
Nanotechnol Rev 2017; 6(1): 15–32

Review

Konstantin S. Mineev* and Kirill D. Nadezhdin

Membrane mimetics for solution NMR studies of 
membrane proteins
DOI 10.1515/ntrev-2016-0074
Received August 30, 2016; accepted November 1, 2016; previously 
published online December 20, 2016

Abstract: Membrane proteins are one of the most challeng-
ing and attractive objects in modern structural biology, as 
they are targets for the majority of medicines. However, 
studies of membrane proteins are hindered by several 
obstacles, including their low ability to crystallize, highly 
dynamic behavior of some of their domains, and need for 
membrane-like environment. Although solution nuclear 
magnetic resonance (NMR) is a very powerful technique 
of structural biology in terms of the amount of provided 
data, it imposes several limitations on the object under 
investigation, with the main constraint being related to the 
size of the object. For this reason, the membrane mimetic 
has to form particles of small size and simultaneously to 
properly simulate the bilayer membrane to be applicable 
for solution NMR spectroscopy. Here we review the recent 
advances in the field of membrane mimetics for solution 
NMR studies, discuss the advantages and drawbacks of 
specific membrane-like environments, and formulate the 
criteria for the selection of proper environment for a par-
ticular membrane protein or domain.
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Abbreviations: MP, membrane protein; NMR, nuclear 
magnetic resonance; TM, transmembrane; p75NTR, p75 
neurotrophin receptor; DAGK, diacylglycerol kinase; LPN, 
lipid-protein nanodisc; SMA, styrene and maleic acid; 
SMALP, SMA-lipid particle; CMC, critical micelle concen-
tration; TROSY, transverse relaxation optimized spec-
troscopy; DM, decyl maltoside; DDM, dodecyl maltoside; 

DPC, dodecylphosphocholine; LDAO, lauryldimethyl-
amine-N-oxide; SDS, sodium dodecyl sulfate; LMPG, 
1-myristoyl-sn-glycero-3-phospoglycerol; LPPG, 1-palmitoyl- 
sn-glycero-3-phospoglycerol; DMPC, 1,2-dimyristoyl-sn- 
glycero-3-phosphocholine; DHPC, 1,2-dihexanoyl-sn-glyc-
ero-3-phosphocholine; DH7PC, 1,2-diheptanoyl-sn-glycero- 
3-phosphocholine; CHAPS, 3-[(3-cholamidopropyl)dimethyl
ammonio]-1-propanesulfonate; CHAPSO, 3-[(3-cholamido-
propyl)dimethylammonio]-2-hydroxy-1-propanesulfonate; 
TFE, trifluoroethanol.

1  Introduction
Membrane proteins (MPs) are one of the most attrac-
tive objects in modern structural biology. A total of 
20–30% of human genome open reading frames encode 
the MPs [1], and MPs represent the vast majority of drug 
targets [2]. MPs take part in the development of many 
severe diseases, including cancer, neurodegenera-
tive and autoimmune disorders, pain syndromes, etc. 
Altogether, the listed facts highlight the importance of 
structural studies of MPs. Solving the spatial structures 
of such proteins would allow the deep understanding 
of the structure-function relationship for MPs, rational 
protein engineering, and drug design. By contrast, of 
100,000 structures that are available in the Protein Data 
Bank, only 3% are annotated as MPs, implying that the 
MPs are underinvestigated from the structural viewpoint 
for several reasons. Many MPs, including all type I or 
bitopic proteins, are highly dynamic and often contain 
intrinsically disordered regions, and it prevents their 
crystallization and high-resolution studies by cryo-elec-
tron microscopy. Recombinant MPs are also very diffi-
cult to produce: yields in eukaryotic cells are extremely 
low [3] and refolding of MPs that are obtained in inclu-
sion bodies of bacterial cells is not straightforward 
and is often a state-of-the-art task. Some MPs contain 
both the extracellular and the intracellular globular 
domains that require the different redox properties of 
the environment – cysteine residues are engaged in 
disulfide bridges outside the cell and are reduced in the 
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cytoplasm. Last, but not the least, MPs require the spe-
cific environment to retain their native structure. Almost 
all conventional approaches of structural biology are 
not applicable in cells and even in liposomes. Therefore, 
the special membrane mimetics are necessary, which 
contain the unnatural components affecting the proper-
ties of protein under investigation, and this is especially 
important in the case of solution nuclear magnetic reso-
nance (NMR) spectroscopy.

