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Abstract: In this paper a novel technique i.e. accelerated 
homotopy perturbation Sumudu transformation method 
(AHPSTM), which is a hybrid of accelerated homotopy per-
turbation method and Sumudu transformation to obtain 
an approximate analytic solution of nonlinear partial dif-
ferential equation (PDE) with proportional delay, is used. 
This approach is based on the new form of calculating He’s 
polynomial, which accelerates the convergence of the se-
ries solution. The series solutions obtained from the pro-
posed method are found to converge rapidly to exact solu-
tion. In order to a�rm the e�ectiveness and legitimacy of 
proposed method, the proposed technique is implemented 
on nonlinear partial di�erential equation (PDE) with pro-
portional delay. The condition of convergence of series so-
lution is analyzed. Moreover, statistical analysis has been 
performed to analyze the outcome acquired by AHPSTM 
and other semi-analytic techniques.

Keywords: accelerated He’s polynomial; nonlinear de-
lay partial di�erential equation; homotopy perturbation 
method; Sumudu transforms

1 Introduction
The model including delay di�erential equations may dis-
play physical frameworks for which the advancement rely 
upon the present and past circumstances. This type of 
model is found in the area of epidemiology and population 
dynamics, where the delay is due to the gesture or maturity 
period, or is in numerical control, where there is a delay in
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taking care of the controller input circle. The partial dif-
ferential equation (PDE) with proportionate delay is a par-
ticular case of a delay di�erential equation which emerge
uniquely in the �eld ofmedicine, population ecology, con-
trol frameworks, biology, and climate models [1]. Di�er-
ent authors have adopted di�erent numerical techniques
like Sarkar et.al [2] use homotopy perturbation method
(HPM) to obtain the solution of time-fractional non-linear
partial di�erential equation (PDE) with proportional de-
lay. Chen and Wang [3] use variational iteration method
(VIM)while Biazar andGhanbari [4] applyHPM for solving
neutral-functional di�erential equation with proportion-
ate delay. Singh and Kumar [5] use fractional variational
iteration method (VIM) for the solution of fractional PDE
with proportional delay. Abazari and Ganji [6], Abazari
and Kilicman [7] use di�erential transform method (DTM)
to solve delay (PDE) partial di�erential equation. Many re-
searchers use various techniques for the solution of such
nonlinear PDE’s like HPM [8–11], homotopy perturbation
transformation method (HPTM) [12–16], homotopy anal-
ysis method (HAM) [17], homotopy perturbation Sumudu
transformation method (HPSTM) [18–20], homotopy per-
turbation Elzaki transformation method HPETM [21, 22],
Variational iteration method [23] etc. Khan [12] introduce
HPTM which is blend of HPM and Laplace transforma-
tion for solving nonlinear equations using He’s polyno-
mial. Here, we have used a new form of He’s polynomial
called accelerated He’s polynomial [24] which accelerates
the rate of convergence of the method. So, we propose a
new form of semi-analytic technique named as AHPSTM
(Accelerated homotopy perturbation Sumudu transforma-
tion method) to study the following type of PDE with pro-
portional delay.

wt (x, t) = F(w(p1x , q1t), wx(p2x, q2t),
wxx(p3x, q3t), . . . ), w(x, 0) = g(x) (1)

pi , qj ∈ (0, 1) , i, j ∈ N , g(x) is the initial condition and
F is the partial di�erential operator.

De�nition 1.1: The Sumudu transformation over the set of
functions

A = {f (t)| ∃ M, τ1 , τ2 > 0, |f (t)| < Me
|t|
τj ,
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if t ∈ (−1)j × [0,∞), j = 1, 2},

is de�ned as S [f (t)] = 1
u
∫∞
0 f (t) e−

t
u dt, t > 0.

Properties of Sumudu Transform
1. S {1} = 1
2. S

{
tm
m!

}
= um ,

3. S{f n(t)} = 1
un S{f (t)} −

∑n−1
k=0

1
un−k f

k(0). (*)

2 Accelerated homotopy
perturbation Sumudu transform
method (AHPSTM)

To elucidate the proposed technique, consider the follow-
ing nonlinear equations.

