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Abstract: The pivotal aim of the present work is to �nd 
the solution for fractional Caudrey-Dodd-Gibbon (CDG) 
equation using q-homotopy analysis transform method 
(q-HATM). The considered technique is graceful amalga-
mations of Laplace transform technique with q-homotopy 
analysis scheme, and fractional derivative de�ned with 
Atangana-Baleanu (AB) operator. The �xed point hypoth-
esis considered in order to demonstrate the existence 
and uniqueness of the obtained solution for the projected 
fractional-order model. In order to illustrate and validate 
the e�ciency of the future technique, we analysed the pro-
jected model in terms of fractional order. Moreover, the 
physical behaviour of q-HATM solutions have been cap-
tured in terms of plots for diverse fractional order and the 
numerical simulation is also demonstrated. The obtained 
results elucidate that, the considered algorithm is easy to 
implement, highly methodical as well as accurate and very 
e�ective to examine the nature of nonlinear di�erential 
equations of arbitrary order arisen in the connected areas 
of science and engineering.

Keywords: Laplace transform; Atangana-Baleanu deriva-
tive; Caudrey-Dodd-Gibbon equation; q-homotopy analy-
sis method; �xed point theorem

1 Introduction
Fractional calculus (FC) was originated in Newton’s time, 
but lately, it fascinated the attention of many scholars. 
From the last thirty years, the most intriguing leaps in
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scienti�c and engineering applications have been found
within the framework of FC. The concept of the fractional
derivative has been industrialized due to the complexities
associated with a heterogeneities phenomenon. The frac-
tional di�erential operators are capable to capture the be-
haviour of multifaceted media having di�usion process. It
has beena very essential tool andmanyproblems canbe il-
lustrated more conveniently andmore accurately with dif-
ferential equations having arbitrary order. Due to the swift
development of mathematical techniques with computer
software’s, many researchers started to work on gener-
alised calculus to present their viewpointswhile analysing
many complex phenomena.

Numerous pioneering directions are prescribed for the
diverse de�nitions of fractional calculus by many senior
researchers, and which prearranged the foundation [1–
6]. Calculus with fractional order is associated to practi-
cal ventures and it extensively employed to nanotechnol-
ogy [7], human diseases [8, 9], chaos theory [10], and other
areas [11–34]. The numerical and analytical solution for
these equations illustrating these models have an impart-
ment role in portraying nature of nonlinear problems as-
cends in connected areas of science.

In order to demonstrate the e�ciency of the future
scheme, we consider �fth-order nonlinear CGD equation
of the form [35, 36]

ut + uxxxxx + 30uuxxx + 30uxuxx + 180u2ux = 0. (1)

The above equation is a class of KdV equation and fur-
ther, it possesses distinct and diverse properties. The CGD
equation is also familiar as Sawada-Kotera equation [37].
Due to the importance of the considered problem, it has
been magnetized the attention of many researchers from
diverse areas. In 1984,Weiss illustrated the Painleve’ prop-
erty for the Eq. (1) [38]. It has been proved that it has a
strong physical background in �uid [39] and also has N-
soliton solutions [40].

In the present scenario, many important and nonlin-
ear models are methodically and e�ectively analysed with
the help of fractional calculus. There have been diverse
de�nitions are suggested by many senior research schol-
ars, for instance, Riemann, Liouville, Caputo and Fabrizio.
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However, these de�nitions have their own limitations. The
Riemann–Liouville derivative is unable to explain the im-
portance of the initial conditions; the Caputo derivative
has overcome this shortcoming but is impotent to explain
the singular kernel of the phenomena. Later, in 2015 Ca-
puto and Fabrizio defeated the above obliges [41], and
many researchers are considered this derivative in order
to analyse and �nd the solution for diverse classes of non-
linear complex problems. But some issues were pointed
out in CF derivative, like non-singular kernel and non-
local, these properties are very essential in describing
the physical behaviour and nature of the nonlinear prob-
lems. In 2016, Atangana and Baleanu introduced and na-
tured the novel fractional derivative, namely AB deriva-
tive. This novel derivative de�ned with the aid of Mittag–
Le�er functions [42]. This fractional derivative buried all
the above-cited issues and helps us to understand the nat-
ural phenomena systematically and e�ectively.

