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Abstract: The unsteady convective boundary layer �ow of
a nano�uid along a permeable shrinking/stretching plate
under suction and second-order slip e�ects has been de-
veloped. Buongiorno’s two-component nonhomogeneous
equilibrium model is implemented to take the e�ects of
Brownian motion and thermophoresis into consideration.
It can be emphasized that, our two-phase nano�uidmodel
along with slip concentration at the wall shows better
physical aspects relative to taking the constant volume
concentration at the wall. The similarity transformation
method (STM), allows us to reducing nonlinear govern-
ing PDEs to nonlinear dimensionless ODEs, before being
solved numerically by employing the Keller-box method
(KBM). The graphical results portray the e�ects of model
parameters on boundary layer behavior. Moreover, results
validation has been demonstrated as the skin friction and
the reduced Nusselt number. We understand shrinking
plate case is a key factor a�ecting non-uniqueness of the
solutions and the range of the shrinking parameter for
which the solution exists, increaseswith the �rst order slip
parameter, the absolute value of the second order slip pa-
rameter as well as the transpiration rate parameter. Be-
sides, the second-order slip at the interface decreases the
rate of heat transfer in a nano�uid. Finally, the analysis for
no-slip and �rst-order slip boundary conditions can also
be retrieved as special cases of the present model.
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1 Introduction
Today, nano�uids play a bold role in modern industry and
that important role comes from their great capability in
thermal conductivity and capacity and also other physi-
cal characteristics. Having a low heat transfer in a �uid
would cause limited heat transfer and can lead to limited
heat transfer e�ciency. Producing a solution that com-
prises of suspending solidmetal componentswill enhance
the thermal conductivity characteristics of the base �uid.
This approach is one of the state-of-the-art procedure that
has been exploited to increase theheat transfer coe�cient.
Due to the high thermal conductivity of metal particles,
adding them to a �uid would increase the thermal con-
ductivity and also heat transfer of the resultant mixture
�uid [1–5]. This phenomenon attracts a lot of attention
such as of Oztop and Abu-Nada [6], Buongiorno [7], Tiwari
and Das [8], Dinarvand et al. [9], Nield and Kuznetsov [10],
Grosan andPop [11], Tamimet al. [12], Dinarvand et al. [13],
Sheremet et al. [14] and Maïga et al. [15] to have deeper
examination of the matter. What have been proved and
still demand more research was that the presence of nano
metal particle in a �uid will signi�cantly increase the
thermal conductivity and will ultimately improve the heat
transfer feature on the �uid.

In Ref. [7], Buongiorno made a thorough research on
convective transfer of nano�uids and concludes that, so
far, there has not been a reasonable rationalization for
the extraordinary increase in the thermal conductivity and
viscosity in the resultant nano�uids. Buongiorno’s main
concentration was on additional improvement which oc-
curs in connective situations. He discussed that many re-
searchers try to justify that abnormal increase in the heat
transfer. Some scientists consider the suspended metal
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particles as a reason for that increase, but Buongiorno dis-
putes this reason and argues that this suspension is minu-
tia to justify the observed enhancement. Another group
contemplates turbulence as a potential explanation, how-
ever Buongiorno asserts that there would be no change in
turbulence as nanoparticles appear in the nano�uids, so
turbulence could not justify the enhancement in the heat
transfer. Another untenable justi�cation for heat trans-
fer enhancement is considering the rotation of particles.
Buongiorno has worked out to calculate this e�ect and
proved that the rotation of the particles is too small to
pro�er a satisfactory explanation for the observed heat
transfer improvement. By considering the suspension of
particles, particle rotation, and turbulence as diminutive
e�ects, which cannot rational the diminutive heat trans-
fer improvement, Buongiorno constructed a novel formu-
lation based on the mechanics of the nanoparticle/base-
�uid relative velocity. He came up with a relative speed
and named it the slip velocity, and suggested that the ve-
locity of nanoparticles can be seen as the summation of
velocity on the base �uid and the slip velocity [7]. Buon-
giorno then regarded seven di�erent slip components, in-
cluding: inertia, Brownian di�usion, thermophoresis, dif-
fusiophoresis, Magnus e�ect, �uid drainage, and gravity
settling. He investigated each on these seven velocities
separately and deduced that when there is no turbulence,
Brownian di�usion and the thermophoresis are the most
dominant e�ects. He developed the conservation equa-
tions with regard to these two results. After proposing the
model by Buongiorno [7], recently several researchers, in-
cluding Nield and Kuznetsov [10], Bachok et al. [16], Pop
and Khan [17], Kuznetsov and Nield [18], Dinarvand et
al. [19] and others [20–23], developed their work based on
Buongiorno’s model.