Solution NMR is one of the most powerful techniques 
of structural biology in terms of the amount of provided 
data. Apart from the determination of high-resolution 
spatial structures, NMR is used to study the intramolec-
ular mobility of proteins, to monitor the conformational 
transitions, and to investigate the kinetic and thermody-
namic parameters of various processes. However, the wide 
spread of NMR in structural studies is limited because of 
the several experimental problems. The major limiting 
restraint of NMR spectroscopy is the size of the object 
under investigation. Large molecules tumble slowly in 
solution, which results in the enhanced transverse relaxa-
tion, broad lines, loss of sensitivity, and resolution in NMR 
spectra. In addition, large molecules contain many nuclei 
that give rise to the signals in NMR spectra, which, in turn, 
becomes overcrowded and hard to interpret. This was in 
part overcome by the recent advances. Transverse relaxa-
tion optimized spectroscopy (TROSY) pulse sequences 
that were developed for the aromatic [4], amide [5, 6], and 
methyl [7] groups allow to decelerate the transverse relax-
ation and enhance the sensitivity, whereas the novel tech-
niques of specific labeling of protein methyl groups and 
other moieties [8–13] simplify the analysis of NMR spectra 
and abolish the dipole-dipole interactions between 
protons, which contribute a lot to the transverse relaxa-
tion. However, the size of molecules/molecular complexes 
studied by NMR in solution rarely exceeds 50–70  kDa. 
Investigation of larger objects is usually a state-of-the-
art work [14, 15] and requires the great time and money 
expenses. Therefore, if an MP needs to be studied by NMR 
in solution, the membrane mimetic has to form particles 
that are relatively small and simultaneously be alike the 
lipid bilayer to adequately model the properties of the 
real cell membrane. Conventional membrane mimetics 
that are applicable for solution NMR spectroscopy are 
well described in several recent reviews [16–26]. For that 
reason, we will give a brief overview on the types of avail-
able membrane mimetics (Figure 1), including the most 
recent data, and then focus on the main problem of NMR 
studies of MPs – approaches to the rational selection and 
optimization of a membrane-like environment for the par-
ticular protein.

2  �General types of membrane 
mimetics for solution NMR 
studies

2.1  �Organic solvents

MPs are usually not soluble in water because of the pres-
ence of large hydrophobic regions. One of the strategies 
to shield the hydrophobic parts of the MP is to add up 
to 100% of one or mixture of organic solvents such as 
methanol, ethanol, isopropanol, trifluoroethanol (TFE), 
chloroform, dimethyl sulfoxide, etc. For example, frag-
ments of bacteriorhodopsin were studied in organic 
solvents by solution NMR [27–29], and the mixture of 
chloroform-methanol-water (4 : 4 : 1) was shown to 
mimic the membrane properties for the transmembrane 
(TM) H+-transporting subunit c of the F1Fo ATP synthase 
[30]. Although MPs usually adopt the proper secondary 
structure in such mixtures, the tertiary structure is not 
formed because of the absence of the expressed interface 
between the polar and the nonpolar portions of the solu-
tion. Therefore, the use of organic solvents is nowadays 
restricted to the studies of secondary structure of the 
single-TM or two-span helical proteins [31–33] and small 
membrane-active peptides [34, 35].

2.2  �Detergents

Detergents are historically the first membrane mimetic, 
which is indeed membrane-like. One of the most impor-
tant characteristics of detergents is the critical micelle 

Figure 1: Shape and architecture of particles of membrane mimet-
ics, applicable for the solution NMR spectroscopy. Orange cylinders 
represent the MSP or other belt-forming protein, blue band is the 
SMA molecule, and green ribbon is the amphipol. Gray are the 
molecules of detergent and lipids are shown in yellow.
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concentration (CMC). Below the CMC, detergents are 
soluble in water, whereas above the CMC, the amphipathic 
properties of detergent molecules cause the formation of 
aggregates – detergent micelles with the hydrophobic core 
and hydrophilic outlet. Detergent micelles have a distinct 
border between the polar and the hydrophobic compart-
ments, which makes the various parts of MPs to interact 
with one another within the micelle and to form the ter-
tiary structure. Detergents are traditionally called “harsh” 
and “mild” based on their ability to denature the MPs [36]. 
Harsh detergents are commonly ionic and are used to dis-
solve the bacteria inclusion bodies or protein precipitates 
of other kinds, whereas mild detergents are uncharged, 
sometimes bear the hydrocarbon moieties, and are used 
to extract the proteins from the membrane, retaining 
their native structure and activity. The properties of lipid 
packing inside the particles and the curved shape of the 
micelle surface are quite far away from the characteris-
tics of real cell membrane. This may cause the improper 
folding of the MP and is definitely a disadvantage of this 
membrane mimetic. By contrast, micelles have a relatively 
small size (20–100 kDa), which is extremely important for 
solution NMR spectroscopy. Besides, many detergents are 
now available in the deuterated form. As we will show in 
the next section, MPs may retain their native structure in a 
specific detergent or a mixture of detergents, which makes 
micelles the most widely used membrane mimetic for the 
solution NMR studies.

On the dawn of the solution NMR studies, MPs were 
investigated mainly in harsh detergents, such as sodium 
dodecyl sulfate (SDS) [37–39], and even now some 
studies are performed in this mimetic [40–46]. Despite 
the variety of the detergents that are commercially avail-
able, only few are used in solution NMR studies and in 
mimetic screenings (Figure 1). Very mild detergents, decyl 
maltoside (DM) and dodecyl maltoside (DDM), can be 
used to extract the proteins from the membranes in the 
active form and are taken to investigate the 7-TM proteins, 
such as bacteriorhodopsin [47, 48] and G-protein-cou-
pled receptors (GPCRs) [49–51], and other helical MPs, 
e.g. voltage-gated channels [52]. GPCRs are also active 
in the mixtures of DM and DDM with cholesterol hemi-
succinate [53, 54]. These mimetics are known to support 
the native folding of many proteins but form very large 
micelles (~70  kDa), which prevents the high-resolution 
studies in such an environment. Dodecylphosphocho-
line (DPC) and lauryldimethylamine-N-oxide (LDAO) are 
harsh detergents with small micelles (20–25  kDa) that 
often maintain the native structure of MPs and provide 
the good quality of NMR spectra [55–71]. In some cases, 
the nonconventional analogs of DPC with methylated and 

