermal pro�le increases. Also, it is no-
ticed that, the thickness of temperature boundary layer in-
creases with increment in small parameter. Further, Fig-
ure 11 portrays that, the impact of Pr on thermal �eld. It is
observed from Figure 11 that, the increasing Pr decay the
thermal pro�le. This decay in thermal pro�le is because of
the fact that, an upsurge in Pr leads to the diminished tem-
perature di�usivity and hence thermal �eld suppressed.
Also, thickness of temperature boundary layer diminished
with rising values of Pr.
(vi) E�ect of Eckert number (Ec) on θ (η)

The second term on the right hand side of Eq. (13) rep-
resents the viscous dissipation e�ect which is always pos-
itive and indicates a source of heat owing to the frictional
forces among the �uid particles. Further, the irreversible
process by means of which the work done by a �uid on
neighboring �uid layers owing to the action of shear forces
is transformed into heat and it is de�ned as viscous dis-
sipation. Viscous dissipation e�ect has greater impact in
the �eld of science and engineering such as: polymer pro-
cessing, injection molding, aerodynamics and etc. How-
ever, the boundary layer �ows with viscous dissipation ef-
fect over sheets/surfaces receives considerable attention
in practical applications in a broad spectrum of engineer-
ing systems.

The e�ect of Eckert number (Ec) on temperature pro-
�le is described in Figure 12. The heat dissipation in the
given physical system is primarily calculated in terms of
Eckert number. The greater values of Eckert number shows
the advective transport process and which generates the
considerable e�ects on heat transfer phenomena as com-
pared to the enthalpy changes in the given physical sys-
tem or medium. However, it is noticed from Figure 12 that,
the thermalpro�le is an increasing functionof Eckert num-
ber. This upsurge in temperaturepro�le is obviousbecause
Ec has direct impact on the heat dissipation process and
which in turn enhances the thermal�eld.Also, the thermal
boundary layer thickness decreases upon the increment in
Eckert number.
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(vii) Behaviour of skin-friction coe�cient and Nusselt
number

The e�ect of various control parameters on skin-
friction coe�cient and Nusselt number are illustrated in
the Table 1 and Figures 13-15. Table 1 tabulates the com-
puter generated numerical values of skin-friction coe�-
cient for various values of �ow parameters. However, it is
clear from Table 1 that, the increasing values of We and
M magni�es the skin-friction coe�cient whereas enhanc-
ing b diminishes the skin-friction coe�cient. Further, for
fo < 0 the skin-friction coe�cient increases and for fo > 0
the skin-friction coe�cient decreases. Also, the parame-
ters ϵ, Pr and Ec do not have signi�cant e�ect on skin-
friction coe�cient, this is due to their non-explicit occur-
rence in momentum equation.

Similarly, Figures 13-15 describe the impact of b, fo and
ϵ on heat transfer rate pro�le. Figures 13-15 beginwith neg-
ative values because the heat transfer rate formula (refer
Eq. (24)) and the temperature boundary condition (refer
Eq. (19)) begin with negative sign, due to this reason, the
Figures 13-15 begin with negative values. Clearly, Figure 13
illustrates that; the increased squeezed �ow index mag-
ni�es the heat transfer rate whereas the thermal bound-
ary layer thickness decreases with increasing values of b,
Physically, increasing squeezed �ow index increases the
heat transfer rate by producing the high heat molecular
forces and high pressure on the �uid �ow. Further, it is re-
vealed from Figures 14 and 15 that, the heat transfer rate
pro�le is a decreasing function of permeable velocity pa-
rameter and small parameter. Also, the thermal boundary
layer thickness increases for the increasing values of fo
and ϵ.
(viii) Numerical code testing

The guarantee and accuracy of present numerical
scheme is veri�ed by comparing the current numerical so-
lutions with the results of Khaled and Vafai [38] for ϵ = 0.
To illustrate this validation, authors have presented Table
2. Table 2 describes that the present similarity results in
this article are remarkably corresponding to the results of
Khaled and Vafai [38]. However, this authentication en-
dorses the guarantee and accurateness of present similar-
ity solutions. Also, it is noticed from Table 2 that, the tem-
perature �eld is suppressed for the increasing values of
Prandtl number and squeezed �ow index.

6 Concluding remarks
A two-dimensional magnetized Williamson �uid �ow
about a sensor surface with variable thermal conductiv-

ity and exterior squeezing with viscous dissipation e�ect
is studied numerically. The considered physical problem
gives the time-dependent coupled nonlinear partial dif-
ferential equations and which are reduced to ordinary
di�erential equations by incorporating suitable similar-
ity transformations. The resulting nonlinear �ow system
is solved by using Runge-Kutta fourth order integration
scheme with shooting technique. The physics behind the
present problem is dragged out by conducting the para-
metric study related to the various physical parameters.
The graphs and tables are presented to portray the �ow
sensitivity and thermal behaviour of Williamson �uid
about a sensor surface. The important conclusions con-
cerning to the present numerical study is listed below in
limiting sense:
• Diminished momentum boundary layer thickness is

noticed for the increasing values ofWeissenberg num-
ber.

• Temperature pro�le increases for the increasing val-
ues of Weissenberg number.

• Velocity and temperature �elds suppressed for the in-
creasing squeezed �ow index.

• Velocity pro�le diminished with rising values of per-
meable velocity parameter. But opposite trend is ob-
served for temperature pro�le.

• Thinner thermal boundary layer is noticed for increas-
ing magnetic parameter and Prandtl number but the
reverse behaviour is true for small parameter (ϵ).

• Thermal pro�le increased with increasing values of
Eckert number.

• Momentum transport coe�cient enhancedwith rising
values of Weissenberg number and magnetic parame-
ter. But opposite trend is true for increased squeezed
�ow index.

• Magnitude of Nusselt number increases with rising
values of ϵ and fo.

• Runge-Kutta scheme with shooting technique is e�ec-
tive to solve the �ow problems arising in the �eld of
science and engineering.

Further, it is anticipated that, the present numerical study
is applicable to many of the industrial uses comprising oil
recover, thermal �ow in �uidic cells, solar collectors and
so on.
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