In no-slip �ow, the velocity at the wall of solid con-
tainer is zero, so that �uid components and the wall have
equal velocity. However, there are some circumstances
in which this assumption is not applicable, particularly
in the case of nanoparticles. Hence, di�erent researchers
try to address slip boundary conditions for special prob-
lems [24–26]. The subject of slip is much practical inmedi-
cal engineering such asmaking arti�cial arteries andheart
balloons also in the processes of pipe and wire produc-
tions, as well as extrusion of polymeric materials. Rosca
and Pop [27] examined second order slip suggested by
Wu [28], to scrutinize the varying surface temperature. In
Ref. [29], Rosca and Pop inquire another condition involv-
ing second order slip condition to examine surface heat
�ux. They found the high in�uence of second order slip
on the properties of �ow and heat transfer.

Considering these facts, the authors of this paper stud-
ied the e�ects of second-order slip on unsteady convective
boundary layer �ow of a nano�uid on a permeable shrink-
ing/stretching sheet with suction in surface and to include
the e�ects of Brownianmotion and thermophoresis for the
nano�uids, the two-component nonhomogeneous equi-
librium model of Buongiorno is used. The similarity so-
lution, which relies on nine independent dimensionless
components, was also deployed. In order to solve the de-
rived equations numerically, the Keller-box method was
used. In this paper, the results and discourses are mainly
concentrated on: (1) the multiple solutions [30–32], (2) the
boundary layers behavior and (3) the skin friction andheat
transfer.

2 Problem formulation and model
development

2.1 Obtaining the mathematical formulation

Assuming the unsteady two-dimensional �ow of a
nano�uid driven by a stretching/shrinking �at sheet
(Figure 1). The velocity of plate is assumed as λuw(x), and
λ is shrinking parameter that λ > 0 and λ < 0 indicative
stretching sheet and shrinking sheet, respectively. Re-
garding x and y axes, we consider x-axis along the sheet
and the y-axis is perpendicular to the surface of the sheet,
it’s positive from the surface of sheet toward the nano�uid
�ow (Fig. 1). Here, the sheet to be permeable with v*w (t)
as the identical mass �ux at wall, where v*w (t) < 0 and
v*w (t) > 0 represent suction and injection, respectively.
It is also assumed that the plate has a heat source with
unchanging heat �ux (qw). Referring to Bonjourno’s
model, the mathematical relations are as follows [7]

∇.V = 0, (1)

ρf (V .∇V) = µ∇2V , (2)

(ρc)f (V .∇T) = k∇
2T + (ρc)p

[
DB∇C.∇T +

(
DT
T∞

)
∇T .∇T

]
,

(3)

V .∇C = DB∇2C +
(
DT
T∞

)
∇2T . (4)

In Relations (1)–(4), V = (u, v) denotes velocity, T is tem-
perature and Cis the nanoparticle concentration. More-
over, density of base �uid is shown with ρf , µ and k are
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the viscosity and e�ective thermal conductivity of the
nano�uid, respectively. DB represent the Brownian di�u-
sion coe�cient and DT is thermophoretic di�usion coe�-
cient, and the (ρc)f and (ρc)p are the heat capacity of the
base �uid and e�ective heat capacity of the solid particle,
respectively. A detailed explanation of equations (3) and
(4) can be �nd on [7] and [10].

 

Figure 1: Schematic diagram of the physical model and the typical
patterns of boundary layers

According to scale analysis, Eqs.(1)-(4) can be written
as:

∂u
∂x + ∂v∂y = 0, (5)

∂u
∂t + u

∂u
∂x + v ∂u∂y = υ ∂

2u
∂y2 , (6)

∂T
∂t + u

∂T
∂x + v ∂T∂y = α ∂

2T
∂y2

+ γ
[
DB
(
∂C
∂y

∂T
∂y

)
+
(
DT
T∞

)(
∂T
∂y

)2
]
, (7)

∂C
∂t + u

∂C
∂x + v ∂C∂y = DB

∂2C
∂y2 +

(
DT
T∞

)
∂2T
∂y2 . (8)

The �uid thermal di�usivity α, and nano�uid heat capacit
yγ are written as:

α = k
(ρc)f

, γ =
(ρc)p
(ρc)f

. (9)

De�nition of the stream function ψ(x, y) as:

u = ∂ψ∂y , v = −∂ψ∂x . (10)

which satis�es the continuity equation (Eq. (5)) identically
leaving the remaining three equations i.e., Eqs. (6)–(8), in
the following forms

∂2ψ
∂y ∂t +

∂ψ
∂y

∂2ψ
∂x ∂y −

∂ψ
∂x

∂2ψ
∂y2 = υ ∂

2u
∂y2 , (11)