hydroxylated fatty chains or with the altered number of 
carbon atoms, such as FOS-30, FOS-10, or FOS-14, reveal 
the better performance to dissolve the MPs [72–75]. 
Anionic lysolipids (1-myristoyl-sn-glycero-3-phospoglyc-
erol [LMPG] and 1-palmitoyl-sn-glycero-3-phospoglyc-
erol [LPPG]) can solubilize the proteins directly from 
the cell-free reaction precipitates and are often used in 
NMR studies [32, 76–79]; however, they were shown to 
cause the improper folding and inactivation of some MPs 
[19, 80]. In addition, recent studies revealed the pros-
pects of the unnatural micelle-forming short-chain lipid 
1,2-diheptanoyl-sn-glycero-3-phosphocholine (DH7PC) 
as a membrane mimetic for various MPs, including 7-TM 
[81, 82] and other α-helical proteins [83]. Similar short-
chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine 
(DHPC) was often used in the studies of β-barrel bacte-
rial outer MPs [84–88]. In many cases, the best results are 
obtained in mixed micelles, where the detergents with 
different length of fatty tails [58, 89–91] and/or charge 
on the headgroups are combined together [60, 65, 92, 93]. 
Detergents from the Brij and Tween families and Triton 
X-100, which are conventionally used for the extraction 
of MPs from the cell membranes, were never shown to 
provide the NMR spectra of MPs of reasonable quality [76, 
94]. Similarly, no example of the successful use of the bile 
salt derivatives in micelles, such as 3-[(3-cholamidopro-
pyl)dimethylammonio]-1-propanesulfonate (CHAPS) and 
3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-
1-propanesulfonate (CHAPSO), for solution NMR studies 
of MPs is reported [76]. The use of various detergents for 
the structure determination by solution NMR is summa-
rized in Figure 2, and properties of common detergents 
are well described in the review [22].

2.3  �Bicelles

Bicelles are one of the most promising mimetic to study 
the MPs by solution NMR. Bicelles contain the patch of a 
planar lipid bilayer surrounded by the rim of the deter-
gent [95, 96]. Lipids with various length and saturation 
of fatty chains [97–99], headgroups [100–104], cholesterol 
[105], and gangliosides [106] were shown to be capable 
of bicelle formation alone or in the mixtures with other 
lipids. This makes bicelles a convenient environment to 
study the effect of the membrane lipid composition on the 
structural properties of the MPs and to investigate the spe-
cific lipid/protein interactions [107, 108]. In addition, lipid 
analogs with the ester bonds can be used instead of the 
conventional phospholipids, to exclude the lipid hydroly-
sis that can occur at low pH [109]. It is also known that any 
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arbitrary detergent would not always form bicelles, being 
mixed with lipids. The ability to assemble into the discoi-
dal particles was documented for the DHPC [110, 111], bile 
salt [112], and its derivatives CHAPS, CHAPSO, and Façade 
detergents [99, 113, 114]. DH7PC/1,2-dimyristoyl-sn-glyc-
ero-3-phosphocholine (DMPC) solution was also called 
“bicelles” in the NMR structural studies [115]; however, the 
shape of particles in such a mixture was not characterized. 
Rim-forming detergents can be polymerized in bicelles to 
enhance the stability of the MP under investigation [116]. 
Out of all detergents, CHAPS and CHAPSO are preferred if 
the MP is sensitive to the presence of the detergents, and 
DHPC should be selected if the deuteration of fatty chains 
is required for the needs of the experiment [99].

The size of bicelles can be controlled in quite a wide 
range, starting from approximately 40  kDa. By varying 
the lipid/detergent ratio (q), the character of the size 
dependence is well established for many rim-forming 
agents [95, 99, 117]. However, it was shown that bicelles 
increase their size upon dilution and heating [99, 118–
120]. The first effect can be excluded keeping in mind 
that a fraction of the detergent is soluble in the mono-
meric form [99], whereas the temperature-dependent 
growth is not observed for bicelles with radii less than 
3 nm [99, 119]. Bicelles formed with large q orient spon-
taneously in strong magnetic fields and are utilized in 
solid-state NMR spectroscopy of MPs [121] and in solu-
tion to measure the residual dipolar couplings of soluble 
proteins [122]. Small bicelles that are used in solution 
NMR studies of MPs are not oriented by the magnetic 
field and are called “isotropic”. Lipids in larger bicelles 
(q > 0.75 for DMPC/DHPC) can undergo the phase transi-
tion at temperatures, close to the observed for the lipid 
bilayers [118]. However, the correspondence of the lipid 

packing parameters to the real bilayer membranes is 
not established, the mobility of the MPs is enhanced in 
some kinds of bicelles, and packing of lipids around the 
protein is not tight [98, 99].

The benefits of bicelles are obvious – they contain 
the portion of lipid bilayer, can mimic the lipid compo-
sition of the cell membrane, and retain the activity and 
native structure of many MPs [19, 115, 123]. However, 
the use of bicelles in solution NMR is limited – spatial 
structure of one β-barrel [96] protein, several dimers of 
single-TM α-helices [124–132], ArfGTP [133], complex of 
two cytochrome P-450 subunits [134], and Smr [135] were 
determined or characterized in this mimetic (Figure 2). 
In the most recent study, bicelles were successfully uti-
lized to reconstruct and determine the spatial structure 
of the HIV Env trimer [136]. Altogether, less than 10% of 
NMR spatial structures of MPs were obtained in bicelles 
(Figure 2). It may be the consequence of the relatively large 
minimal size of bicelles and difficulties with the transfer 
of the MP of interest into bicelles from the detergent that 
was initially used to extract the MP from cell membranes 
or to solubilize the MP from the inclusion bodies or cell-
free precipitates.

