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Abstract: This paper presents, numerical study of stress
�eld in functionally graded material (FGM) hollow cylin-
der by using �nite element method (FEM). The FGM cylin-
der is subjected to internal pressure and uniform heat gen-
eration. Thermoelastic material properties of FGM cylin-
der are assumed to vary along radius of cylinder as an
exponential function of radius. The governing di�erential
equation is solved numerically by FEM for isotropic and
anistropic hollow cylinder. Additionally, the e�ect of ma-
terial gradient index (β) onnormalized radial stresses, nor-
malized circumferential stress and normalized axial stress
are evaluated and shown graphically. The behaviour of
stress versus normalized radius of cylinder is plotted for
di�erent values of Poisson’s ratio and temperature. The
graphical results shown that stress �eld in FGM cylinder
is in�uenced by some of above mentioned parameters.

Keywords: FGM, cylinder, FEM, thermo-mechanical pa-
rameters

1 Introduction
Functionally graded materials have great application in
�elds of aerospace, automobiles, industry, defence, en-
ergy, electronics, electrical, biomedical and sports. FGMs
are used widely due to variation in composition and struc-
tural gradually over volume that results in variation in
chemical, thermal, electrical and mechanical properties.
These materials can be constructed for some special ap-
plication and function. In FGMs material properties are
not homogeneous across the whole material. FGM cylin-

*Corresponding Author: Dinkar Sharma, Department of Mathe-
matics, Lyallpur Khalsa College, Jalandhar-144001, Punjab, India;
E-mail: dinkar.nitj@gmail.com
Ramandeep Kaur, Department of Mathematics, I.K.G. Punjab Tech-
nical University, Jalandhar-144603, Punjab, India

drical structures have number of applications in �eld of
engineering and science, therefore number of theoreti-
cal and experimental studies have been done to optimize
theweight,mechanical strength, displacement, stress and
strain of cylinder. In past decade of years, researchers and
scientists made analysis of di�erent types of cylinders.

Dai et al. [1] presented exact solution for stresses in
functionally graded metal hollow cylinder by using in-
�nitesimal theory of magneto-thermoelasticity. Abrinia et
al. [2] obtained radial and circumferential stress in FGM
cylindrical vessel under internal pressure and temperature
from analytical solution. Further, e�ect of non homogene-
ity in FGM thick cylinder was discussed by choosing di-
mensionless parameters. Evci and Gulgec [3] developed
analytical solution to present stress and displacement in
hollow cylinder under heat generation and internal pres-
sure that analytical solution derived with help airy stress
function. Rahimi and Nejad [4] used theory of elasticity
to �nd exact solution in hollow thick walled rotating FGM
cylinder under internal and external pressure. Sharma et
al. [5] made analysis of stress and strain with help of �-
nite element in rotating circular disk under exponentially
varing material properties. Sharma et al. [6] studied ef-
fect of Kibel number on thermoelastic characteristics in
FGM disk by using FEM. Naghdabadi and Kordkheii [7]
taken power law distribution model of material proper-
ties to made thermoelastic analysis of functionally graded
plates and shells by FEM. Go [8] analyzed thermoelas-
tic characteristics of circular disk under e�ect of rotating
speed and radial thickness by using FEM. FEM was used
by number of researchers to study numerical behaviour
of thermoelastic characteristics. The detailed literature re-
lated to FEM is given in [9–12]. Yadav and Jiwari [13–15]
used FEM to solve di�erent types of problem related to dif-
ferential equations i.e. FEM used solve Burger’s Fisher’s
equation, srusselator model and coupled reaction di�u-
sion model. Sharma et al. [16] investigated thermoelastic
characteristics in FGM disk under linearly varing material
properties by using FEM. Sharma and Kaur [17] made com-
parison of stress and strain for two FGM disks where �rst
disk constructed fromAluminumandAlumina and second
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disk constructed from Zirconium and Zirconium oxide. To
carried out comparison of di�erent thermoelastic charac-
teristics FEM was used. Farhan et al. [18] used �nite dif-
ference method to problem of thermoelasticity for an in-
�nitely long and isotropic circular cylinder. This method
presented numerical solution for displacement, tempera-
ture and stress under mechanical and thermal boundary
conditions. Habib et al. [19] developedmathematical anal-
ysis to study stresses and strains in FGMcylinder under ex-
ponentially varing material properties. Also FEM and AN-
SYS software had been used to compute di�erent values
of stress. Vaziri et al. [20] described analytical formula-
tion for FGM thick walled cylinder with power law varia-
tion in properties. Further, FEM was used to checked vali-
dation of analytical solution. Bayat et al. [21] made analy-
sis of a rotating functionally graded disk under two types
of thickness pro�les and steady temperature �eld. Liew
et al. [22] used novel limiting process to study thermal
stress and temperature in hollow circular cylinder. Jab-
bari et al. [23] developed analysis of short length hollow
FGM cylinder with help of generalized bessel function.
This analysis was carried out under radial and longitudi-
nal direction of temperature. Parveen et al. [24] used FEM
to �nd two step solution of governing di�erential equa-
tion of thermoelasticity in ceramic-metal cylinder. Jabbari
et al. [25] studied thermal stresses in FGM cylinder, in
this cylinder temperature distribution and other material
properties were assumed to vary as function of radius.
Nejad et al. [26] presented elastic analysis of FGM thick-
walled cylindrical pressure vessels from its analytical so-
lution under exponential varing material properties. Es-
lami et al. [27] investigated analytical solution for function-
ally gradedhollow thick sphere under general thermalme-
chanical boundary conditions and radially varing mate-
rial properties. Peng and Lie [28] converted thermoelastic
problem to fredholm integral equation for obtaining ther-
mal stress in functionally graded hollow cylinder. Yeo et
al. [29] used recursivemethod to �nd analytical solution in
hollowmultilayered cylinder. Further, from this analytical
solution stress/displacement was found under thermome-
chanical loading. Atli and Lak [30] presented analysis of
functionally graded piezoelectric hollow cylinder by ob-
taining stresses, strains and displacements under action
of internal and external pressure and temperature gradi-
nent. Tutuncu [31] studied stresses and displacements in
functionally graded cylindrical vessels from power series
solution under constant Poisson’s ratio and exponentially
varing elastic modulus. Wang [32] made transient ther-
mal analysis in functionally graded hollow cylinder under
heat conductivity, mass density and speci�c heat which
all were vary along radial direction. Tanvir et al. [33] de-