∂T
∂t +

∂ψ
∂y

∂T
∂x −

∂ψ
∂x

∂T
∂y = α ∂

2T
∂y2

+ γ
[
DB
(
∂C
∂y

∂T
∂y

)
+
(
DT
T∞

)(
∂T
∂y

)2
]
, (12)

∂C
∂t +

∂ψ
∂y

∂C
∂x −

∂ψ
∂x

∂C
∂y = DB

∂2C
∂y2 +

(
DT
T∞

)
∂2T
∂y2 . (13)

Eqs. (5)–(8) exposed to theboundary and initial conditions

t < 0: u = 0, v = 0, T = T∞, C = C∞ forany x, y.

t ≥ 0: u = λuw(x) + uslip(x), v = v*w (t)
− kf ∂T∂y = qw , DB

∂C
∂y +

DT
T∞

∂T
∂y = 0

}
at y = 0,

(14)

u → 0, T → T∞, C → C∞, as y →∞.

Regarding Wu [28], velocity of slip uslip(x) at the plate
surface is driven as:

uslip(x) =
2
3

(
3 − σl2
σ − 3

2
1 − l2
kn

)
δ ∂u∂y

− 1
4

(
l4 + 2

kn2 (1 − l
2)
)
δ2 ∂

2u
∂y2 = M∂u∂y + N ∂

2u
∂y2 , (15)

where

M = 2
3

(
3 − σl2
σ − 3

2
1 − l2
kn

)
δ,

N = −14

(
l4 + 2

kn2 (1 − l
2)
)
δ2, (16)

In Eqs. (15)-(16) kn represent the Knudsen number,
l = min(1/kn, 1), σ and δ indicates the coe�cient of mo-
mentum accommodation (0 ≤ σ ≤ 1) and the molecular
mean free path, respectively. l would be 0 ≤ l ≤ 1 for all
values of Knudsen number. As δ is always positive it leads
N to be negative. Eq. (15) is been used by other researcher
such as [30, 34], and lately by Rosca and Pop [24, 29].

It is worth mentioning that we assume the �ux of
nanoparticles at the surface equal to zero and it is because
of the e�ect of e�ect of thermophoresis. Hence, we have

DB(∂C/∂y) + (DT /T∞)(∂T/∂y) = 0, (17)

denotes that due to thermophoresis the nanoparticles �ux
is zero.

In order to obtain similarity solutions, the temperature
at the wall Tw(x, t), and the nanoparticles volume fraction
at the wall Cw(x, t) are assigned in the following form

Tw(x, t) = T∞ + qw l
kRe1/2

, Cw(x, t) = C∞ + ax
(1 − ct)2

. (18)
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2.2 Similarity transformation

We need a similarity transformation to solve Eqs. (11)–(13)
subject to boundary conditions (14), for this purpose con-
sidering uw(x, t) = ax(1 − ct)−1 in which a and c are posi-
tive constants. Besides, it can be de�ned a dimensionless
normal distance η given by

η =
(

a
υ(1 − ct)

) 1
2

y. (19)

We used the equations (20) to deploy similarity solu-
tion and solve Eqs. (11)–(13).

ψ(x, y, t) =
( υa
1 − ct

) 1
2 xf (η),

θ(η) = T − T∞[(
qw
[
(1 − ct)υ/a

]1/2) /k] , ϕ(η) = C − C∞
Cw − C∞

.

(20)

Considering the streamline Eq. (10), it can be obtained
as

u = ax
(1 − ct) f

′(η), v = −
( υa
1 − ct

) 1
2 f (η), (21)

In which the derivation are with respect to η. We de-
�ned v*w (t) as (22) in order to be able to solve Eqs. (11)–(13)
with similarity solution.

v*w (t) = −
( υa
1 − ct

) 1
2 Vw (22)

wherein Vw describes the rate of transpiration so that Vw >
0, Vw < 0 and Vw = 0 are relate to suction, injection and
an impermeable surface, respectively. Eqs. (11)–(13) sim-
pli�ed to nonlinear ODE by using the similarity transfor-
mations (19) and (20) and are rewritten as follows

f ′′′ + � ′′ − f ′2 − A
(
f ′ + 1

2ηf
′′
)
= 0, (23)

1
Pr θ

′′ + fθ′ − f ′θ − A
(
2θ + 1

2ηθ
′
)
+ Nbθ′ϕ′ + Ntθ′2 = 0,

(24)
1
Le ϕ

′′ + fϕ′ − f ′ϕ − A
(
2ϕ + 1

2ηϕ
′
)
+ 1
Le

Nt
Nb θ

′′ = 0,

(25)

and the transformed boundary conditions as follows

at η = 0 : f (0) = Vw , f ′(0) = λ + mf ′′(0) + nf ′′′(0),
θ′(0) = −1, Nbϕ′(0) + Ntθ′(0) = 0
as η →∞ : f ′(∞) → 0, θ(∞) → 0, ϕ(∞) → 0, (26)

the �rst order slip (m) and second order slip (n) given by

m =
(

a
υ(1 − ct)