2.4  �Lipid-protein nanodiscs

Lipid-protein nanodiscs (LPNs) are, like bicelles, the 
mimetic that is extremely membrane-like. LPNs were also 
shown to contain a patch of lipid bilayer surrounded by 
the belt formed by special proteins. Several belt proteins 
were suggested for LPNs [137–139], the most widely spread 
originate from the membrane scaffold protein (MSP), 
which is a part of the apolipoprotein A-I. MSP consists of 

Figure 2: Membrane mimetics for NMR structure determination in solution. Shown is the number of structures in Protein Data Bank (PDB) 
database determined in various membrane mimetics since 2010. A total of 114 spatial structures were gathered from the websites http://
blanco.biomol.uci.edu/mpstruc/ and http://www.drorlist.com/nmr/MPNMR.html and manually found in PDB database among the entries 
that are annotated as “membrane protein” and are not mentioned on both websites. Left histogram describes the distribution of found 
structures between the general types of membrane mimetics, blue sector corresponds to the organic solvents. Right histogram describes 
the use of particular detergents in micelles. FOS-10 (2 structures), FOS-14 (1 structure), and FOS-30 (1 structure) are counted together with 
DPC. Blue sector corresponds to the mixtures of DPC with other detergent (SDS) or phospholipid.

http://blanco.biomol.uci.edu/mpstruc/
http://blanco.biomol.uci.edu/mpstruc/
http://www.drorlist.com/nmr/MPNMR.html
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amphipathic a-helices, the nonpolar side of the helices 
covering the hydrophobic acyl chains of the lipids. The 
radius of the classic MSP1 LPNs is equal to approximately 
5  nm [140, 141]; however, recently the size of LPNs was 
reduced to 3.5–4.0  nm after the development of shorter 
MSP versions [55]. LPNs undergo the phase transition at 
temperature close to the critical temperatures measured 
for lipid bilayers [140]; however, lipids are packed more 
tightly in LPNs than in liposomes [141–143] and in bicelles 
[99], suggesting that the state of the lipid bilayer in LPNs 
does not correspond to the liquid-crystalline membrane. 
The most useful advantages of LPNs are their homogeneity 
and monodispersity, stability to disruption and aggrega-
tion, ability for an experimenter to choose among the dif-
ferent lipid compositions to mimic the native membrane, 
and ability to obtain the suitable thickness of the lipid 
bilayer [144]. These special properties of the LPNs enable 
to maintain the stability and integrity of the protein under 
investigation and reach its high concentrations required 
for the structural studies by NMR. Compared with bicelles, 
LPNs are characterized by the absence of detergents, dis-
crete set of possible sizes, and prohibition against the 
matter exchange between the particles. This prevents the 
oligomerization of MPs under investigation but makes the 
studies of interaction between MPs in LPNs impossible.

In the initial works, LPNs were used to study the 
topology of the membrane-active peptides on the 
membrane [145–147] and as a reference medium in the 
detergent screenings [80, 115, 148–150]. The princi-
pal possibility of NMR structural studies in large MSP-
based LPNs was demonstrated by the works with VDAC-1 
channel and CD4 protein [151, 152], and the introduction 
of smaller LPNs resulted in the structure determination 
of two β-barrels [153–155] and of the construct, contain-
ing the TM and cytoplasmic domains of the p75 neurotro-
phin receptor (p75NTR) [156]. LPNs formed by the other 
belt proteins, such as 22A peptide, were also shown to 
be applicable for NMR structural studies in solution: the 
complex of cytochrome b5 and cytochrome P-450  was 
reconstructed in these LPNs, and high-resolution TROSY 
spectrum was obtained [157]. The examples of LPN 
implementations in other fields of structural biology are 
beyond the scope of this article and can be found in the 
excellent reviews [20, 158].

Despite many benefits, LPNs have several consider-
able drawbacks that restrict their applicability in solution 
NMR studies. The mass of the smallest LPNs composed 
of truncated variants of MSP with the embedded protein 
is approximately 60 kDa, which is far too big for conven-
tional NMR techniques and results in the NMR spectra of 
poor quality for the majority of the MPs [149]. One should 

use the deuteration of the target protein accompanied by 
the specific labeling techniques, which, in turn, signifi-
cantly elaborates the expression protocols and increases 
the sample cost.