rived stress and strain in FGM cylinder under the e�ect of
internal pressure, temperature di�erence, thickness and
material distribution. Zheng et al. [34] used �nite di�er-
ence method to obtain stress in functionally graded ro-
tating disk, where elastic modulus and mass density fol-
lows power law function of radius of disk. Zenkour [35] de-
scribed e�ects of temperature andmoisture concentration
on piezoelectric cylinder, that cylinder subjected to exter-
nal pressure and electronic potential. Mathena et al. [36]
carried out heat conduction and thermal stress in hollow
cylinder with non homogeneous material properties. Sad-
dalfar [37] analyzed stress distribution in piezomagnetic
rotating thick walled cylinder from constitutive equations.

This paper Investigates, stresses in FGM hollow cylin-
der subjected to internal pressure and uniform heat gener-
ation. Thermoelastic material properties such as thermal
expansion coe�cient, modulus of elasticity, thermal con-
ductivity and yield stress are taken as exponential func-
tion of radius of cylinder. By using equilibrium equation
in cylinder and Hooke’s law problem is transform to sec-
ond order di�erential equation. Finite element method is
used to �nd numerical solution of di�erential equation for
isotropic and anisotropic hollow cylinder. Furthermore, ef-
fect of Poisson’s ratio and temperature on normalized ra-
dial, circumferential and axial stress represented graph-
ically. The analysis shows that in FGM hollow cylinder
stresses can be reduced by taking particular values of ma-
terial parameters.

2 Modelling of cylinder
A FGM cylinder with inner and outer radius a and b, re-
spectively is considered, while Ti and T0 are the temper-
atures at inner and outer surfaces of cylinder. The mate-
rial properties namedas coe�cients of thermal expansion,
modulus of elasticity, coe�cient of thermal conductivity
and yield stress of cylinder are modelled by exponential
variation as shown below:

α(r) = α0rβ1 (1)

E(r) = E0rβ2 (2)

λ(r) = λ0rβ3 (3)

σy(r) = σ0rβ4 (4)

Where α0, E0, λ0, σ0 are material constants and
β1, β2, β3, β4 are power law exponents corresponding
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to thermal expansion coe�cient, modulus of elastic-
ity, thermal conductivity coe�cient and yield stress,
respectively.

