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Abstract: Organic bulk heterojunction solar cells are a 
promising candidate for low-cost next-generation pho-
tovoltaic systems. In bulk heterojunction polymer solar 
cells, conjugated polymers and fullerene derivatives 
[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) func-
tion as the electron-donating and electron-accepting 
materials, respectively. In this paper, we report the 
photovoltaic response of the solution-processed bulk 
heterojunction (BHJ) solar cell based on poly (2-methoxy-
5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): 
modified PCBM (MPCBM) blend. The BHJ showed power 
conversion efficiency (PCE) up to 1.78%. The PCE has been 
further improved up to 1.95% after thermal annealing of 
the active layer. The increase in the PCE with the thermally 
annealed blend is mainly attributed to the improvement 
in incident photon to current efficiency (IPCE) and short 
circuit photocurrent (Jsc).

Keywords: active layer; annealing; MEH-PPV; modified 
PCBM; organic bulk heterojunction.

Abbreviations: AM, air mass; BHJ, bulk heterojunction; 
C60, Buckminsterfullerene; D-A, donor-acceptor interface; 
FF, Fill factor; HOMO, highest occupied molecular orbital; 
IPCE, incident photon to current efficiency; ITO, indium 
tin oxide; Jsc, short circuit photocurrent; J-V, current 
density-voltage characteristic; LUMO, lowest unoccu-
pied molecular orbital; MEH: PPV, poly (2-methoxy-5-(2-
ethylhexyloxy)-1,4-phenylenevinylene); MPCBM, modified 

[6,6]-phenyl-C61-butyric acid methyl ester; η, efficiency; 
NIR, near infrared; PCBM, [6,6]-phenyl-C61-butyric 
acid methyl ester; PCE, power conversion efficiency; 
PEDOT: PSS, poly (3,4-ethylenedioxythiophene)-block-
poly(styrenesulfonate); PSCs, polymer solar cells; SEM, 
scanning electron microscopy; THF, tetrahydrofuran; Voc, 
open circuit voltage.

1  Introduction
Polymer-based organic solar cells have attracted atten-
tion as a renewable energy source due to their low cost, 
ease of manufacture, and compatibility with flexible 
substrates [1, 2]. Materials such as small organic mole-
cules [3, 4], star-shaped oligomers [5, 6], and conjugated 
low-band gap polymers [7, 8] due to their inexpensive, 
easily processable and tailored functionality by molecu-
lar design and chemical synthesis are under extensive 
research worldwide. One of the important alternative fol-
lowed to improve the photovoltaic efficiencies is donor-
acceptor (D-A) proximity in the devices by using blends 
of donor-like and acceptor-like molecules or the poly-
mers, which are called D-A bulk heterojunction solar 
cells [9–11]. Thus, in bulk heterojunction polymer solar 
cells, conjugated polymers and fullerene derivatives 
[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) func-
tion as the electron-donating and electron-accepting 
materials, respectively [12, 13]. This composite layer 
can be prepared as a large area in a single step by using 
techniques such as spin coating, inkjet printing, spray 
coating, gravure coating, roller casting, etc. [14]. By a 
simple spin coating from a solution of these homogene-
ous blends of conjugated polymer and fullerene deriva-
tives, largely increased interfacial area (where charge 
separation occurs and recombination is reduced) can be 
achieved.

The main difference between the conventional or 
inorganic solar cells and the BHJ solar cells are the charge 
transport mechanism as well as their photovoltaic behav-
ior, as in BHJ solar cell excitons are generated in the 
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photovoltaic layers, and at the donor-acceptor interfaces, 
these excitons dissociates into electrons and holes.