∂nϕ
∂tn + Lϕ (x, t) + Nϕ (x, t) = G(x, t) (2)

with condition ϕi (x, 0) = ki(x),i = 0, 1, 2, . . . n − 1.
On applying Sumudu transformation to Eq. (2) , we

have

S
{
∂nϕ
∂tn + Lϕ(x, t) + Nϕ(x, t)

}
= S
{
G(x, t)

}
(3)

Applying properties of Sumudu transformation (*) to
Eq. (3), we get

S{ϕ (x, t)} = un
n−1∑
k=0

1
un−k

ϕk(x, 0)

+ unS {G (x, t) − {Lϕ (x, t) + Nϕ (x, t)} } (4)

Further, operating inverse Sumudu transformation to
Eq. (4) gives,

ϕ (x, t) =
n−1∑
k=0

tk
k! ϕ

k (x, 0)

+ S−1
{
un S {G (x, t) − {Lϕ (x, t) + Nϕ (x, t)}}

}
(5)

Now, appling homotpoy perturbation method to Eq. (5),
we have

0 = (1 − p) (ϕ (x, t) − ϕ (x, 0))+p
(
ϕ (x, t) −

n−1∑
k=0

tk
k!ϕ

k (x, 0)

)

−p
(
S−1

{
un S {G (x, t) − {Lϕ (x, t) + Nϕ (x, t)}}

})
where p ∈ [0, 1] is a parameter. Let

ϕ (x, t) =
∞∑
n=0

ϕnp
n (6)

and

Nϕ (x, t) =
∞∑
n=0

H̃npn (7)

where H̃n represents accelerated He’s polynomial with

H̃n(ϕ0, ϕ1, ϕ2. . . , ϕn) = N (Sn) −
n−1∑
i=0

H̃i (8)

with H̃0 = N(ϕ (x0)), and Sk = (ϕ0 + ϕ1 + ϕ2 + . . . + ϕk).
Using (6), (7) and (8) the Eq. (5) gives,

∞∑
n=0

ϕnp
n = ϕ (x, 0) + p

{n−1∑
k=1

tk
k! ϕ

k (x, 0)

S−1
{
+un S

{
G (x, t) −

{
L
∞∑
n=0

ϕnp
n +

∞∑
n=0

H̃npn
}}}}

(9)

Now, on comparing coe�cients of the like power of p,
we have

p0 : ϕ0 = ϕ (x, 0)

p1 : ϕ1 =

=
n−1∑
k=1

tk
k! ϕ

k (x, 0) + S−1
{
un S

{
G (x, t) −

{
Lϕ0 + H̃0

}}}
p2 : ϕ2 = −S

−1 {un S {Lϕ1 + H̃1
}}

...

Hence, the solution of Eq.(1) is obtained by taking p →
1, i.e.

ϕ (x, t) =
∞∑
n=0

ϕn (10)

3 Condition of convergence of
accelerated HPSTM

Here, we emphasize on condition of convergence of the
above introduced method.

Theorem 3.1: Let ϕ and ϕn be elements of a Banach
space, then the series

ϕ (x, t) =
∞∑
n=0

ϕnp
n

converges to the solution of Eq. (1) if
∥∥ϕn+1∥∥ ≤ κ

∥∥ϕn∥∥ ,
where 0 < κ < 1.This conditions of convergence of the se-
ries is proved in [15, 20].
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4 Application
Example 4.1: Solution of generalized Burgers’ equation
with proportional delay.

Consider the following initial value problem [6]

∂ψ (x, t)
∂t = ψxx (x, t) + ψx

(
x, t2

)
ψ
(
x
2 ,

t
2

)
+ 1
2ψ (x, t) ,

t > 0, x ∈ R (11)

with ψ (x, 0) = x. By applying Sumudu transformation on
Eq. (11), we have

S
{
∂ψ (x, t)
∂t − 1

2ψ (x, t)
}
=

S
{
ψxx (x, t) + ψx

(
x, t2

)
ψ
(
x
2 ,

t
2

)}
(12)

Or

S {ψ (x, t)} = x
(

2
2 − u

)
+ 2u
2 − u

(
S
{
ψxx (x, t) + ψx

(
x, t2

)
ψ
(
x
2 ,

t
2

)})
(13)