2.5  �SMA-lipid particles

The next membrane mimetic is very much like LPNs and 
contains the portion of lipid bilayer surrounded by the 
styrene and maleic acid (SMA) copolymer (3 : 1) [159]. SMA 
is an amphiphilic molecule capable of forming relatively 
small disk-shaped nanoparticles from lipid vesicles. This 
novel membrane mimetic was called SMA/lipid particles 
or SMA-lipid particles (SMALPs). SMALPs were used to 
solubilize the 7-TM α-helical bacteriorhodopsin [159, 160], 
the 8-stranded b-barrel lipid A palmitoyltransferase PagP 
[159], and the function modulator of voltage-gated potas-
sium channels protein KCNE1 [161]. MPs were reported to 
retain their integrity, stability, and function if incorporated 
into SMALPs. A particle with an embedded 7-TM protein is 
~11  nm in diameter and contains approximately 11 lipid 
molecules [159]. Thus, SMALPs are monodispersed, ther-
mostable, and soluble nanoparticles applicable for solu-
tion NMR investigations. The size of the nanoparticle 
could be easily controlled by manipulation of the lipid–
SMA polymer ratio, as was demonstrated in [162, 163]. One 
of the most prominent features of SMALPs is their poten-
tial ability to solubilize the integral MPs form lipid vesi-
cles or membranes not using the detergents. By contrast, 
SMALPs have their obvious drawbacks – the minimal size 
of the SMALP particle is too large and the amount of lipids 
inside the SMALP is too low because of the high volume of 
the SMA chains. For unknown reasons, the use of SMALPs 
in solution NMR studies was not reported; however, 
this application of the mimetic needs to be tested in the 
nearest future.

2.6  �Amphipols

Amphipols stay separately in this list of membrane mimet-
ics because they do not contain any lipids or detergents. 
Amphipols are amphipathic polymers that form the coat 
around MPs with the thickness of 1.5–2.0  nm [164]. The 
mimetic is characterized by high propensity to stabilize 
the MP and to prevent its oligomerization [165]. The pros-
pects of amphipols for structural NMR studies is discussed 
in the recent review [166]. In brief, five MPs, both α-helical 
and β-structured, were characterized in amphipols to the 
date by solution NMR spectroscopy [48, 167–176]. These 
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studies confirm the ability of some kinds of amphipols to 
retain the native structure and activity of MPs and simul-
taneously to provide the high-resolution NMR spectra 
of their TM domains, with the quality, comparable with 
observed in detergents and bicelles. Some amphipols are 
available in deuterated form, which is also advantageous 
in NMR structural studies of MPs in solution.

Amphipols cannot be a priori deemed to properly 
mimic the lipid bilayer because of their unnatural com-
position; therefore, the biological relevance of the spatial 
structures obtained in amphipols will always be ques-
tioned in the absence of protein activity or other data 
confirming the native folding of the protein under investi-
gation. However, this also refers to the detergent micelles. 
It is also noteworthy that the amphipol/MP particles are 
not monodisperse, and a fraction of the sample needs to 
be selected to obtain the spectrum of high quality, thus 
decreasing the effective yield of the protein production 
[173]. In addition, the use of amphipols is not a universal 
solution for any arbitrary chosen MP. There are negative 
results in the literature, when certain MPs could not be 
reconstituted in amphipols or no NMR spectra of reason-
able quality were observed for the MP in amphipol envi-
ronment [173]. Thus, amphipols may be considered as 
an alternative to LPNs and other lipid-based mimetics 
when the MPs of interest are prone to aggregation and 
inactivation.

3  �Experimental protocols for  
the solubilization of MPs in  
membrane-like environment

Despite the variety of available membrane mimetics, there 
are only few approaches to solubilize the MPs. In the most 
fortunate case, the protein precipitates can be dissolved 
directly by the aqueous solution of membrane mimetic, 
such as bicelles or detergents [60, 77]. When the α-helical 
membrane domain is soluble in the mixture of organic 
solvents, usually TFE/H2O or hexafluoroisopropanol/H2O, 
the dry powder of lipids or detergents is simply added to 
such solution. Then the water is added to the mixture until 
micelles or bicelles are formed, and the solution is lyophi-
lized and redissolved in the aqueous buffer [31, 58]. This 
option is applicable mainly for the most simple MPs, such 
as single-helix TM domains of bitopic proteins. MPs can 
also be extracted by the mild detergents directly from the 
cell membrane [49] or cotranslationally incorporated into 
the particles of membrane mimetic during the cell-free 

reaction [94, 177–179]. The protein of interest, which is 
already solubilized by the harsh detergent (SDS, LS) or 
extracted from the membrane, can be transferred to the 
desired environment using the affine chromatography. MP 
is usually immobilized on the wax, such as Ni-Sepharose, 
and then washed by the solution containing the mem-
brane mimetic of choice [180]. Alternatively, mild deter-
gents with low CMC can be exchanged with the detergents 
of higher solubility using permeable membrane filtering 
units [181]. LPNs, SMALPs, and amphipols are prepared 
from the lipid/detergent solutions of the MP under inves-
tigation. After the addition of the MSP, SMA, or amphipol, 
the detergent is removed either by dialysis or by using a 
special wax capable of absorbing the small hydrophobic 
molecules [137, 159, 182].