Electroluminescent semiconducting polymers 
(ELSCPs) have good optoelectronic characteristics 
because their polymer main chains are composed of alter-
nately conjugated double bonds and because the delocal-
ized π electrons can move along each main chain or hop 
between the adjacent main chains [15]. There is a wide 
application of poly para-phenylenevinylene (PPV) and 
its derivatives in organic solar cells due to their semi-
conducting and luminescence properties. Thus, poly 
(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) 
(MEH-PPV), which is a class of PPVs and a well-known 
luminescent polymer material having low driving voltage 
and high luminescent efficiency [16, 17], has been widely 
utilized in fluorescent sensors, electrochromic devices 
[18–20], polymer light-emitting diode [21], and as a donor 
material in the BHJ photovoltaic cells [22]. This hairy rod 
polymer MEH-PPV is highly soluble in common organic 
solvents, such as tetrahydrofuran (THF), chlorobenzene, 
chloroform, xylene, and toluene because its backbone is 
bonded with the short flexible ethereal side chains [23]. 
The photoactive layer of organic solar cells based on poly 
(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene) 
and [6,6]-phenyl C61 butyric acid methyl ester (MEH-
PPV:PCBM), have been studied over the past years [24, 
25], and many attempts for making efficient photovoltaic 
(PV) cells using these composite films have been pub-
lished, with limited efficiency [26, 27]. In 2013, Yang et al. 
have synthesized a MEH-PPV:PCBM (1:4 weight ratio) BHJ 
device and added ditertbutyl peroxide (DTBP) as an addi-
tive and found the increase in the efficiency for the device 
containing 0.5 wt% DTBP was highest [28]. Jung et al. also 
prepared solutions of conjugated polymer MEH-PPV and 
PCBM in xylene (XY), O-dichlorobenzene (O-DCB), chlo-
roform (CF), chlorobenzene (CB), toluene, and THF in the 
optimized 1:4 weight ratio [29].

To increase the power conversion efficiency (PCE) 
value, the Voc, Jsc, and FF of the device were needed to be 
enhanced. The Voc can be augmented by raising the lowest 
unoccupied molecular orbital (LUMO) level of the fullerene 
relative to the highest occupied molecular orbital (HOMO) 
level of the donor [30, 31]. The Voc of a BHJ solar cell may 
also be increased using electron irradiation method [32]. 
Ideally, the polymers should have a broad absorption area 
in the solar spectrum; thus, efficient light harvesting can 
be ensured and a high charge carriers mobility for charge 
transport with a suitable energy levels of polymers is 
required that matches those of the fullerides. The discov-
ery of photoinduced electron transfer from a conjugated 
polymer as a donor to buckminsterfullerene C60 as an 

acceptor [9] provided a molecular approach to enhanced 
photovoltaic conversion.

In 2004, cell (MEH-PPV:PCBM) with 2.9% efficiency 
was demonstrated under 100 mWcm-2 illumination 
intensity [24]. Yang et  al. reported a lower conversion 
efficiency for similar cells based on MEH-PPV and poly-
mers with substituents containing C60 moieties [33]. Thus, 
to enhance the performance and/or efficiency of a BHJ 
photovoltaic cell, we need to make much more effort to 
modify the substituent of PCBM by introducing substitu-
ents on its phenyl ring [34, 35] or by replacing the phenyl 
ring with other groups [36, 37]. PCBM bisadduct [38] and 
PCBM multiadduct [39] as well as endohedral fullerenes 
[40] were reported as PV acceptor material in the last few 
years. The LUMO energy levels for these fullerene deriva-
tives are higher, which results in higher Voc as well as 
higher PCE [38, 40] for P3HT-based solar cells.

Synthesis of a modified PCBM, which is soluble in THF, 
was reported by Mikroyannidis et  al. [41]. Owing to the 
presence of the cyanovinylene 4-nitrophenyl segment, the 
modified PCBM showed stronger absorption in the visible 
region of solar spectrum than the PCBM. In 2013, Matsuo 
et  al. reported that the addition of a dihydromethano 
group to the fullerenes improves the performance of BHJ 
organic solar cells [42]. Recently, the highest efficiency of 
3% has been demonstrated for a MEH-PPV:MAPbI3-based 
BHJ like solar cell by Rizzo et  al. [43]. The efficiencies 
obtained for different BHJ photovoltaic devices are sum-
marized in Table 1.

In this paper, we have reported the photovoltaic 
response of the solution-processed bulk heterojunction 
(BHJ) solar cell based on the MEH-PPV:modified PCBM 
blend. The electrical and optical properties of the blend 
have been investigated. We have also observed the effect 
of thermal annealing on the photovoltaic performance of 
the MEH-PPV:modified PCBM or MEH-PPV:MPCBM-based 
devices.