By applying inverse Sumudu transformationonEq.(13),we
have

ψ (x, t) = xe
t
2

+ S−1
{

2u
2 − u

(
S
{
ψxx (x, t) + ψx

(
x, t2

)
ψ
(
x
2 ,

t
2

)})}
(14)

Now, apply AHPSTM on Eq. (14), we get

∞∑
n=0

ψn(x, t)p
n = xe

t
2

+ p S−1
{

2u
2 − u

(
S
{ ∞∑
n=0

(
pnψn (x, t)

)
xx +

∞∑
n=0

pnH̃n

})}
(15)

and the initial couple of terms of H̃n are given as

H̃0 = ψ0x

(
x, t2

)
ψ0

(
x
2 ,

t
2

)
,

H̃1 = ψ0x

(
x, t2

)
ψ1

(
x
2 ,

t
2

)
+ ψ1x

(
x, t2

)
ψ0

(
x
2 ,

t
2

)
+ ψ1x

(
x, t2

)
ψ1

(
x
2 ,

t
2

)
,

H̃2 = ψ0x

(
x, t2

)
ψ2

(
x
2 ,

t
2

)
+ ψ1x

(
x, t2

)
ψ2

(
x
2 ,

t
2

)

+ ψ2x

(
x, t2

)
ψ0

(
x
2 ,

t
2

)
+ ψ2x

(
x, t2

)
ψ2

(
x
2 ,

t
2

)
+ ψ2x

(
x, t2

)
ψ1

(
x
2 ,

t
2

)
,

H̃3 = ψ0x

(
x, t2

)
ψ3

(
x
2 ,

t
2

)
+ ψ1x

(
x, t2

)
ψ3

(
x
2 ,

t
2

)
+ ψ2x

(
x, t2

)
ψ3

(
x
2 ,

t
2

)
+ ψ3x

(
x, t2

)
ψ3

(
x
2 ,

t
2

)
+ ψ3x

(
x, t2

)
ψ2

(
x
2 ,

t
2

)
+ ψ3x

(
x, t2

)
ψ1

(
x
2 ,

t
2

)
,

...

On looking at the like powers of p of Eq.(15), we get

p0 : ψ0 = xe
t
2 ;

p1 : ψ1 =
(
t
2

)
xe

t
2 ;

p2 : ψ2 = xe
t
2

((
t2

222!

)
+ 1
2

(
t3

233!

))
;

p3 : ψ3 = xe
t
2

(
1
2

(
t3

233!

)
+ 7
8

(
t4

244!

)
+58

(
t5

255!

)
+ 5
16

(
t6

266!

)
+ 5
64

(
t7

277!

))
;

p4 : ψ4 = x e
t
2

(
1
8

(
t4

244!

)
+ 23
64

(
t5

255!

)
+58

(
t6

266!

)
+ 395
512

(
t7

277!

)
+ 2455
4096

(
t8

288!

)
+ . . .

)
(16)

...

As p → 1, we get the series solution of Eq. (11) as

ψ (x, t) =
∞∑
n=0

ψn(x, t)

Using Eq. (16), we get

ψ (x, t) = xe
t
2

(
1 +
(
t
2

)
+
(

t2
222!

)
+
(

t3
233!

)
+
(

t4
244!

)
+6364

(
t5

255!

)
+ 15
16

(
t6

266!

)
+ 435
512

(
t7

277!

)
+ . . .

)
(17)

The exact solution of Eq. (11) in closed form is

ψ (x, t) = xet (18)

On comparing (18) and (17), we �nd that the series
solution rapidly converges to the actual solution. So,
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Table 1: Approximate solution of Eq. (11) using AHPSTM

  𝑥𝑥  𝑡𝑡 𝜓𝜓2  𝜓𝜓3  𝜓𝜓4  
  0.25 0.002259289 0.000048675 0.000000387068 

0.25 0.5 0.010449426 0.00046536 0.00000754081 
  0.75 0.027174522 0.00187525 0.0000464816 
  1 0.055816085 0.00530269 0.000178857 
  0.25 0.004518577 0.0000973499 0.000000774136 