) 1
2

M

=
(

a
υ(1 − ct)

) 1
2
{
2
3

(
3 − σl2
σ − 3

2
1 − l2
kn

)
δ
}
> 0,

n =
(

a
υ(1 − ct)

)
N

=
(

a
υ(1 − ct)

){
−14

(
l4 + 2

kn2 (1 − l
2)
)
δ2
}
< 0, (27)

in Eqs.(23)-(25) A is unsteadiness parameter, Pr is the
Prandtl number, Le is the Lewis number, NbandNt repre-
sent the Brownianmotion and the thermophoresis param-
eter, respectively and de�ned as

Pr = υα , Le =
υ
DB

, A = c
a ,

Nb = γDB(Cw − C∞)υ , Nt = γDT(Tw − T∞)υT∞
. (28)

2.3 Quantities of engineering interest

Among many quantities in the formulation of the prob-
lem, three of them including skin friction coe�cient Cf ,
the Nusselt number Nu and the Sherwood number Sh are
noteworthy in empirical cases. These parameters are de-
�ned as follow

Cf =
τw

ρ
(

ax
(1−ct)

)2 ,Nu =
(√

υ(1 − ct)/a
)
qw

kf (Tw − T∞)
,

Sh =

(√
υ(1 − ct)/a

)
qm

DB(Cw − C∞)
, (29)

where τw is the wall shear stress, qw and qm is heat �ux
and nanoparticle mass �ux of the wall, which as

τw = µ
(
∂u
∂y

)
y=0

, qw = −kf
(
∂T
∂y

)
y=0

, qm = −DB
(
∂C
∂y

)
y=0

.

(30)

Based on similarity equations of (20), and considering
Rex = ax2/υ(1 − ct) which is local Reynold number, Cf ,
Nu and Sh would be as

Re1/2x Cf = f ′′(0), Nu =
1
θ(0) , Sh = −ϕ

′(0). (31)

3 Stability analysis
To evaluate the physical realization of the �rst and second
solution, stability analysis in been carried out [35]. Con-
sidering the procedure in [36], variableτthat is associated
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with the initial value problem is introduced. Therefore, the
new variables are

u = ax
(1 − ct) f

′(η, τ), v = −
( υa
1 − ct

) 1
2 f (η, τ),

θ(η, τ) = T − T∞[(
qw
[
(1 − ct)υ/a

]1/2) /k] ,
ϕ(η, τ) = C − C∞

Cw − C∞
, η =

(
a

υ(1 − ct)

) 1
2

y, τ = at.

(32)

replacing (32) into (5)–(8), we would have

∂3f
∂η3 + f ∂

2f
∂η2 −

(
∂f
∂η

)2
− A

(
∂f
∂η + 1

2η
∂2f
∂η2

)
− ∂2f
∂η.∂τ = 0,

(33)
1
Pr
∂2θ
∂η2 + f ∂θ∂η −

∂f
∂η θ − A

(
2θ + 1

2η
∂θ
∂η

)
+ Nb ∂θ∂η

∂ϕ
∂η + Nt

(
∂θ
∂η

)2
− ∂θ∂τ = 0, (34)

1
Le
∂2ϕ
∂η2 + f ∂ϕ∂η −

∂f
∂η ϕ − A

(
2ϕ + 1

2η
∂ϕ
∂η

)
+ 1
Le

Nt
Nb

∂2θ
∂η2 −

∂ϕ
∂τ = 0, (35)

under these boundary conditions

f (0, τ) = Vw ,
∂f
∂η (0, τ) = λ + m

∂2f
∂η2 (0, τ) + n

∂3f
∂η3 (0, τ),

∂θ
∂η (0, τ) = −1, Nb

∂ϕ
∂η (0, τ) + Nt

∂θ
∂η (0, τ) = 0,

∂f
∂η (∞, τ) → 0, θ(∞, τ) → 0, ϕ(∞, τ) → 0, (36)

As speci�ed by Weidman [36], stability of the steady
�ow solution f (η) = f0(η), θ(η) = θ0(η) and ϕ(η) = ϕ0(η)
for Eqs. (5)–(8) is tested using the following

f (η, τ) = f0(η) + e−γτF(η, τ),

θ(η, τ) = θ0(η) + e−γτG(η, τ), (37)

ϕ(η, τ) = ϕ0(η) + e−γτH(η, τ).