2  Materials and methods

2.1  Materials and characterization methods

The polymer solar cells based on an interpenetrated 
network of conjugated polymer poly [2-methoxy-5-(2-
ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), fuller-
ene derivative [6,6]-phenyl-C61-butyric acid methyl ester 
(PCBM) and its modified form (MPCBM) were fabricated. 
MEH-PPV, PCBM, and PEDOT:PSS were purchased from 
Aldrich Chemicals and used as such. The modified PCBM 
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(MPCBM) was supplied by Prof. Mikroyannidis, University 
of Patra, Greece and its synthesis was given elsewhere 
[41]. The chemical structure of the donor (MEH-PPV) 
and the acceptor (PCBM and Modified PCBM) is shown 
in Figure  1. All other materials and solvents were com-
mercially purchased and were used as supplied. UV-vis 
spectra were recorded on a Hitachi-330 spectrometer 
with THF as solvent. The morphological images of the 
films were obtained from scanning electron microscope 

Table 1: The efficiencies obtained for different BHJ photovoltaic devices.

S. no.  Device   Voc (V)  Jsc (mAcm-2)  FF  PCE (η%)  References

1   P3HT/bisPC60BM   0.724  9.14  0.68  4.5  [38]
2   P3HT/PC60BM   0.61  8.94  0.60  2.4  [39]
3   BDT-based low band gap polymer PBDTTT-E   0.62  13.2  0.63  5.15  [44]
4   BDT-based low band gap polymer PBDTTT-C   0.70  14.7  0.64  6.58  [45]
5   BDT-based low band gap polymer PBDTTT-CF   0.76  15.2  0.66  7.73  [46]
6   P3HT/PC60BM   0.62  10.9  0.62  4.18  [37]
7   D1:PCBM   0.84  6.12  0.51  2.62  [47]
8   PB:PCBM (annealed)   0.80  7.9  0.56  3.54  [7]
9   BDT-based low band gap polymer PBDTTT-S   0.76  14.1  0.58  6.22  [48]
10   MEH-PPV:PCBM:BCP   0.75  2.95  0.44  0.98  [49]
11   MEH-PPV:PCBM:Bphen   0.74  3.98  0.44  1.30  [49]
12   M2:PCBM   0.68  3.94  0.46  1.23  [50]
13   M2:F   0.84  6.75  0.48  2.72  [50]
14   PDTG-TPD polymer-based device   0.86  14.0  0.67  8.1  [51]
15   DCV5T-Bu4:PCBM [CB:CN (0.375%) as solvent]  1.11  6.5  0.41  3.0  [52]
16   DCV5T-Bu4:PCBM (ODCB as solvent)   1.08  5.7  0.40  2.5  [52]
17   BBTSBS/PCBM(annealed 120°C)   0.62  0.56  0.29  0.10  [53]
18   MEH-PPV:PCBM:GNP   0.56  0.80  0.59  0.26  [54]
19   P3HT:PCBM   0.60  9.58  0.69  4.10  [55]
20   P3HT/PC70BM with 2% n-dodecylthiol   0.641  8.59  0.58  0.032  [56]
21   Tempered P3HT:PCBM   0.58  -8.61  0.59  2.99  [57]
22   PEDOT:PSS/PPABT:TiO2 nanoparticles   0.26  1.29  0.37  0.125  [58]
23   AnE-PVstat:PCBM   0.825  5.13  0.58  2.46  [59]
24   AnE-PVstat:PCBM with 0.01% of Ag NPs   0.76  8.46  0.48  3.10  [59]
25   PEDOT:PSS (P3HT/PCBM/PEDOT:PSS)   0.60  11.92  0.62  4.43  [60]
26   P3HT/PCBM/MoOx (annealed 250°C as a HEL)   0.65  12.4  0.53  4.63  [60]
27   AgInSe2.PCBM.P3HT   0.50  3.71  0.40  0.75  [61]
28   MEH-PPV:MAPbI3   0.81  9.11  0.36  3.0  [43]

Figure 1: Chemical structures of (A) MEH-PPV, (B) PCBM, and (C) 
modified PCBM (MPCBM).