In the present framework, we consider the fractional
Caudrey-Dodd-Gibbon (FCDG) equation of the form
ABC
a Dαt u (x, t) + uxxxxx + 30uuxxx + 30uxuxx + 180u2ux = 0,
0 < α ≤ 0 = 1, (2)

where α is fractional-order and de�ned with AB fractional
operator. The fractional-order is introduced in order to in-
corporate the memory e�ects and hereditary consequence
in the phenomenon and these properties aid us to capture
essential physical properties of the nonlinear problems.

Recently, many mathematicians and physicists devel-
oped very e�ective and more accurate methods in order to
�nd and analyse the solution for complex and nonlinear
problems arisen in science and engineering. In connection
with this, the homotopy analysis method (HAM) proposed
by Chinesemathematician Liao Shijun [43]. HAMhas been
pro�tably and e�ectively applied to study the behaviour of
nonlinear problems without perturbation or linearization.
But, for computational work, HAM requires huge time and
computer memory. To overcome this, there is an essence
of the amalgamation of a considered method with well-
known transform techniques.

In the present investigation, we put an e�ort to �nd
and analysed the behaviour of the solution obtained for
the FCDG equation by applying q-HATM. The future al-
gorithm is the combination of q-HAM with LT [44]. Since
q-HATM is an improved scheme of HAM; it does not
require discretization, perturbation or linearization. Re-
cently, due to its reliability and e�cacy, the considered
method is exceptionally applied by many researchers to
understand physical behaviour diverse classes of complex
problems [45–53]. The projected method o�ers us more
freedom to consider the diverse class of initial guess and

the equation type complex as well as nonlinear problems;
because of this, the complex NDEs can be directly solved.
The novelty of the future method is it aids a modest algo-
rithm to evaluate the solution and it natured by the ho-
motopy and axillary parameters, which provides the rapid
convergence in the obtained solution for a nonlinear por-
tion of the given problem. Meanwhile, it has prodigious
generality because it plausibly contains the results ob-
tained by many algorithms like q-HAM, HPM, ADM and
someother traditional techniques. The consideredmethod
can preserve great accuracy while decreasing the compu-
tational time andwork in comparisonwith othermethods.
The considered nonlinear problem recently fascinated the
attention of researchers from di�erent areas of science.
Since FCDG equation plays a signi�cant role in portraying
several nonlinear phenomena and also which are the gen-
eralizations of diverse complexphenomena,manyauthors
�nd and analysed the solution using analytical as well as
numerical schemes [54–61].

2 Preliminaries
Recently, many authors considered these derivatives to
analyse a diverse class of models in comparison with clas-
sical order as well as other fractional derivatives, and they
prove that AB derivative is more e�ective while analysing
the nature and physical behaviour of the models [62–65].
Here, we de�ne the basic notion of Atangana-Baleanu
derivatives and integrals [42].
De�nition 1. The fractional Atangana-
Baleanu-Caputo derivative for a function f ∈
H1 (a, b) ( b > a, α ∈ [0, 1])is presented as follows

ABC
a Dαt (f (t)) =

B [α]
1 − α

t∫
a

f
′
(ϑ) Eα

[
α (t − ϑ)

α

α − 1

]
dϑ. (3)

where B [α] is a normalization function such that B(0) =
B(1) = 1.
De�nition 2. The AB derivative of fractional order for a
function f ∈ H1 (a, b) , b > a, α ∈ [0, 1] in Riemann-
Liouville sense presented as follows

ABR
a Dαt (f (t)) =

B [α]
1 − α

d
dt

t∫
a

f (ϑ) Eα
[
α (t − ϑ)

α

α − 1

]
dϑ. (4)
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De�nition 3. The fractional AB integral related to the non-
local kernel is de�ned by

AB
a Iαt (f (t)) =

1 − α
B [α]

f (t) + α
B [α] Γ (α)

t∫
a

f (ϑ) (t − ϑ)α−1dϑ

(5)