Which γ is an unknown eigenvalue parameter and F(η, τ),
G(η, τ) and H(η, τ) are small compared to f0(η), θ0(η)
and ϕ0(η) respectively. Replacing (37) into Eqs. (33)–(35),
we would have the following equations which are trans-
formed into linear equations

∂3F
∂η3 + f

′′

0 F − A
(
∂F
∂η + 1

2η
∂2F
∂η2

)
−
(
2f

′

0 − γ
) ∂F
∂η −

∂2F
∂η.∂τ = 0, (38)

1
Pr
∂2G
∂η2 + f0

∂G
∂η + θ

′

0F − f
′

0G − θ0
∂F
∂η − A

(
2G + 1

2η
∂G
∂η

)
+ Nb

(
θ
′

0
∂H
∂η + ϕ

′

0
∂G
∂η

)
+ 2Ntθ

′

0
∂G
∂η + γG − ∂G∂τ = 0,

(39)

1
Le
∂2H
∂η2 + f0

∂H
∂η + ϕ

′

0F − f
′

0H −
∂F
∂η ϕ0 − A

(
2H + 1

2η
∂H
∂η

)
+ 1
Le

Nt
Nb

∂2G
∂η2 + γH − ∂H∂τ = 0, (40)

Subsequently, the pertaining boundary conditions
would be as

F(0, τ) = Vw ,
∂F
∂η (0, τ) = λ + m

∂2F
∂η2 (0, τ) + n

∂3F
∂η3 (0, τ),

∂G
∂η (0, τ) = −1, Nb

∂H
∂η (0, τ) + Nt

∂G
∂η (0, τ) = 0,

∂F
∂η (∞, τ) → 0, G(∞, τ) → 0, H(∞, τ) → 0, (41)

With regard to Weidman et al. [36], we assign τ = 0, F =
F0(η), G = G0(η) and H = H0(η) in order to achieve the
linear eigenvalue problem (equations (42)-(44))

F
′′′

0 + f
′′

0 F0 − A
(
F

′

0 +
1
2ηF

′′

0

)
−
(
2f

′

0 − γ
)
F

′

0 = 0, (42)

1
Pr G

′′

0 + f0G
′

0 + θ
′

0F0 − f
′

0G0 − θ0F
′

0 − A
(
2G0 +

1
2ηG

′

0

)
+ Nb

(
θ
′

0H
′

0 + ϕ
′

0G
′

0

)
+ 2Ntθ

′

0G
′

0 + γG0 = 0, (43)

1
Le H

′′

0 + f0H
′

0 + ϕ
′

0F0 − f
′

0H0 − F
′

0ϕ0 − A
(
2H0 +

1
2ηH

′

0

)
+ 1
Le

Nt
Nb G

′′

0 + γH0 = 0, (44)

with these boundary conditions

F0(0) = Vw , F
′

0(0) = λ + mF
′′

0 (0) + nF
′′′

0 (0), G
′

0(0) = −1,
(45)

NbH
′

0(0) + NtG
′

0(0) = 0, F
′

0(∞) → 0, G0(∞) → 0,
H0(∞) → 0.

As claimed by Haris [31], the range of possible eigen-
values can be determined by relaxing a boundary condi-
tion on F

′

0(η), G0(η) or H0(η). For instance, we can select
to relax the condition that G0(η) → 0 when η →∞. Thus,
we are able to solve the Eqs. (42)–(45) for a constant value
of γ with regard to the new condition G0(0) = 1.

4 Numerical procedure and
validation

We have to solve a complex boundary value problem that
has been represented in Eqs. (23)-(26) with nine governing
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parameters suchasunsteadinessparameter (A), shrinking
parameter (λ), mass suctionvelocity (Vw), thermophoresis
parameter (Nt), Brownian motion parameter (Nb), �rst-
order slip parameter (m), second-order slip parameter (n),
Lewis number (Le) and Prandtl number (Pr). Our numeri-
cal procedure is the Keller-boxmethod (see Refs. [38–40]).
Further, after converting Eqs. (23)-(25), to a system of �rst-
order ODEs, we can attempt to numerically solve them
using �nite di�erence method with central di�erence ap-
proximation. Then, the linearization process is performed
with help of Newton’s method. Finally, the resultant al-
gebraic system is solved considering the boundary condi-
tions by the block-tridiagonal elimination method. In this
investigation, the pertinent mesh sizes (∆η) were chosen
to 0.001 along with a relative tolerance of 0.00001, so that
it has four decimal places accuracy. On the other hand,
the far �eld boundary condition (η∞) changes between 0.4
and 9 to successfully satisfying them. It is worth mention-
ing that, Pantokratoras [41] has alarmed that some graphi-
cal published results for the velocity and temperature pro-
�les obtainedbypreviousdear investigators arewrongdue
to donot approaching their dependent variables to the cor-
rect values at the edge of the boundary layer, perfectly.