3 Basic equations
We consider general form of heat di�usion equation and
boundary conditions in homogenous cylinder given by [3]
as:
1
r
∂
∂r

(
λr ∂T∂r

)
+ 1
r2

∂
∂θ

(
λ ∂T∂θ

)
+ ∂
∂Z

(
λ ∂T∂Z

)
+ q = ρCp ∂T∂t

dT
dr = 0, at r = a and T(r) = T0 at r = b (5)

Where r, θ, z are cylindrical coordinates, t is time, T is tem-
perature distribution, q is heat generation per unit time
and per unit volume, ρ is density, Cp is speci�c heat.

Since cylinder is constructedwith FGMmaterial there-
fore, problem is assumed to follow axisymmetric temper-
ature distribution .The heat equation (5) reduces to steady
state heat equation as:

1
r
d
dr

(
λr dTdr

)
+ q = 0 (6)

After substituting the value of thermal conductivity
in equation (6), we obtained temperature distribution as
written below:

T(x) = −q
2λ0(2 − β3) r

2−β3 − C1tr−β3 + C2t . (7)

By applying two boundary conditions, we �nd the val-
ues of constants (C1t , C2t) and temperature distribution
takes form as given below:

T(r) = −q
2λ0(2 − β3) r

2−β3 − a2q
2λ0β3

r−β3 + T0 + qb2−β3

2λ0(2 − β3)

+ a2qb−β3

2λ0β3
. (8)

4 Problem formulation
With help of equilibrium equation in cylinder, we formu-
late the problem as follows:

dσr
dr + σr − σθ

r = 0. (9)

Where σr denotes radial stress component, σθ indicates
circumferential stress component and r denotes radial co-
ordinate of cylinder. ByusingHooke’s law, relationshipbe-
tween stress and strain components is written as:

ϵr = 1
E
[
σr − v(σθ + σz)

]
+ αT (10)

ϵθ = 1
E
[
σθ − v(σr + σz)

]
+ αT (11)

ϵz = 1
E
[
σz − v(σθ + σr)

]
+ αT (12)

Where ϵr, ϵθ and ϵz denotes radial, circumferential
and axial components of strain. The axial strain is inde-
pendent of radial coordinate for FGM cylinder with �xed
ends. Therefore its value is taken as constant.

ϵz = 1
E
[
σz − v(σθ + σr)

]
+ αT = ϵ0 (13)

Fromequation (13) axial stress component canbewrit-
ten as:

σz = v(σr + σθ) + (ϵ0 − αT)E (14)

After putting value of axial stress component in equa-
tions (11) and (12), these equations can takes the form as
written below:

ϵr = 1
E

[
(1 − v2)σr − v(1 + v)σθ + (1 + v)EαT − vϵ0E

]
(15)

ϵθ = 1
E

[
(1 − v2)σθ − v(1 + v)σr + (1 + v)EαT − vϵ0E

]
(16)

The equilibrium equation in terms of stress function
can be written as:

σr = ϕ
r , σθ = dϕ

dr (17)

The radial and circumferential strain components are
related to radial coordinates as written below:

ϵr = du
dr (18)

ϵθ = u
r (19)

By using relation between radial and circumferential
strain components as given in (18) and (19), we obtain a
di�erential equation as given below:

ϵr − ϵθ
r − dϵθdr = 0 (20)

With help of equation (20), we �nd di�erential equa-
tion of problem as written below:

r2 d2ϕ
dr2 + (1 − β2)r dϕdr −

(
1 − vβ2

1 − v

)
ϕ =

E0α0q
2(1 − v)λ0

[
β1b2−β3

β3 − 2 rβ1+β2+1 + β1 − β3 + 2
2 − β3

rβ1+β2−β3+3

−a
2b−β3

β3
rβ1+β2+1 + a2(β1 − β3)

β3
rβ1+β2−β3+1

]
(21)
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The equation (21) in simplest form can be written as:

r2 d2ϕ
2r2 + P1

dϕ
2r − P2ϕ =

P3
[
C1rβ1+β2+1 + C2rβ1+β2−β3+3 − C3rβ1+β2+1 + C4rβ1+β2−β3+1

]
d2ϕ
dr2 + P1

r
dϕ
dr − P2

r2 ϕ =

P3
[
C1rβ1+β2−1 + C2rβ1+β2−β3+1 − C3rβ1+β2−1 + C4rβ1+β2−β3−1

]
(22)

Where P1 =
(

1 − β2
)
, P2 =

(
1 − νβ2

1−ν

)
, P3 =

E0α0q
2(1−ν)λ0

, C1 = β1b
2−β3

β3−2 , C2 = β1−β3+2
2−β3

, C3 = a2b−β3
β3

and C4 =
a2(β1−β3)

β3
.