(Zeiss, 20 KV). The crystallinity of the blends was studied 
using the X-ray diffraction (XRD) technique (Panalytical 
make USA) having CuKα, as the radiation source of wave-
length λ = 1.5405 Å with the composite films coated on the 
quartz substrate. The current-voltage (J-V) measurement 
of the devices was carried out on a computer-controlled 
Keithley-238 source meter.

2.2  Device fabrication and characterization

The bulk heterojunction devices were fabricated accord-
ing to the following procedure. First, the indium-doped tin 
oxide (ITO)-coated glass substrate was cleaned with deter-
gent, then ultrasonicated in deionized water, acetone, and 
isopropyl alcohol and finally dried overnight in an oven at 
80°C. To supplement this bottom electrode, a hole trans-
port layer of PEDOT:PSS (BAYTRON, conductive grade) of 
thickness 80 nm was spin coated from aqueous solution 
on the ITO-coated glass substrate and was subsequently 
dried at 80°C for 20 min. However, Xu et al. has found effi-
ciencies for the different ratios of MEH-PPV:PCBM blends 
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(1:3, 1:4, and 1:5) and reported the highest efficiency for 1:4 
ratio as 1.42% after annealing [62]. Thus, the blend solu-
tions of MEH-PPV:PCBM (1:4) and MEH-PPV:MPCBM (1:4) 
were prepared using THF as a solvent in a concentration of 
10 mg/ml and stirred for 2 h. The photoactive layer of the 
prepared blend solutions was deposited by spin coating 
on the top of the PEDOT:PSS layer. Finally, an aluminum 
(Al) electrode (thickness about 100 nm) was deposited by 
thermal evaporation under high vacuum (1 × 10-5 mbar). 
The effective area of the devices is 20 mm2. For thermal 
annealing, the blend films were placed on a hot plate and 
annealed at a temperature of 100°C for 10 min, before the 
deposition of Al electrode. The device structure is shown 
in Figure 2.

We have designated the devices based on different 
blends as follows:
ITO/PEDOT:PSS/MEH-PPV:PCBM/Al (Device D1).
ITO/PEDOT:PSS/MEH-PPV:MPCBM/Al (Device D2).
ITO/PEDOT:PSS/(MEH-PPV:MPCBM) thermally annealed/ 
Al (Device D3).

The current-voltage (J-V) measurement of these devices 
was carried out on a computer-controlled Keithley-238 
source meter in the dark as well as under illumination. 
A halogen light source was used to give an irradiance 
of 100  mW/cm2 (equivalent of one sun at AM 1.5) at the 
surface of the device.

3  Results and discussion

3.1  �Electrical properties of MEH-PPV and 
MPCBM

The energy level diagram of MEH-PPV, PCBM, and MPCBM 
are shown in Figure 3. The LUMO levels of PCBM and 
MPCBM are -3.95 eV and -3.80 eV, respectively. The LUMO 
level of MPCBM is raised by 0.15 eV in comparison with 

+ -
V

Al contact

Active layer
PEDOT:PSS

ITO

Glass substrate

Figure 2: Schematic diagram of bulk heterojunction devices.

Figure 3: Energy level diagram of MEH-PPV, PCBM, and MPCBM.

that of PCBM. The LUMO and HOMO levels of used mate-
rials were determined by using cyclic voltammetry (CV) 
measurements. To calculate the same, the following equa-
tions were used [63, 64]:

onset
HOMO oxE -q (E 4.7) eV= +

onset
LUMO redE -q (E 4.7) eV= +

where, Ered
onset is the onset reduction potential measured in 

volts (V) versus Ag+/Ag.
Eox

onset is the onset oxidation potential measured in 
volts (V) versus Ag+/Ag.