De�nition 4. The Laplace transform (LT) of AB derivative
is de�ned by

L
[
ABR
0 Dαt (f (t))

]
= B [α]
1 − α

sαL [f (t)] − sα−1f (0)
sα +

(
α/(1 − α)

) (6)

Theorem 1. The following Lipschitz conditions respec-
tively hold true for both Riemann-Liouville and AB deriva-
tives de�ned in Eqs. (3) and (4) [42],∥∥∥ABCa Dαt f1 (t) − ABCa Dαt f2 (t)

∥∥∥ < K1 ‖f1 (x) − f2 (x)‖ , (7)

and∥∥∥ABCa Dαt f1 (t) − ABCa Dαt f2 (t)
∥∥∥ < K2 ‖f1 (x) − f2 (x)‖ . (8)

Theorem 2. The time-fractional di�erential equation
ABC
a Dαt f1 (t) = s (t) has a unique solution and which is de-
�ned as [42]

f (t) = 1 − α
B [α]

s (t) + α
B [α] Γ (α)

t∫
0

s (ς) (t − ς)α−1dς. (9)

3 Fundamental idea of the
considered scheme

In this segment, we consider the arbitrary order di�eren-
tial equation in order to demonstrate the fundamental so-
lution procedure of the projected algorithm

ABC
a Dαt v (x, t) + R v (x, t) + N v (x, t) = f (x, t) ,
n − 1 < α ≤ n (10)

with the initial condition

v (x, 0) = g (x) , (11)

where ABC
a Dαt v (x, t) symbolise the AB derivative of

v (x, t) , f (x, t) signi�es the source term, R and N re-
spectively denotes the linear and nonlinear di�erential
operator. On using the LT on Eq. (10), we have after
simpli�cation

L [v (x, t)] − g (x)s + 1
B [α]

(
1 − α + α

sα
)
{L [Rv (x, t)]

+L [N v (x, t)] − L [f (x, t)]} = 0. (12)

The non-linear operator is de�ned as follows

N [φ (x, t; q)] = L [φ (x, t; q)] − g (x)s
+ 1
B [α]

(
1 − α + α

sα
)
{L [R φ (x, t; q)] + L [Nφ (x, t; q)]

−L [f (x, t)]} . (13)

Here,φ(x, t; q) is the real-valued functionwith respect
to x, t and

(
q ∈

[
0, 1n

])
. Now,we de�ne a homotopy as fol-

lows

(1 − nq) L [φ (x, t; q) − v0 (x, t)] = }qN [φ (x, t; q)] , (14)

where L is signifying LT, q ∈
[
0, 1n

]
(n ≥ 1) is the embed-

ding parameter and } ̸= 0 is an auxiliary parameter. For
q = 0 and q = 1

n , the results are given below hold true

φ (x, t; 0) = v0 (x, t) , φ
(
x, t; 1n

)
= v (x, t) . (15)

Thus, by intensifying q from 0 to 1
n , the solution

φ(x, t; q) varies from v0 (x, t) to v (x, t). By using the Tay-
lor theorem near to q, we de�ning φ (x, t; q) in series form
and then we get

φ (x, t; q) = v0 (x, t) +
∞∑
m=1

vm (x, t) qm , (16)

where

vm (x, t) = 1
m!
∂mφ(x, t; q)

∂qm |q=0. (17)

The series (14) converges at q = 1
n for the proper chaise

of v0 (x, t) , n and }. Then

v (x, t) = v0 (x, t) +
∞∑
m=1

vm (x, t)
(
1
n

)m
. (18)

Now, m-times di�erentiating Eq. (15) with q and later
dividing by m! and then putting q = 0, we obtain

L[vm (x, t) − kmvm−1 (x, t)] = }Rm
(
~vm−1

)
, (19)

where the vectors are de�ned as

~vm = {v0 (x, t) , v1 (x, t) , . . . , vm (x, t)} . (20)

On applying inverse LT on Eq. (19), one can get

vm (x, t) = kmvm−1 (x, t) + }L−1
[
Rm
(
~vm−1

)]
, (21)

where

Rm
(
~vm−1

)
= L [vm−1 (x, t)] −

(
1 − kmn

)
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(
g (x)
s + 1

B [α]

(
1 − α + α

sα
)
L [f (x, t)]

)
+ 1
B [α]

(
1 − α + α

sα
)
L [Rvm−1 + Hm−1] , (22)

and

km =
{

0, m ≤ 1,
n, m > 1.