5 Finite element solution of
problem

In this problem, a standard discretization approach of �-
nite element method is used to solve the di�erential equa-
tion (22). In this discretization the size of each element is
equal and total domain is divided intoNelements and then
equation is converted into simultaneous equations.

2∑
j=1

KeijF
e
j = Lei ; i = 1, 2; e = 1, 2, 3, . . . , n (23)

Where the value of Keij and Lei is obtained from

Keij =
re+1∫
re

dφei
dr

dφej
dr dr + P1

re+1∫
re

ϕi
r
dϕj
dr dr

− P2

re+1∫
re

1
r2ϕiϕjdr +

[
ϕi
dϕj
dr

]re+1

re

Lei =P3

re+1∫
re

φei (C1rβ1+β2−1 + C2rβ1+β2−β3+1 − C3rβ1+β2−1

+ C4rβ1+β2−β3−1)dr

Where
φe1 = re+1 − r

re+1 − re
, φ3

2 = r − re
re+1 − re

.

6 Application
To achieve numerical results, we assumed that inner ra-
dius a as 1 mm and outer radius b as 10 mm respectively.

Dimensionless terms for stresses and radial coordinate are
de�ned as:
Dimensionless stress components: σ̄r = σr

σ0
, σ̄θ = σθ

σ0
, σ̄z =

σz
σ0

Dimensionless radial coordinate: R = r
b
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Figure 1: Represents normalized temperature and dimensionless
radial coordinate

As shown in Figure 1, the highest temperature
achieved at inner surface of cylinder and as moved to-
wards outer surface the value of temperature decreases.
The maximum normalized temperature obtained when
R = 0.3 and minimum value for same is attainted at
R = 1. The di�erent cases of stress and displacement are
calculated numerically by FEM for FGM hollow cylinder
and presented graphically as shown below:

CASE I: For Isotropichollowcylinder (β1 = β2 = β3 = 0):
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Figure 2: Normalized stresses versus dimensionless radial coordi-
nate
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Figure 2 display normalized stresses against dimen-
sionless radial coordinate for isotropic hollow cylinder.
The cylinder is isotropic because values of all material
parameters taken as zero (β1 = β2 = β3 = 0). From
graph it is cleared that, radial stress is compressive in
nature where as circumferential stress and axial stress
are compressive in nature at inner surface of cylinder
and tensile as moved toward outer surface of cylinder.
The maximum value of stresses exists at outer surface of
cylinder.

CASE II: Anisotropic hollowcylinder (β1 = β2 = β3 = β):
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Figure 3: Normalized radial stress and dimensionless radial coordi-
nate for di�erent values of β
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Figure 4: Normalized circumferential stress and radial coordinate
for di�erent values of β

Figure 3–5 represents normalized stresses (normal-
ized radial stress, normalized circumferential stress and
normalized axial stress) for di�erent values of material
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Figure 5: Normalized axial stress and radial coordinate for di�erent
values of β

properties. We take the values of β in range from −1.7 to
1.7. As from Figure 3, it is cleared that, value of normalized
radial stress is less for higher value of β (1.7). Also, nor-
malized radial stress curves are more �exible in nature for
positive values of β. On the other hand the higher value of
normalized circumferential stress is obtained for higher
values of β. The normalized circumferential stress is near
zero for β = −1.3 and β = 1.3 and normalized circumfer-
ential stress is more variable in nature for 0.7 ≤ R ≤ 1. The
behaviour of normalized axial stress curves are of same in
nature as normalized circumferential stress curves. The
axial stress is positive for β = −1.3 and β = 1.3 but for
other values of β it changes from positive to negative and
than negative to positive.