4  �Possible criteria for the selection 
of membrane mimetic, rational 
approach

The variety of available membrane mimetics raises one of 
the most essential problems of MP structural studies – the 
correct and the rational choice of the membrane-like envi-
ronment for the protein under investigation. In the first 
decade of the implementation of solution NMR spectros-
copy for protein structure determination, the isotope labe-
ling and recombinant protein production were extremely 
expensive. Therefore, all studies of MPs were performed 
in the mixtures of organic solvents or in the only cheap 
detergent that was available in the deuterated form. This 
also refers to the first solved structure of the MP – gram-
icidin A [37]. Scientists of those days did not screen the 
detergents and did not test the activity of the MPs, they 
just took the only option they had and performed studies 
in the only model that was available, regardless the pos-
sibly nonnative character of the environment. However, 
now, when isotope labeling is a routine task, one has to 
formulate the criteria to select the membrane mimetic 
out of the vast variety of options. The solution may seem 
simple – choose the environment that is at most like the 
bilayer membrane, e.g. LPNs or bicelles. However, there 
are several obstacles on that path. First, as we will show 
in the next section, in some cases the use of LPNs or 
bicelles does not result in the proper folding of the MP. 
Second, both bicelles and LPNs are characterized by the 
large size of particles in solution, which does not allow 
the straightforward structure determination. In large 
particles, the signals in NMR spectra cannot be assigned 
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using the conventional triple-resonance experiments, 
and the expensive procedure of the single-point scanning 
mutagenesis has to be applied for the task [49]. Besides, 
because the studies of large objects require the deutera-
tion of protein side chains, the spatial structure of the MPs 
in isotropic bicelles and LPNs cannot be resolved through 
the conventional NOE approach, the insensitive four-
dimensional spectra [57], paramagnetic labeling [77, 183], 
and use of anisotropic environment are required [184, 185]. 
Therefore, LPNs, large bicelles, SMALPs, and amphipols 
are the weapons of the “last chance” and are applied for 
the structure determination by NMR when other mimet-
ics fail to support the stability, activity, and native folding 
of the MP under investigation. One would usually like to 
work in micelles or very small bicelles that do not contain 
the significant patch of planar bilayer to minimize both 
time and money expenses. In the next paragraph, we list 
the possible approaches to select the best detergent for the 
structural study of the MP under investigation.

The easiest way to screen the membrane mimet-
ics is to monitor the activity of the MP of interest. This 
can be done for photoactive proteins, such as bacteri-
orhodopsin, optical rhodopsin, and other similar MPs 
based on the light absorption spectra [48, 51, 164, 181]. 
The functionality of the GPCR may be assessed using 
their ligand/G-protein binding propensity in the model 
environment [49, 50]. The active state of KcsA potas-
sium channel in SDS was confirmed by the presence of 
functional tetrameric assembly of the protein in solu-
tion [41]. However, these are the exceptional cases; the 
activity of other MPs cannot be studied that easily. Type 
I integral MPs, such as receptor tyrosine kinases, require 
the whole protein to monitor its activity, which is far too 
large for the NMR studies. The conductance of ion chan-
nels cannot be measured in any of the mimetics that are 
applicable for the solution NMR spectroscopy. Moreover, 
the absence of the ligand binding or other activity of an 
MP does not always indicate the improper folding of the 
protein. There may be subtle differences in the structure 
that do not affect the overall fold but do prevent the 
interaction with the ligand. Thus, other criteria apart 
from the activity of the protein need to be applied for the 
screening of the membrane mimetics.

The most feasible way to estimate the correctness of 
the MP folding is to obtain these data directly from the 
NMR spectra. Such an approach is implemented in the 
majority of screenings of the membrane mimetics. First, 
vast detergent screenings relied on the so-called quality of 
NMR spectra. Krueger-Koplin et al. [76] performed a very 
wide detergent screening for three different helical MPs 
in 2004, using dozens of various mimetics. As a merit of 

the “quality”, they used the number of observed signals 
in NMR spectra and the lifetime of the sample. The rea-
sonable lifetime is necessary to record the long-term NMR 
spectra, whereas the number of peaks reports on the 
internal mobility of the MP and determines whether the 
protein can be investigated in this mimetic. On the basis of 
the stated criteria, the authors found the anionic lysolip-
ids, such as LPPG, to be the optimal for all three objects. 
However, nice spectra with narrow peaks of predicted 
number and long lifetime of the sample mean that the 
protein does not precipitate in the mimetic of interest and 
does not experience the slow motions on the microsec-
ond-to-millisecond timescale but says nothing about the 
folding. In the later work, Girvin et al. [19, 123] found that 
Smr binds its ligands only in DMPC/DHPC bicelles, but not 
in the LPPG, which was, this part refers to LPPG selected 
for the protein in the detergent screening. For that reason, 
the dispersion of signals in NMR spectra also needs to be 
estimated, especially for the helical MPs. If the folding is 
incorrect, and TM helices are not in the tight contact, the 
dispersion of signals is low, whereas in case of the tight 
packing of helices with specific contacts, outlying cross 
peaks should appear. Such a criterion was used by Zhang 
et al. [72] in their broad screening of membrane mimetics 
for the OmpX protein. In addition, the use of the signal 
dispersion was demonstrated clearly on the example of 
the voltage sensor of the KvAp potassium channel [80]. 
Although very good spectra were obtained for the protein 
in anionic lysolipids, the proper folding of the sensor was 
observed only in the zwitterionic DPC and DPC/LDAO 
mixture, where the “quality” of spectrum was lower but 
the dispersion of signals was much higher.

Nonetheless, even the high dispersion of signals 
does not ensure the proper folding of the MP. Recently, 
with the introduction of LPNs, it became possible to 
measure the NMR spectra in the most native environ-
ment, provided by the LPNs, and select the micelles or 
bicelles based on the similarity of NMR spectra in mimet-
ics with small particles and in bilayer-containing system. 
This approach was first suggested by Shenkarev et al. in 
2010 for the KvAp voltage sensor, and since then, it is 
actively used in screenings [48, 80, 115, 148]. Similarly, 
if the MP contains soluble domains, one can record the 
NMR spectra of separate globular domain and compare 
them with the spectra of the full-size protein in various 
membrane mimetics [148, 156].