0.5 0.5 0.020898851 0.000930721 0.0000150816 
  0.75 0.054349045 0.003750499 0.0000929631 
  1 0.111632169 0.01060538 0.000357713 
  0.25 0.006777866 0.000146025 0.0000011612 

0.75 0.5 0.031348277 0.001396081 0.0000226224 
  0.75 0.081523567 0.005625749 0.000139445 
  1 0.167448254 0.015908069 0.00053657 

we discover that the accelerated homotopy perturbation
Sumudu transformationmethodprovidesus the faster rate
of convergence which can be seen in table 1 that the value
of ψn (APSTM) decreases rapidly.
Example 4.2: Solution of non-linear PDEwith proportional
delay,

Consider the following initial value problem [6]

∂ψ (x, t)
∂t = ψxx

(
x, t2

)
ψx
(
x, t2

)
− ψ (x, t) ,

t > 0, x ∈ R (19)

withψ (x, 0) = x2. By applying Sumudu transformation on
Eq. (19), we have

S
{
∂ψ (x, t)
∂t + ψ (x, t)

}
= S
{
ψxx

(
x, t2

)
ψx
(
x, t2

)}
(20)

Or

S {ψ (x, t)} =

x2
(

1
1 + u

)
+ u
1 + u

(
S
{
ψxx

(
x, t2

)
ψx
(
x, t2

)})
(21)

By applying inverse Sumudu transformation on
Eq. (21), we have

ψ (x, t) =

x2e−t + S−1
{

u
1 + u

(
S
{
ψxx

(
x, t2

)
ψx
(
x, t2

)})}
(22)

Now, apply AHPSTM on Eq.(22), we get
∞∑
n=0

ψn(x, t)p
n

= x2e−t + p S−1
{

u
1 + u

(
S
{ ∞∑
n=0

pnH̃n

})}
(23)

and the initial couple of terms of H̃n are given as

H̃0 = ψ0xx

(
x, t2

)
ψ0

(
x, t2

)
,

H̃1 = ψ0xx

(
x, t2

)
ψ1

(
x, t2

)
+ ψ1xx

(
x, t2

)
ψ0

(
x, t2

)
+ ψ1xx

(
x, t2

)
ψ1

(
x, t2

)
,

H̃2 = ψ0xx

(
x, t2

)
ψ2

(
x, t2

)
+ ψ1xx

(
x, t2

)
ψ2

(
x, t2

)
+ ψ2xx

(
x, t2

)
ψ2

(
x, t2

)
+ ψ2xx

(
x, t2

)
ψ0

(
x, t2

)
+ ψ2xx

(
x, t2

)
ψ1

(
x, t2

)
,

H̃3 = ψ0xx

(
x, t2

)
ψ3

(
x, t2

)
+ ψ1xx

(
x, t2

)
ψ3

(
x, t2

)
+ ψ2xx

(
x, t2

)
ψ3

(
x, t2

)
+ ψ3xx

(
x, t2

)
ψ3

(
x, t2

)
+ ψ3xx

(
x, t2

)
ψ2

(
x, t2

)
+ ψ3xx

(
x, t2

)
ψ1

(
x, t2

)
,

...

On looking at the like powers of p of Eq. (23), we get

p0 : ψ0 = x
2e−t;

p1 : ψ1 = x
2e−t(2t);

p2 : ψ2 = x
2e−t

((
22t2
2!

)
+ 1
2

(
23t3

3!

))
;

p3 : ψ3 = x
2e−t

(
1
2

(
23t3
3!

)
+ 7
8

(
24t4
4!

)
+58

(
25t5

5!

)
+ 5
16

(
26t6

6!

)
+ 5
64

(
27t7
7!

))
;

p4 : ψ4 = x
2e−t

(
1
8

(
24t4
4!

)
+ 23
64

(
25t5
5!

)
(24)

+58

(
26t6
6!

)
+ 395
512

(
27t7

7!

)
+ 2455
4096

(
28t8
8!

)
+ . . .

)

...