In order to numerical validation of the problem, Table
1 compares the similarity value of the skin friction coe�-
cient (f ′′(0) ) with previously published reports like Rosca
and Pop [24] and Fang et al. [30], when A = 0 and λ = −1.
Table 1 proves that our numerical attitude is in perfect
agreement with other previous publications. Therefore, it
can be deduced that our numerical results are reliable and
accurate.

5 Results and discussion
The unsteady convective boundary layer �ow of a
nano�uid with the utilization of Buongiorno’s two-
component nonhomogeneous equilibrium model has
been studied numerically using the KBM. The in�uences
of the second-order slip on heat and �uid �ows are a
major target for the present study. In this section, the
results for justi�ed values of parameters are obtained and
discussed. The observations have been separated in three
sections as: (1) the multiple solutions, (2) the boundary
layers behavior: �ow, thermal and concentrations �elds,
(3) the skin friction and heat transfer.

 

Figure 2: Variation of f ′′(0) with the shrinking parameter λ for di�er-
ent values of �rst-order slip parameterm.
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Table 1: The influence of the �rst-order slip parameter (m), second-order slip parameter (n) and transpiration rate parameter ( Vw) on
f ′′(0) for shrinking plate, and comparison with results of Rosca and Pop [24] and Fang et al. [30] for steady flow case(A = 0), when λ = −1.
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5.1 Multiple solutions for shrinking plate

Figures 2–7 show the variation of f ′′(0) and 1
/
θ(0) versus

the shrinking parameter λ for di�erent values of the �rst-
order slip parameter (m), the second-order slip parameter
(n) and transpiration rate parameter (Vw). These �gures
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ent values of unsteadiness parameter A .

demonstrate that the number of solutions depend on the
shrinking parameter λ. In more details, one can observe
that the range of the shrinking parameter λ for which the
solution exist increases withm, |n| and Vw and it is pos-
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ferent values of transpiration rate parameter Vw .

 

Figure 10: First and second solutions of temperature pro�le θ(η) for
di�erent values of unsteadiness parameter A .
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Figure 11: First and second solutions of temperature pro�le θ(η) for
di�erent values of transpiration rate parameter Vw .
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Figure 13: First and second solutions of concentration pro�le ϕ(η)
for di�erent values of transpiration rate parameter Vw .

0 0.5 1 1.5
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

R
e x(1

/2
)  C

f

A

Pr=6.8
Nt=0.2
Nb=0.2
Le=10
v

w
=2

λ=1
m= 0.5
n= −0.1 , −0.5 , −0.9

n= −1
m= 2 , 1.5 , 1

Figure 14: E�ect of �rst-order slip parameter m and second-order
slip parameter n on skin friction Re1/2x Cf .



164 | Seyed Mahdi Mousavi et al., Generalized second-order slip for unsteady convective flow of a nanofluid

0 0.5 1 1.5

−0.35

−0.3

−0.25

−0.2

−0.15

R
e x(1

/2
)  C

f

A

v
w

= 1 , 2 , 2.5 Pr=6.8
Nt=0.2
Nb=0.2
Le=10
m=1
n= −1
λ=1

Figure 15: E�ect of transpiration rate parameter Vw on skin friction
Re1/2x Cf .

0 0.2 0.4 0.6 0.8 1
13.3

13.4

13.5

13.6

13.7

13.8

13.9

14

14.1

14.2

N
ur

A

m= 0.5
n= −0.1 , −0.5 , −0.9

Pr=6.8
Nt=0.2
Nb=0.2
Le=10
v

w
=2

λ=1
n= −1
m= 2 , 1.5 , 1

Figure 16: E�ect of �rst-order slip parameter m and second-order
slip parameter n on the reduced Nusselt number Nur.

0 0.5 1 1.5
10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

N
ur

A

Pr=6.8
Nb=0.2
Le=10
v

w
=2

m=1
n= −1
λ=1

Nt= 1 , 0.6 , 0.2
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sible to obtain dual solutions for the similarity equations
(23)–(25). It is seen that the solution exists up to a critical
value of λ(say λ c), with two solution branches for λ > λ c,
a saddle-node bifurcation at λ = λ c and no solutions for