All these listed techniques use the screening 
approach, but it would be useful to select rationally the 
membrane mimetic for the specific protein. To do this, 
one needs to understand clearly what the variables of 
the membrane mimetics are and how they influence 



22      K.S. Mineev and K.D. Nadezhdin: Membrane mimetics for solution NMR studies of membrane proteins

the quality of NMR spectra and folding of the MP under 
investigation. The work by Columbus et  al. [89] dem-
onstrated that the hydrophobic thickness of membrane 
mimetics is one of the main determinants of the protein 
structure and behavior. They took the detergents of 
various nature and charge to dissolve the model two-
helical protein, TM0026. As a result, the appearance of 
NMR spectra of the protein was shown to be dependent 
mainly on the effective hydrophobic length of detergent 
fatty chains; mixtures of two different detergents yielded 
spectra identical to the other detergents with the hydro-
phobic length, corresponding to the average length of 
mixed components. Thus, instead of the wide screening, 
one could choose first the short-chain detergent and then 
titrate the sample by the long-chain molecules until the 
quality of spectra is the best. This principle was utilized 
in the studies of BniP3  mitochondrial protein: titration 
of the initial sample in DPC by the long-chain phospho-
lipid DPPC allowed to exclude the unwanted minor con-
formation of the protein [58]. Mixtures of detergents of 
various lengths (LMPG/DH7PC, DPC/FOS-16) were used 
in the screening for the best conditions for the YgaP bac-
terial protein [90, 91, 148] and to study the effect of the 
hydrophobic mismatch on the spatial structure of the 
TLR3 dimeric TM domain [186]. Apart from the length of 
the detergent chains, charge on the headgroup is also an 
important factor. For many proteins, the best functional-
ity can be obtained in nonionic detergents, such as DM, 
DDM, and Facade-EM [48, 49, 181], but in some cases, 
the addition of charged molecules to the zwitterionic 

micelles may significantly improve the stability of sample 
and quality of NMR spectra. In particular, the addition of 
small amounts of anionic SDS to DPC micelles improved 
the spectra of the FGFR3 TM domain [65], zz dimer [92], 
and DAP12 complex [93]. Moreover, the mixture of cati-
onic LDAO with DPC provided the best quality of NMR 
spectra and the proper folding of the KvAp voltage sensor 
[80]. It is also necessary to keep in mind the overall con-
centration of membrane mimetic and lipid-to-protein 
ratio. At low lipid-to-protein ratio, MPs may start to self-
associate, which results in the signal broadening, pres-
ence of several sets of signals, and worse overall quality 
of spectra [187]. By contrast, at a high concentration of 
membrane mimetic, the rotational diffusion of protein 
is decelerated, which also leads to the loss of sensitivity 
and broad signals in NMR spectra [187]. Therefore, the 
equilibrium between detergent/lipid and protein con-
centrations needs to be maintained. The size of LPNs and 
bicelles is also an important parameter for the optimiza-
tion. Particles of large size decrease the quality of NMR 
spectra because of the enhanced transverse relaxation, 
whereas in small particles, the amount of lipids may not 
be enough to surround the MP, which causes the protein/
rim interactions and results in the NMR spectra of poor 
quality [55]. With all aforesaid, it is clear that the rational 
selection and “fine tuning” of the membrane mimetic is 
not a dream and can be performed in the present state 
of things in solution NMR spectroscopy. All possible 
approaches and criteria to select the proper environment 
for an MP of interest are summarized on Figure 3.

Figure 3: Flowchart, describing the approaches and criteria used to find the proper membrane-like mimetic for an MP of interest.
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5  �Effect of the mimetic on the 
structure of integral MPs

To estimate the relevance of data and to interpret the 
results obtained in solution NMR studies of MPs in 
membrane mimetics, it is necessary to understand the 
influence of membrane-like environment on the spatial 
structure, dynamic behavior, and activity of MPs. On 
the basis of our experience, every second publication of 
NMR spatial structure determined in micelles meets the 
criticism of the reviewers, which is focused on the model 
character and nonnative properties of the mimetic. By 
contrast, X-ray structures of MPs are considered as etalons 
and are thought to correspond to the real state of things 
in the cell membrane. In addition it is thought that the 
structure obtained in micelles is always less relevant than 
the structure of the same protein, which was determined 
in the environment of bicelles and LPNs. However, both 
statements are incorrect. We need to point out that all 
contemporary spatial structures of MPs are determined 
in the model environment – micelles, bicelles, LPNs, 
crystals in case of X-ray investigations, and liposomes in 
case of solid-state NMR studies. All of the listed mimet-
ics are quite far away from the cell membrane, which is 
especially obvious in case of crystals that contain the 
negligible amounts of lipids. The exact environment of a 
protein inside the cell membrane is never known. There 
is a lot of data regarding the lipid composition of inner 
and outer leaflets of cell membranes of various kinds [21], 
but the real membrane has a mosaic structure [188] and 
contains various microdomains with the special “liquid-
ordered” phase of lipid bilayer. Many MPs are active inside 
such domains; in some cases, the migration between the 
liquid membrane and the ordered microdomains may 
be a part of the activation mechanism [189]. Membrane 
microdomains are thicker than the liquid membrane, 
have a specific composition, and are usually enriched by 
sphingolipids and cholesterol [190]. The environment of 
the membrane microdomain cannot be reproduced by any 
mimetic with small particles, and even cannot be modeled 
adequately in liposomes. The real membrane is also rich 
in surface-associated proteins that can distort the bilayer. 
Besides, the MP also has its own influence on the sur-
rounding lipids: it can recruit and bind the specific lipid 
molecules and affect the thickness and packing of lipids in 
the membrane [191, 192]. Thus, the use of various mimet-
ics may sample the different states of the cell membrane 
and allow obtaining the different functional states of the 
MP (i.e. active, inactive, transition state, folding interme-
diate, etc.). Micelles are believed to adapt their shape to 