(23)

In Eq. (22), Hm signi�es homotopy polynomial and
presented as follows

Hm = 1
m!

[
∂mφ (x, t; q)

∂qm

]
q=0

(24)

and φ (x, t; q) = φ0 + qφ1 + q2φ2 + . . . .
By the aid of Eqs. (21) and (22), one can get

vm (x, t) = (km + }) vm−1 (x, t) −
(
1 − kmn

)
L−1

(
g (x)
s + 1

B [α]

(
1 − α + α

sα
)
L [f (x, t)]

)
+ }L−1

{
1

B [α]

(
1 − α + α

sα
)
L [Rvm−1 + Hm−1]

}
. (25)

Using the Eq. (25), one can get the series of vm (x, t).
Lastly, the series q-HATM solution is de�ned as

v (x, t) = v0 (x, t) +
∞∑
m=1

vm (x, t)
(
1
n

)m
. (26)

4 Solution for FCDG equation
In order to present the solution procedure and e�ciency
of the future scheme, in this segment, we consider FCDG
equation of fractional order. Further by the help of ob-
tained results, we made an attempt to capture the be-
haviour of q-HATM solution for di�erent fractional order.
By the help of Eq. (2), we have

ABC
a Dαt u (x, t) + uxxxxx + 30uuxxx + 30uxuxx + 180u2ux = 0,
0 < α ≤ 1, (27)

with initial condition

u (x, 0) = µ2sech2(µx). (28)

Taking LT on Eq. (27) and then using the Eq. (28), we get

L [u (x, t)] = 1
s

(
µ2sech2(µx)

)
+ 1
B [α]

(
1 − α + α

sα
)

L{∂
5u
∂x5 + 30u ∂

3u
∂x3 + 30∂u∂x

∂2u
∂x2 + 180u2 ∂u∂x }. (29)

The non-linear operator N is presented with the help of fu-
ture algorithm as below

N [φ (x, t; q)] = L [φ (x, t; q)] − 1
s

(
µ2sech2(µx)

)
+ 1
B [α]

(
1 − α + α

sα
)
L{∂

5φ
∂x5 + 30φ ∂

3φ
∂x3 + 30∂φ∂x

∂2φ
∂x2

+ 180φ2 ∂φ
∂x }. (30)

The deformation equation of m-th order by the help of q-
HATM at H(x, t) = 1, is given as follows

L [um (x, t) − kmum−1 (x, t)] = }R1,m
[
~um−1, ~vm−1

]
, (31)

where

Rm
[
~um−1

]
= L [um−1 (x, t)] −

(
1 − kmn

)
{
1
s

(
µ2sech2(µx)

)}
+ 1
B [α]

(
1 − α + α

sα
)

L{∂
5um−1
∂x5 + 30

m−1∑
i=0

ui
∂3um−1−i
∂x3 + 30

m−1∑
i=0

∂ui
∂x

∂2um−1−i
∂x2

+
i∑
j

m−1∑
i=0

ujui−j
∂um−1−i
∂x }. (32)

On applying inverse LT on Eq. (31), it reduces to

um (x, t) = kmum−1 (x, t) + }L−1
{
Rm
[
~um−1

]}
. (33)

On simplifying the above equation systematically by
using u0 (x, t) = 1

s

(
µ2sech2(µx)

)
we can evaluate the

terms of the series solution

u (x, t) = u0 (x, t) +
∞∑
m=1

um (x, t)
(
1
n

)m
. (34)