λ < λ c. To determine the stability of the dual solutions, we
solve the eigenvalue problem (42)–(45) and �nd the small-
est eigenvalue γ. Positive value of γ results in an initial de-
cay and the �ow is stable while negative value implies the
growth of disturbance and the �ow is unstable. The small-
est eigenvalues γ for various values of λ, when Nt = Nb =
0.2, Vw = 2, A = 0.5, n = 0, m = 0.01, Le = 10 and
Pr = 6.8 are presented in Table 2. The results indicate that
γ is positive for the upper branch (�rst) solution and neg-
ative for the lower branch (second) solution. So, the up-
per branch solution is stable, while the lower branch is
not. From Figures 2, 3, 6 and 7, the magnitude of |λ c|, are
smaller when the second-order slip parameter is absent
(n = 0) compared to the corresponding values when it is
present (n = −1). Figures 7 and 8 illustrate the critical val-
ues of λ are λ c = −1.8301, −5.1678 and − 11.3119 for
Vw = 1.5, 2 , and 2.5, respectively. Thus, |λ c|, increases
with the increase of the transpiration rate parameter (Vw).
The values of f ′′(0) decrease with the increase of the �rst-
order slip parameter (m) as well as with the increase of
|n| . (see Figures 2 and 4). On the other hand, the values
of 1

/
θ(0) increase with the increase of both m and |n| as

can be seen from Figures 3 and 5, respectively.

Table 2: The smallest eigenvalues γ for various values of λ, when
Nt = Nb = 0.2,Vw = 2, A = 0.5, n = 0, m = 0.01, Le =
10 and Pr = 6.8.

λ Upper branch Lower branch
−0.55 1.456 −1.235
−0.65 1.125 −0.941
−0.75 0.682 −0.587
−0.80 0.596 −0.528
−0.85 0.513 −0.489
−0.90 0.448 −0.415
−0.92 0.374 −0.357
−0.94 0.301 −0.291
−0.95 0.236 −0.229
−0.955 0.179 −0.168
−0.958 0.129 −0.121
−0.9599 0.034 −0.034

5.2 Boundary layers behavior with focus on
shrinking plate case

Figures 8–13 show the velocity, temperature and concen-
tration pro�les, for di�erent values of unsteadiness pa-
rameter (A) and transpiration rate parameter (Vw). What
can be noted from these �gures is that the pro�les for both
�rst and second solutions is satisfactory for the far �eld
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boundary conditions asymptotically, and concur the re-
sults of numerical solution of Section4.1. It is alsomanifest
that the pro�les of the second solution have amuch higher
boundary layer thickness which implies that the top dia-
grams (black sold lines) are the stable solution as opposed
to the bottom diagrams (red dash lines) solution.

Figures 8 and 9 indicate that as the values of the un-
steadiness parameter (A) and transpiration rate parame-
ter (Vw). increase, the velocity of boundary layer in either
solution would increase as well, which suggests that the
hydrodynamic boundary layer thickness would be thinner
when the amplitude of unsteadiness parameter increases.
However, it is worth mentioning that the matter is not ac-
ceptable for the unsteadiness parameter e�ect near the
wall, when there is a reversed �ow near the wall for the
second solutions. As a result, when the transpiration rate
parameter (Vw) increases, the thickness of the hydrody-
namic boundary layer decreases. This phenomenon is in
accordance to that of a viscous �uid. Hence, regardless
of the types of �uids, viscous �uid or nano�uid, suction
always would lead to stabilization of the boundary layer
grow. Moreover, in this research, the suction case (Vw > 0)
has been applied, since in the boundary layer de�nition, it
is basically assumed that the boundary layer thickness is
supposed to be practically very thin.

On the other hand, as the unsteadiness parameter (A)
and transpiration rate parameter (Vw) raise, the tempera-
ture pro�les of the both solutions is compressed which is
shown in Figures 10 and 11 respectively. Therefore, when
unsteadiness parameter (A) and transpiration rate param-
eter (Vw) enhance, the thickness of the thermal boundary
layer for the both �rst and second solutions decreases Fig-
ure 11 depicts the second solution of the temperaturewhen
there is heat generation inside the boundary layer, which
is impossible while the viscous dissipation e�ects has not
been considered in the presentmodel. Thismatter also can
be other reason to decline the second solution of problem.

Figures 12 and 13 illustrate the e�ect of the unsteadi-
ness parameter (A) and transpiration rate parameter (Vw)
on the nanoparticles concentration pro�le. What we no-
ticedherewas that, these pro�les increase near the surface
of the shrinking sheet and climax to its maximum before
falling to its ambient value zero. This e�ect might come
from thermophoresis e�ect on the concentration bound-
ary conditionNbϕ′(0) + Ntθ′(0) = 0. As the transpiration
rate parameter (Vw) intensi�es, nanoparticles concentra-
tion pro�les would decrease which are pertaining to the
lower and upper branch solutions.