This shift is attributed to the presence of the cyanovi-
nylene 4-nitrophenyl segment in the molecule of MPCBM, 
which increase its electron affinity or acceptor strength. 
The higher LUMO energy level of MPCBM is desirable for 
its application as acceptor in polymer bulk heterojunc-
tion photovoltaic devices to get a higher Voc. As the LUMO 
(-3.80 eV) of MPCBM is very close to the work function of 
the Al (-4.1 eV) electrode, the interface between MPCBM 
and Al forms a nearly ohmic contact (barrier of about 
0.30  eV) for electron injection from the LUMO level of 
MPCBM to Al. Similarly, the HOMO (-5.2 eV) of MEH-PPV 
is very close to the work function of PEDOT:PSS (-5.1 eV) 
electrode, the interface between MEH-PPV and ITO elec-
trode form a nearly ohmic contact for hole injection 
from the HOMO level of MEH-PPV to ITO electrode. This 
indicates that MEH-PPV and MPCBM behave as p-type 
(electron donor) and n-type (electron acceptor) organic 
semiconductor, respectively.

It can be seen from the energy level diagram that 
the band gap of MEH-PPV is 2.20 eV, and the difference 
between the LUMO levels of MEH-PPV and MPCBM is 
about 0.80 eV. This difference is greater than the exciton 
binding energy, which is a prerequisite for efficient pho-
toinduced charge separation in the BHJ active layer.
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increase in the optical absorption after thermal annealing 
has been observed for conjugated polymers [68] and small 
molecules [69]. This feature is attributed to the aggrega-
tion/interchain interactions and the increase in the crys-
tallinity of the material, which enhances the intensity of 
π-π* electronic transitions. Therefore, the carrier mobili-
ties in the thermally annealed BHJ organic solar cells 
(OSCs) are more balanced and may be one of the factors 
increasing the PCE of the devices on the basis of the ther-
mally annealed active layer. The thin film absorption of 
MEH-PPV:MPCBM blend also red shifts and displays more 
distinct vibronic structures, when blend is annealed at 
100°C temperature for 10 min. The red shift in absorption 
of blend indicates an increased intermolecular ordering 
and planarity in the polymer backbone.

3.3  �Photovoltaic properties of devices 
based on BHJ

The current-voltage (J-V) characteristics of the devices 
under illumination intensity of 100 mW/cm2 are shown 
in Figure 5. The photovoltaic parameters, i.e. short circuit 
current (Jsc), open circuit voltage (Voc), fill factor (FF), and 
PCE of the devices are listed in Table 2. It can be seen from 
this table that the Voc is increased from 0.75 V for PCBM-
based device to 0.89 V for the MPCBM-based device. The 
higher value of Voc for the PSC device based on MEH-
PPV:MPCBM is attributed to the higher LUMO energy level 
of MPCBM because it is well known that the Voc of PSCs is 
proportional to the difference between the HOMO of the 
donor and the LUMO of the acceptor [70]. The increase 
in the Jsc for the device based on the MEH-PPV:MPCBM in 

3.2  Optical properties of blends

The absorption spectra of MEH-PPV, PCBM, modified 
PCBM (MPCBM) and its blend are shown in Figure 4. It can 
be seen that the absorption spectra of the blend show the 
combination of the individual components. In particular, 
the absorption peak around 510 nm corresponds to MEH-
PPV, which is associated with the interchain π-π* transi-
tion [65], whereas the peak around 630  nm corresponds 
mainly to MPCBM. The addition of PCBM to MEH-PPV 
shows an increment in the optical absorption which means 
that PCBM helps in light harvesting in the visible region. 
The absorption peaks of MPCBM appears in the UV region 
( < 400 nm). Interestingly, MPCBM showed a much stronger 
absorption than PCBM for the region of 400–800 nm.

The modified PCBM (MPCBM) showed a stronger 
absorption in the visible region of solar spectrum than 
PCBM due to the presence of the cyanovinylene 4-nitro-
phenyl segment [66, 67]. It has been well established that 
the incorporation of this segment to various polymers [3, 
8] or small molecules [3, 4, 66, 67] broadened their absorp-
tion spectra and extended them into the near-infrared 
(NIR) region. The MEH-PPV:MPCBM blend also shows 
a broad absorption from 350 to 640 nm, which closely 
matches with the solar spectrum. Therefore, we expect 
more photons to be absorbed by the MEH-PPV:MPCBM 
blend compared to MEH-PPV:PCBM.