5 Existence of solutions for the
future model

Here, we considered the �xed-point theorem in order to
demonstrate the existence of the solution for the consid-
ered model. Since the considered model cited in the sys-
tem (27) is non-local as well as complex; there are no par-
ticular algorithms or methods exist to evaluate the exact
solutions. However, under some particular conditions the
existence of the solution assurances. Now, the system (27)
is considered as follows:

ABC
0 Dαt [u (x, t)] = G (x, t, u) . (35)

The foregoing system is transformed to the Volterra inte-
gral equation using the Theorem 2, and which as follows

u (x, t) − u (x, 0) = (1 − α)
B (α)

G (x, t, u)
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+ α
B (α) Γ (α)

t∫
0

G (x, ζ , u) (t − ζ )α−1dζ . (36)

Theorem 3. The kernel G satis�es the Lips-
chitz condition and contraction if the condition
0 ≤

(
δ5 + 30δ

(
2
(
a2 + b2 + ab

)
+ δ
))

< 1 holds.
Proof. In order to prove the required result, we consider
the two functions u and u1, then

‖G (x, t, u) − G (x, t, u1)‖ = ‖( ∂
5

∂x5 [u (x, t) − u (x, t1)]

+ 30
(
u (x, t) ∂

3u (x, t)
∂x3 − u (x, t1)

∂3u (x, t1)
∂x3

)
+ 30

(
∂u (x, t)
∂x

∂2u (x, t)
∂x2 − ∂u (x, t1)∂x

∂2u (x, t1)
∂x2

)
+ 180

(
u2 (x, t) ∂u (x, t)∂x − u2 (x, t1)

∂u (x, t1)
∂x

)
‖

≤
∥∥∥δ5 + 30δ (2(a2 + b2 + ab) + δ)∥∥∥ ∥∥u (x, t) − u(x, t1)∥∥

≤
(
δ5 + 30δ

(
2
(
a2 + b2 + ab

)
+ δ
))∥∥u (x, t) − u(x, t1)∥∥ ,

(37)

where δ is the di�erential operator. Since u and u1 are
bounded, we have ‖u (x, t)‖ ≤ a and ‖u (x, t1)‖ ≤ b.
Putting η = δ5 + 30δ

(
2
(
a2 + b2 + ab

)
+ δ
)
in the above

inequality, then we have

‖G (x, t, u) − G (x, t, u1)‖ ≤ η ‖u (x, t) − u (x, t1)‖ . (38)

This gives, the Lipschitz condition is ob-
tained for G1. Further, we can see that if 0 ≤(
δ5 + 30δ

(
2
(
a2 + b2 + ab

)
+ δ
))

< 1, then it implies
the contraction. The recursive form of Eq. (36) de�ned as
follows

un (x, t) = (1 − α)
B (α)

G (x, t, un−1)

+ α
B (α) Γ (α)

t∫
0

G (x, ζ , un−1) (t − ζ )α−1dζ . (39)

The associated initial condition is

u (x, 0) = u0 (x, t) . (40)

The successive di�erence between the terms is presented
as follows

ϕn (x, t) = un (x, t) − un−1 (x, t)

= (1 − α)
B (α) (G (x, t, un−1) − G (x, t, un−2))

+ α
B (α) Γ (α)

t∫
0

G (x, ζ , un−1) (t − ζ )α−1dζ .

(41)

Notice that

un (x, t) =
n∑
i=1

ϕ1i (x, t) . (42)

By using Eq. (38) after applying the norm on the Eq. (41),
one can get∥∥ϕn (x, t)∥∥ ≤ (1 − α)B (α)

η
∥∥ϕ(n−1) (x, t)

∥∥
+ α
B (α) Γ (α)

η
t∫

0

∥∥ϕ(n−1) (x, ζ )
∥∥ dζ . (43)

We prove the following theorem by using the above result.
Theorem 4. The solution for the system (27) will exist and
unique if we have speci�c t0 then

(1 − α)
B (α)

η + α
B (α) Γ (α)

η < 1.