CASE III: For di�erent values of temperature:
In this case, thermoelastic characteristics are calcu-

lated for FGMhollow cylinder under di�erent values of T0.
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Figure 6: Normalized radial stress distribution in FGM hollow cylin-
der with di�erent values T0
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Figure 7: Normalized circumferential stress distribution in FGM
hollow cylinder with di�erent values of T0
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Figure 8: Normalized axial Stress distribution in FGM hollow cylin-
der with di�erent values of T0

Figures 6–8, represent thermoelastic characteristics in
FGM hollow cylinder for T0 = 0◦C, T0 = 100◦C, T0 =
300◦C, T0 = 500◦C, T0 = 1000◦C. It is observed from �g-
ures, that there is an inverse relation between normalized
stresses and T0 i.e. as the value of T0 increases the values
of normalized stress increase, otherwise the behaviour of
curves is the same in nature as for di�erent values of T0.
The maximum values of stress are attained for minimum
value of T0 i.e. T0 = 0.
CASE IV: For di�erent values of Poisson’s ratio:

In this section, the e�ect of Poisson’s ratio on normal-
ized radial, circumferential and axial stress is studied by
taking di�ernt values of Poisson’s ratio.

It is observed from Figure 9, normalized radial stress
is tensile in the range when 0.7 ≤ v ≤ 1, whereas com-
pressive for remaining range. It is converging to zero at
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Figure 9: Variation of normalized radial stress with Poisson’s ratio
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Figure 10: Variation of normalized circumferential stress with Pois-
son’s ratio

the central region. The maximum value of normalized ra-
dial stress is obtained when Poisson’s ratio is 0.5. Figure
10, shown variation of normalized circumferential stress
in radial direction for di�erent values of Poisson’s ratio.
The normalized circumferential stress is elastic in nature
for starting and ending values of dimensionless radial co-
ordinate. Themaximum variation exists in nature of curve
when the value of Poisson’s ratio is taken as 0.5. In ten-
sile region the behaviour of Normalized curve is �rstly in-
creasing in nature, after mid of region then the behaviour
of curve decreasing in nature. Figure 11, represents vari-
ation of normalized axial stress for di�erent values Pois-
son’s ratio. The magnitude of axial stress is high for outer
surface and con�ning in nature formiddle values of R. The
behaviour of axial stress curve is compatible for di�erent
of Poisson’s ratio.
Material Properties:

Figures 12–16 represent a material properties corre-
sponding to di�erent values of β. From Figure 12, it is ob-
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Figure 11: Variation of normalized axial stress with Poisson’s ratio
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Figure 12: Distribution of modulus of elasticity along radial direction
for di�erent values of β

served that modulus of elasticity decreases as the value of
β increases. The behaviour of modulus of elasticity curve
same for di�erent values of β. From Figure 13 it is cleared
that maximum variation in thermal conductivity coe�-
cient for values of β exists when 0.3 ≤ β ≤ 0.6. The be-
haviour of curve is same in nature for di�erent values of
β. Figure 14, shown that the behaviour of thermal conduc-
tivity coe�cient curve is di�erent for negative and posi-
tive values of β. For negative values of β the behaviour of
curve is decreasing in nature on the other hand for posi-
tive values of β it is increasing in nature. From Figure 15,
It is observed that maximum value of normalized stress is
obtained when β = −1.7 and minimum value for β = 1.7.
Figure 16, shown that the behaviour of normalized temper-
ature is decreasing for all values of β.
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Figure 13: Distribution of thermal conductivity coe�cient along
radial direction for di�erent values of β.
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Figure 14: Distribution of thermal expansion coe�cient along radial
direction for di�erent values of β

7 Conclusion
In the present paper, the thermoelastic analysis of func-
tionally graded hollow cylinder with FEM under radially
varing material properties is made. Normalized stress is
obtained for di�erent values of T0. Further, the e�ect of
Poisson’s ration is investigated by changing the parame-
ter ν. The following conclusions could be drawn from the
presented study:
• For anistropic hollow cylinder, maximum variation in
stress exists for positive values of β and minimum varia-
tion appears for negative values of β.
• For homogeneous cylinder the normalized radial stress
is less than 0, where the other two stress values are greater
than 0 at the last values of R.
• By increasing the values of T0, it is observed that value
of normalized stress decreases.
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Figure 15: Distribution of normalized yield stress along radial direc-
tion for di�erent values of β
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Figure 16: Distribution of normalized temperature along radial direc-
tion for di�erent values of β

• Particular cases of Poisson’s ratio study by assigning dif-
ferent values to ν. The behaviour of normalized stress is
highly �uctuating when ν = 0.5.
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