The blend with MPCBM shows not only a broader 
band absorption but also an enhanced intensity of the 
absorption, which is further increased when the blend 
is thermally annealed at 100°C for 10 min. This type of 
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comparison to MEH-PPV:PCBM is attributed to the broader 
absorption of the MEH-PPV:MPCBM blend, which causes 
an enhancement in the photogenerated excitons in the 
blend, resulting in a slightly higher photocurrent.

3.4  X-ray diffraction

Thin film XRD was used to determine the differences in 
crystallinity of the blended films before and after thermal 

Table 2: Photovoltaic parameters of devices D1, D2, and D3.

Devices  Short circuit 
current (Jsc) 

(mA/cm2)

  Open circuit 
voltage  
(Voc) (V)

  Fill 
factor 

(FF)

  Power 
conversion 

efficiency (η%)

(D1)   5.60  0.75  0.31  1.30
(D2)   5.90  0.89  0.34  1.78
(D3)   6.20  0.90  0.35  1.95

(a) Blend (MEH-PPV:MPCBM)
(b) Thermally annealed blend
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Figure 6: XRD patterns of MEH-PPV:MPCBM blend and thermally 
annealed blend.

A B

Figure 7: SEM images of (A) MEH-PPV:MPCBM film and (B) MEH-PPV:MPCBM thermally annealed blend films.

annealing. Figure 6 gives the diffraction patterns of the 
as-cast and annealed blends. The as-cast blend film 
exhibits a peak centered at 2θ = 5.0° as shown in Figure 6. 
The diffraction intensity of the thermally annealed blend 
increases, which indicates a higher degree of crystallin-
ity. These changes in the film crystallinity after thermal 
annealing agree with what is observed in the absorption 
spectra. Because most of the fullerene acceptors, such as 
PCBM, do not show any diffraction patterns in the range 
of 2θ values used [71], the changes in crystallinity of the 
blended film after thermal annealing are mainly attrib-
uted to an increase in crystallite size of the donor material 
(MEH-PPV). The increase in the crystallinity of MEH-PPV 
upon thermal annealing leads to an improvement in the 
hole mobility that increases the overall PCE.

3.5  Surface morphology

The morphology of the spin-coated polymer thin films is 
an important factor to fabricate polymer solar cells [72, 73]. 
The surface morphological changes of MEH-PPV:modified 
fullerene (1:4) films and its thermally annealed films 
were monitored using SEM as shown in Figure 7A and B, 
respectively. It can be clearly seen from the SEM images 
that surface morphology of the thermally annealed MEH-
PPV:MPCBM layers shows higher surface peaks and an 
obvious increase in surface roughness as shown in Figure 
7B. This can be the result of an increased nanoscaled 
phase separation between the crystalline MEH-PPV and 
the modified PCBM (MPCBM) acceptor. Increase in surface 
roughness allows more space for MEH-PPV crystallites to 
form, thus, increases crystallinity (as per proved by XRD 
pattern) as well as interfacial contact area between the 
PEDOT:PSS and MEH-PPV:MPCBM layer. This allows more 
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efficient hole collection at the anode, which improves Jsc 
and FF and also increases absorption of the active layer.

4  Conclusions
We have fabricated polymer solar cells with the MEH-
PPV:MPCBM blend, sandwiched between ITO/PEDOT:PSS 
and Al electrodes. The Voc and Jsc values of the BHJ device 
based on MEH-PPV:MPCBM blend cast from THF solvent 
reached 0.90 V and 5.90 mA/cm2, respectively, leading to an 
overall PCE of ~1.78%, which is significantly improved com-
pared to a BHJ device based on MEH-PPV:PCBM (1.30%). 
The increase in Jsc has been attributed to the stronger absorp-
tion of MPCBM in the visible region, which is missing for 
PCBM. However, the increase in the Voc has been ascribed to 
the higher LUMO. Moreover, this has been further increased 
to 1.95%, when the MEH-PPV:MPCBM blend was thermally 
annealed before the deposition of the Al electrode. We have 
observed that the improvement in the PCE has been mainly 
attributed to the increase in the Jsc.
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