Proof. Let us consider the bounded function u (x, t) satis-
fying the Lipschitz condition. Then, by Eqs. (42) and (44),
we have∥∥ϕi (x, t)∥∥ ≤ ‖un (x, 0)‖

[
(1 − α)
B (α)

η + α
B (α) Γ (α)

η
]n
.

(44)

Therefore, the continuity as well as existence for the ob-
tained solutions is proved. Subsequently, in order to show
the Eq. (44) is a solution for the Eq. (29), we consider

u (x, t) − u (x, 0) = un (x, t) − Kn (x, t) . (45)

In order to obtain require a result, we consider

‖Kn (x, t)‖ = ‖ (1 − α)B (α)
(
G (x, t, u) − G(x, t, un−1)

)
+ α
B (α) Γ (α)

t∫
0

(t − ζ )µ−1 (G (x, ζ , u) − G (x, ζ , un−1)) dζ‖

≤ (1 − α)
B (α)

‖ (G (x, t, u) − G (x, t, un−1))‖

+ α
B (α) Γ (α)

t∫
0

‖ (G (x, ζ , u) − G (x, ζ , un−1))‖ dζ

≤ (1 − α)B (α)
η ‖u − un−1‖ + α

B (α) Γ (α)
η ‖u − un−1‖ t. (46)

Similarly, at t0 we can obtain

‖Kn (x, t) ‖ ≤
(
(1 − α)
B (α)

+ α t0
B (α) Γ (α)

)n+1
ηn+1M. (47)

As n approaches to ∞, we can see that form Eq. (50),
‖Kn (x, t) ‖ tends to 0.
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Next, it is a necessity to demonstrate uniqueness for
the solution of the considered model. Suppose u* (x, t) be
the other solution, then we have

u (x, t) − u* (x, t) = (1 − α)
B (α)

(
G (x, t, u) − G

(
x, t, u*

))
+ α
B (α) Γ (α)

t∫
0

(
G (x, ζ , u) − G

(
x, ζ , u*

))
dζ . (48)

On applying norm, the Eq. (48) simpli�es to∥∥∥u (x, t) − u* (x, t)∥∥∥ =
∥∥∥∥ (1 − α)B (α)

(
G (x, t, u) − G

(
x, t, u*

))
+ α
B (α) Γ (α)

t∫
0

(
G (x, ζ , u) − G

(
x, ζ , u*

))
dζ

∥∥∥∥∥∥
≤ (1 − α)

B (α)
η
∥∥∥u (x, t) − u* (x, t)∥∥∥

+ α
B (α) Γ (α)

ηt
∥∥∥u (x, t) − u* (x, t)∥∥∥ . (49)

On simpli�cation∥∥∥u (x, t) − u* (x, t)∥∥∥ (1 − (1 − α)
B (α)

η − α
B (α) Γ (α)

ηt
)
≤ 0.

(50)

From the above condition, it is clear that u (x, t) − u* (x, t),
if (

1 − (1 − α)
B (α)

η − α
B (α) Γ (α)

ηt
)
≥ 0. (51)

Hence, Eq. (51) evidences our essential result.
Theorem 5. Suppose un (x, t) and u (x, t) de�ne in the Ba-
nach space (B [0, T] , ‖ · ‖ ). Then series solution de�ned
in Eq. (26) converges to the solution of the Eq. (10), if 0 <
λ1 < 1.
Proof: Let consider the sequence {Sn} and which is the
partial sumof the Eq. (26), we have to prove {Sn} is Cauchy
sequence in (B [0, T] , ‖ · ‖ ). Now consider

‖Sn+1 (x, t) − Sn (x, t)‖ = ‖un+1 (x, t)‖
≤ λ1 ‖un (x, t)‖
≤ λ12 ‖un−1 (x, t)‖
≤ . . .
≤ λ1n+1 ‖u0 (x, t)‖ .

Now, we have for every n, m ∈ N (m ≤ n)

‖Sn − Sm‖ = ‖ (Sn − Sn−1) + (Sn−1 − Sn−2) + . . .
+ (Sm+1 − Sm)‖ ≤ ‖Sn − Sn−1‖ + ‖Sn−1 − Sn−2‖ + . . .