5.3 Skin friction coe�cient and Nusselt
number with focus on stretching plate
case

Figures 14 and 15 depict the skin friction Re1/2x Cf for di�er-
ent values of the �rst-order slip parameter (m), the second-
order slip parameter (n) and transpiration rate parame-
ter (Vw) versus the unsteadiness parameter (A) between
0 to 1.5. Figures 14 and 15 demonstrate that skin friction
enhance with increasing the unsteadiness parameter (A).
Moreover, from Figure 14, the skin friction coe�cient re-
duces slightly with the �rst order slip parameter (m) and
increase more strongly with the absolute value of the sec-
ond order slip parameter (|n|). Besides, the Figure 15 de-
picts that the suction increases values of the skin friction
coe�cient that is a predictable topic in the problem condi-
tions. In fact, the boundary layer thickness decreases with
transpiration rate parameter (Vw), where this matter en-
hances velocity gradient on the wall. Consequently, one
can predict a higher skin �ction with the increase in tran-
spiration rate parameter (Vw).

Figures 16 and 17 are made to reveal the rami�ca-
tions of the�rst-order slipparameter (m), the second-order
slip parameter (n), the unsteadiness parameter (A) and
thermophoresis parameter (Nt) on the reduced Nusselt
numberNur(the rate of heat transfer at the surface). An in-
creasing manner of the reduced Nusselt number Nur with
the unsteadiness parameter (A) can be concluded from
Figures 16 and 17. On the other hand, Figure 16 demon-
strates that the declined Nusselt numberNurlessens with
both the �rst-order slip parameter (m) and the absolute
value of the second-order slip parameter (|n|). The e�ects
of the thermophoresis parameter (Nt) on the reducedNus-
selt number Nur for the di�erent unsteadiness parame-
ter (A) is depicted in Figure 17. Obviously, it is observed
that the reduced Nusselt number Nur decrease as the ther-
mophoresis parameter (Nt) decreases, which was already
reported by Dinarvand et al. [5,9]. Consequently, the great-
est heat transfer rate is observed for the situation in which
the thermophoresis parameter (Nt) is very small.

6 Conclusions
In this article, the e�ects of second-order slip on un-
steady convective boundary layer �ow of a Buongiorno’s
nano�uid (in which nanoparticles’ Brownian motion and
thermophoresis e�ects have been considered) along a per-
meable shrinking/stretching plate in the presence of suc-
tion has been investigated. The similarity solution is em-
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ployed to reduce the governing system of partial di�eren-
tial equations to nonlinear ordinary di�erential equations
with the aim of solving themnumerically by the Keller-box
method (KBM). The studyhas been focused on: (1) themul-
tiple solutions, (2) the boundary layers behavior and (3)
the skin friction and heat transfer.

The main outcomes resulting from this research
are as follows. (1) The shrinking parameterλdetermines
how many solutions the problem would have. Physical
parameters would change the range of λ in which the
solution exist and multiple solutions can be achieved
by solving similarity equations. (2) The application of
�rst and second order slips at the wall cause the critical
suction parameter to decrease. (3) For shrinking plate,
as unsteadiness e�ects increase, the velocity component
enhances, whereas the concentration of particles and
the temperature pro�les decline. (4) The in�uence of the
unsteadiness on the nanoparticles concentration pro�les
turns out to be more outstanding as opposed to the veloc-
ity and temperature pro�les. (5) It is necessary to consider
the second order slip in modeling a nano�uid because the
second order slip would amplify the rate of shear stress
at the wall, and also reduces the heat transfer rate in
a nano�uid. (6) The thermophoresis and the Brownian
motion e�ects were found to be key factors in the growth
of heat transfer. The highest values are obtained when
thermophoresis is very small and approaches to zero.
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Nomenclature

A unsteadiness parameter u velocity along the plate
C nanoparticle volume fraction uw(x) surface velocity
Cf friction coe�cient uslip(x) slip velocity at the surface
Cw nanoparticles volume fraction at the wall v velocity normal to the plate
C∞ ambient nanoparticle volume fraction vw(x) mass flux velocity
DB Brownian di�usion coe�cient x, y Cartesian coordinates
DT thermophoretic di�usion coe�cient
f dimensionless stream function
kn Knudsen number
k e�ective thermal conductivity of the nanofluid Greek symbols
L characteristic length α thermal di�usivity
Le Lewis number λ shrinking parameter
m �rst-order slip parameter τ shear stress and new dimensionless time variable
n second-order slip parameter ρ density of the nanofluid
Nb Brownian motion parameter (ρc)f heat capacity of the base fluid
Nt thermophoresis parameter (ρc)p e�ective heat capacity of nanoparticle
Nu Nusselt number µ dynamic viscosity of nanofluid
Pr Prandtl number ν kinematic viscosity of nanofluid
qm mass flux ψ stream function
qw heat flux η similarity variable
Rex local Reynolds number θ dimensionless temperature
Sh Sherwood number ϕ dimensionless nanoparticle volume fraction

T fluid temperature γ nanofluid heat capacity ratio and eigenvalue
parameter

Tw temperature at the wall δ molecular mean free path
T∞ temperature of the ambient fluid σ momentum accommodation coe�cient
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