As p → 1, we get the series solution of Eq. (19) as

ψ (x, t) =
∞∑
n=0

ψn(x, t)
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Table 2: Approximate solution of Eq. (11) up to 4th order approximation

𝑥𝑥   𝑡𝑡 
Exact 

solution  
AHPSTM

  DTM [6]   HPM [2] 

 Abs. 
error 
(AHPST
M) 

 Abs. 
error 
(DTM) 

Abs. 
error 
(HPM)  

0.25 

0.25 0.321006 3.21E-01 3.21E-01 0.321004 1.22E-09 2.12E-06 2.12E-06 
0.5 0.412180 0.412180 4.12E-01 0.412109 4.83E-08 7.09E-05 7.09E-05 

0.75 0.529250 0.529249 5.29E-01 0.528687 4.52E-07 5.63E-04 5.63E-04 
1 0.679570 0.679568 0.677083 0.677083 2.35E-06 2.49E-03 2.49E-03 

0.5 

0.25 0.642012 6.42E-01 6.42E-01 0.642008 2.40E-09 4.24E-06 4.24E-06 
0.5 0.824360 0.824360 8.24E-01 0.824219 9.66E-08 1.42E-04 1.42E-04 

0.75 1.058500 1.058499 1.06E+00 1.057373 9.03E-07 1.13E-03 1.13E-03 
1 1.359140 1.359136 1.354167 1.354167 4.70E-06 4.97E-03 4.97E-03 

0.75 

0.25 0.963019 0.963019 9.63E-01 0.963013 3.70E-09 6.36E-06 6.36E-06 
0.5 1.236541 1.236541 1.24E+00 1.236328 1.45E-07 2.13E-04 2.13E-04 

0.75 1.587750 1.587749 1.58606 1.58606 1.36E-06 1.69E-03 1.69E-03 
1 2.038711 2.038704 2.03125 2.03125 7.05E-06 7.46E-03 7.46E-03 

 

Table 3: Approximate solution of Eq.(19) using AHPSTM

 
 𝑥𝑥  𝑡𝑡 𝜓𝜓2  𝜓𝜓3  𝜓𝜓4  
  0.25 0.006591413 0.000626203 0.0000211215 

0.25 0.5 0.022113097 0.004755562 0.000350289 
  0.75 0.041516592 0.015073801 0.001831803 
  1 0.06131324 0.033256958 0.005952034 
  0.25 0.026365652 0.002504813 0.0000844858 

0.5 0.5 0.088452388 0.019022246 0.001401156 
  0.75 0.166066366 0.060295204 0.007327211 
  1 0.245252961 0.133027834 0.023808135 
  0.25 0.059322716 0.00563583 0.000190093 

0.75 0.5 0.199017873 0.042800054 0.003152601 
  0.75 0.373649324 0.135664209 0.016486225 
  1 0.551819162 0.299312626 0.053568305 

 
 

Using Eq. (16), we get

ψ (x, t) = x2e−t
(
1 + (2t) +

(
22t2
2!

)
+
(
23t3

3!

)
(25)

+
(
24t4
4!

)
+ 63
64

(
25t5
5!

)
+ 15
16

(
26t6
6!

)
+435512

(
27t7
7!

)
+ . . .

)
The exact solution of Eq. (11) in closed form is

ψ (x, t) = x2et (26)

On comparing (26) and (25), it is clear that the series
approaches to the exact solution. Also from the table 3, we
�nd that

∥∥ψ4
∥∥ <

∥∥ψ3
∥∥ < ‖ψ2‖ , i.e. the series solution

satisfy the condition of convergence.
Example 4.3: Consider the following initial value prob-
lem [6]

∂ψ (x, t)
∂t = ψxx

(
x
2 ,

t
2

)
ψx
(
x
2 ,

t
2

)
− ψx (x, t) − ψ (x, t) ,

t > 0, x ∈ R (27)

with ψ (x, 0) = x2.
On operating Sumudu transformation on Eq. (27), we

have

S
{
∂ψ (x, t)
∂t + ψ (x, t)

}
= S
{
ψxx

(
x
2 ,

t
2

)
ψx
(
x
2 ,

t
2

)
− ψx (x, t)

}
(28)

Or

S {ψ (x, t)} = x2
(

1
1 + u

)
+ u
1 + u

(
S
{
ψxx

(
x
2 ,

t
2

)
ψx
(
x
2 ,

t
2

)
− ψx (x, t)

})
(29)