+ ‖Sm+1 − Sm‖ ≤
(
λ1n + λ1n−1 + . . . + λ1m+1

)
‖u0‖

≤ λ1m+1
(
λ1n−m−1 + λ1n−m−2 + . . . + λ1 + 1

)
‖u0‖

≤ λ1m+1
(
1 − λ1n−m
1 − λ1

)
‖u0‖ . (52)

But 0 < λ1 < 1, therefore limn, m→∞ ‖Sn − Sm‖ = 0. Hence,
{Sn}is the Cauchy sequence. Similarly, we can demon-
strate for the second case. This proves the required result.
Theorem 6. For the series solution (26) of the Eq. (10), the
maximum absolute error is presented as∥∥∥∥∥u (x, t) −

M∑
n=0

un(x, t)

∥∥∥∥∥ ≤ λ1M+1

1 − λ1
‖u0 (x, t)‖ .

Proof: By the help of Eq. (56), we get

‖u (x, t) − Sn‖ = λm+11

(
1 − λ1n−m
1 − λ1

)
‖u0 (x, t)‖ .

But 0 < λ1 < 0 ⇒ 1 − λ1n−m < 1. Hence, we have∥∥∥∥∥u (x, t) −
M∑
n=0

un(x, t)

∥∥∥∥∥ ≤ λ1M+1

1 − λ1
‖u0 (x, t)‖ .

This ends the proof.

6 Results and discussion
In this manuscript, we �nd the solution for CDG equation
having arbitrary order using a novel scheme namely, q-
HATM with the help of Mittag-Le�er law. In the present
segment, we demonstrate the e�ect of fractional order
in the obtained solution with distinct parameters o�ered
by the future method. In Figures 1 to 3, the nature of q-
HATM solution for di�erent arbitrary order is presented in
terms of 2D plots. From these plots, we can see that con-
sidered problem conspicuously depends on fractional or-
der. In order to analyse the behaviour of obtained solution
with respect to homotopy parameter (}), the }-curves are
drowned for diverse µ and presented in Figure 4. In the
plots, the horizontal line represents the convergence re-
gion of the q-HATM solution and these curves aid us to
adjust and handle the convergence province of the solu-
tion. For an appropriate value of }, the achieved solution
quickly converges to the exact solution. Further, the small
variation in the physical behaviour of the complex models
stimulates the enormousnew results to analyse andunder-
stand nature in a better and systematic manner. Moreover,
from all the plots we can see that the consideredmethod is
more accurate and very e�ective to analyse the considered
complex coupled fractional order equations.
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Figure 1: (a) Surface of u (x, t), (b) 2D plot of u (x, t) at t = 10 at
µ = 0.5, } = −1, n = 1 and α = 0.5.

7 Conclusion
In this study, the q-HATM is applied lucratively to �nd
the solution for arbitrary order CDG equations. Since AB
derivatives and integrals having fractional order are de-
�ned with the help of generalized Mittag-Le�er function
as the non-singular and non-local kernel, the present in-
vestigation illuminates the e�eteness of the considered
derivative. The existence and uniqueness of the obtained
solution are demonstrated with the �xed point hypothe-
sis. The results obtained by the future scheme are more
stimulating as compared to results available in the litera-
ture. Further, the projected algorithm�nds the solution for
the nonlinear problemwithout considering any discretiza-
tion, perturbation or transformations. The present investi-
gation illuminates, the considered nonlinear phenomena
noticeably depend on the time history and the time instant
and which can be pro�ciently analysed by applying the
concept of calculus with fractional order. The present in-

(a)
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Figure 2: (a) Surface of u (x, t), (b) 2D plot of u (x, t) at t = 10 at
µ = 0.5, } = −1, n = 1 and α = 0.75.

vestigation helps the researchers to study the behaviour
nonlinear problems gives very interesting and useful con-
sequences. Lastly, we can conclude the projected method
is extremely methodical, more e�ective and very accurate,
and which can be applied to analyse the diverse classes of
nonlinear problems arising in science and technology.
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