By applying inverse Sumudu transformation on
Eq. (29), we have

ψ (x, t) = x2e−t

+ S−1
{

u
1 + u

(
S
{
ψxx

(
x
2 ,

t
2

)
ψx
(
x
2 ,

t
2

)
− ψx (x, t)

})}
(30)

Now, apply AHPSTM on Eq. (30), we get

∞∑
n=0

ψn(x, t)p
n = x2e−t

+ p S−1
{

u
1 + u

(
S
{ ∞∑
n=0

pnH̃n − ψx (x, t)

})}
(31)

and the initial couple of terms of H̃n are given as

H̃0 = ψ0x

(
x
2 ,

t
2

)
ψ0xx

(
x
2 ,

t
2

)
,
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Table 4: Approximate solution of Eq.(19) up to 4th order approximation

𝑥𝑥  𝑡𝑡 
Exact 

solution  
AHPST

M  DTM[6]   HPM [2] 

 Abs. 
Error 
(AHPST
M) 

 Abs. 
Error 
(DTM) 

Abs. 
Error 
(HPM) 

0.25 

0.25 0.080251 8.03E-02 8.03E-02 0.080251 2.77E-07 5.30E-07 5.30E-07 
0.5 0.103045 0.103035 1.03E-01 0.103027 9.80E-06 1.77E-05 1.77E-05 
0.75 0.132312 0.132229 1.32E-01 0.132172 8.30E-05 1.41E-04 1.41E-04 
1 0.169893 0.169499 0.169270 0.169271 3.93E-04 6.22E-04 6.22E-04 

0.5 

0.25 0.321006 3.21E-01 3.21E-01 0.321004 1.11E-06 2.12E-06 2.12E-06 
0.5 0.412180 0.412141 4.12E-01 0.412109 3.92E-05 7.09E-05 7.09E-05 
0.75 0.529250 0.528917 5.29E-01 0.528687 3.32E-04 5.63E-04 5.63E-04 
1 0.679570 0.677998 0.677083 0.677083 1.57E-03 2.49E-03 2.49E-03 

0.75 

0.25 0.722264 0.722261 7.22E-01 0.72226 2.50E-06 4.78E-06 4.78E-06 
0.5 0.927405 0.927317 9.27E-01 0.927246 8.82E-05 1.60E-04 1.60E-04 
0.75 1.190812 1.190065 1.189545 1.189545 7.47E-04 1.27E-03 1.27E-03 
1 1.529033 1.525497 1.523437 1.523438 3.54E-03 5.60E-03 5.60E-03 
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...

On looking at the like powers of p of Eq. (31), we get

p0 : ψ0 = x
2e−t;

p1 : ψ1 = 0,

p2 : ψ2 = 0,

p3 : ψ3 = 0,
...

Hence, the solution of Eq. (27) is given by

ψ (x, t) =
∞∑
n=0

ψn(x, t)

i.e.

ψ (x, t) = x2e−t (32)

Also, the exact solution of Eq. (27) is in the closed form is

ψ (x, t) = x2e−t (33)

So from Eq.(32) and Eq.(33),we have found this exact
solution in only one iteration.

Figure 1: Approximate solution of Eq. (11) using AHPSTM

5 Statistical analysis
In order to validate the solution obtained from the semi-
analytic technique AHPSTM, and to investigate the tech-
niques (AHPSTM, HPM and DTM) for their outcome in re-
gard of solution of non-linear problem considered in Eq.
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Table 5: Approximate solution of Eq.(19) up to 4th order approximation

𝑥𝑥 𝑡𝑡 
Exact 

solution AHPSTM DTM [6] HPM [2] 
Abs. Error 

(AHPSTM) 
Abs. Error 

(DTM) Abs. Error (HPM) 

0.25 

0.25 0.04868 4.87E-02 4.87E-02 0.0486755 0 4.88E-07 4.88E-07 
0.5 0.03791 0.0379081 3.79E-02 0.0379231 0 1.50E-05 1.50E-05 

0.75 0.02952 0.0295229 2.96E-02 0.0296325 0 1.10E-04 1.10E-04 
1 0.02299 0.0229924 0.023437 0.0234375 0 4.45E-04 4.45E-04 

0.5 

0.25 0.19470 1.95E-01 1.95E-01 0.1947021 0 1.95E-06 1.95E-06 
0.5 0.15163 0.1516326 1.52E-01 0.1516927 0 6.00E-05 6.00E-05 

0.75 0.11809 0.1180916 1.19E-01 0.1185302 0 4.39E-04 4.39E-04 
1 0.09196 0.0919698 0.09375 0.09375 0 1.78E-03 1.78E-03 

0.75 

0.25 0.43807 0.4380754 4.38E-01 0.4380798 0 4.39E-06 4.39E-06 
0.5 0.34117 0.3411734 3.41E-01 0.3413085 0 1.35E-04 1.35E-04 

0.75 0.26570 0.2657061 0.266693 0.2666931 0 9.87E-04 9.87E-04 
1 0.20693 0.2069321 0.210937 0.2109375 0 4.01E-03 4.01E-03 

 

Figure 2: Exact solution

Figure 3: Approximate solution of Eq. (11) using AHPSTM

(11), (19) and (28) we employe a statistical technique i.e.
paired student’s t-test at 5% level of signi�cance to the
data of Tables 2, 4 and 6. The null hypothesis is

Figure 4: Exact solution

Figure 5: Approximate solution of Eq. (27) using AHPSTM

Null hypothesis: HA0 : µA1 = µA2j, HB0 : µB1 = µB2j, HC0 :
µC1 = µC2j,

where µk1, ; k = A; B; Cdenotes the exact solution of
(11), (19) and (28) respectively, while µk2j;k = A; B; C; j =



336 | Deepak Grover, Dinkar Sharma, and Prince Singh, Accelerated HPSTM

Figure 6: Exact solution

1; 2; 3 denote the approximate solution of Eq. (11), (19)
and (27) via AHPSTM, DTM and HPM, respectively. The
considered degree of freedom is nk − 1 = 12 − 1 = 11 and
the tabulated value of tat α = 5% is |ttab.| = 2.201. The cal-
culated values of test statistic of Eq. (11), (19) and (27) for
pair AHPSTM with exact solution Ai; DTM with exact so-
lution Bi; and HPM with exact solution Ci, i = 1, 2, 3 are
given below:

|tcal. (A1)| = 2.192,

|tcal. (B1)| = 2.282,

|tcal. (C1)| = 2.282,

|tcal. (A2)| = 1.884,

|tcal. (B2)| = 1.914,

|tcal. (C2)| = 1.914,

|tcal. (B3)| = 1.954,

|tcal. (C3)| = 1.954.

From the above analysis, it is clear that null hypothe-
sisH0 is accepted for Eq. (11) only for pair of AHPSTM solu-
tion and exact solution, and is rejected for DTM with pair
of exact solution andHPMwith exact solution. For Eq. (19)
and (27), null Hypothesis is accepted in all the three cases
(Note: For Eq. (27), as we get exact solution with AHPSTM
, so we do not test statistically). Hence, with this statistical
analysis we conclude that AHPSTM gives better solution
than other semi analytical technique like DTM and HPM.

6 Conclusion
A new semi analytic technique of accelerated AHPSTM is
implemented for the approximate analytical solution of

non-linear partial di�erential equations with proportional
delay. It provides the power series solution in the form
of a rapidly convergent series. The proposed technique
converges faster than other semi- analytic techniques like
HPM,VIM and DTM. To validate the e�ciency and relia-
bility of the proposed technique, the condition of conver-
gence is veri�ed and statistical analysis is performed. Ta-
bles 1 and 3 show that the series solution obtained from
the proposed method satis�ed condition of convergence,
while Tables 2,4,5 and Figures 1, 2, and 3 show that the ap-
proximate results are close to the exact solution of the con-
sidered models with given initial conditions. Also, the ap-
proximate solution obtained from AHPTM gives better re-
sult with just four iterations than other methods like HPM,
VIM and DTM. The proposed method gives a better result
for the solution of non-linear PDEs as no discritizing algo-
rithm and no linearization is required for non-linear prob-
lems. Further, it is concluded that with the proposed tech-
niques only few iterations will lead to the solution and
hence it reduces the computational cost. Thus, this tech-
nique is equally competent for linear and non-linear par-
tial di�erential equation.
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