the protein under investigation and, in some cases, may 
provide even a more physiological environment than 
bilayer-containing particles because the choice of lipids 
with the incorrect length of fatty chains in bicelles or 
LPNs may affect the structure of the MP. The possibility of 
such errors was illustrated by the recent study of the M2 
protein from the influenza virus, which adopted different 
conformations, depending on the thickness and charge of 
the bilayer [193]. It is essential to understand what kind 
of distortion can be introduced by the detergents into the 
spatial structure of the MP under investigation, to use 
micelles with necessary care, and to ensure the native 
state of the protein in such an environment. Several recent 
studies shed light on the effect of membrane mimetics and 
crystallization on the spatial structure of various proteins. 
These studies may help us to understand the influence of 
the mimetic on the structure of MPs and to judge on the 
relevance of the obtained structures.

At most, the effect of detergents is pronounced in 
the case of peripheral MPs, juxtamembrane regions, and 
water-soluble domains of MPs. The HIV-1  membrane-
binding envelope protein was shown to form the curved 
helix in DHPC micelles and straight helix in DMPC/
DHPC bicelles even at q as low as 0.25 [194]. This allowed 
authors to conclude that the absence of planar bilayer 
in detergent micelles can distort the structure of protein 
associated with the membrane surface. On the contrary, 
the juxtamembrane JMA regions of the human EGFR 
and HER2 receptors, which are believed to be helical in 
the context of full-length proteins, formed short amphi-
pathic α-helices in the environment of DPC micelles and 
were highly mobile and disordered inside the bicelles of 
various size and composition [131, 195, 196]. Thus, in these 
particular cases, micelles could provide the more native 
environment than bicelles because of their ability to 
adapt the shape of particles to the properties of the incor-
porated protein. Harsh detergents that are used in both 
micelles and bicelles often cause the improper folding 
of the soluble domains of various MPs. The rhodanese 
domain of the YgaP protein appeared to be misfolded in 
DPC and DH7PC micelles, whereas the correct structure of 
the domain was observed in the LMPG/DH7PC mixtures 
at low excess of the detergents and in DMPC/MSP LPNs 
[148]. Similarly, the soluble “death domain” of the p75NTR 
was not folded properly in DPC micelles and DMPC/DHPC 
bicelles, whereas in various LPNs and in DMPC/CHAPS 
mixtures, the conformation of the domain was indistin-
guishable from the structure determined for the isolated 
“death domain” in solution [156]. Thus, micelles and 
harsh detergents should be applied very carefully for the 
MPs with structured juxtamembrane regions and globular 
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cytoplasmic or extracellular domains. LPNs and bicelles 
containing the mild detergents, such as CHAPS and 
CHAPSO, should be considered instead.

The slightly different picture is observed for the inte-
gral helical and β-barrel proteins without the structured 
extramembrane domains. The “canonic” integral MP, 
glycophorin A, a strongly dimeric single-span protein, 
was investigated in a variety of mimetics, including DPC 
micelles [56], DMPC/DHPC bicelles [197], bilayers [198], and 
crystals [199], and no substantial differences between the 
determined spatial structures was observed (Figure 4A). 
Conformation of the similar strong dimer of the single-helix 
mitochondrial Bnip3 protein was determined in bicelles 
and DPC/DPPC mixture [58, 124] and appeared to be identi-
cal within the experimental error. By contrast, the weakly 
dimerizing TM domain of HER2 receptor adopted com-
pletely different conformations in DMPC/DHPC bicelles and 

DPC micelles [126, 196]. Thus, if the energy of interactions 
that promote the folding of the helical MP is high enough, 
the protein structure will not be dependent on the environ-
ment, whereas for many proteins, the change in the nature 
of the membrane mimetic and even the altered length of 
lipids in the bilayer may lead to the changes in spatial struc-
ture. At most instructive are the studies of the voltage sensor 
of KvAp voltage-gated channel. The protein was misfolded 
in lysolipids, such as LPPG, whereas the native structure of 
the domain was observed in LPNs and, surprisingly, in com-
pletely unnatural detergents, such as the short-chain lipid 
DH7PC [83] and cationic detergent LDAO [60]. The spatial 
structure of the protein in detergents was almost identical 
to the structure observed for the protein, crystallized from 
the β-octyl-glycoside in complex with the antibody frag-
ment [200]. This example demonstrates the falseness of the 
assumption that the proper structure is always adopted by 

Figure 4: Spatial structures of MPs in various membrane mimetics. (A) Spatial structures of glycophorin A determined in DPC micelles [56, 
197], DMPC/DHPC q = 0.25 bicelles [197], and in lipidic cubic phase [199]. The structure in lipid bilayers [198] was not deposited to the PDB 
and is therefore not shown. (B) Spatial structures of OmpX determined in DHPC [85] and DPC [55] micelles, LPNs [153], and crystals with 
n-octyltetraoxyethylene [201].
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an MP in the environment that we ourselves deem as more 
native. LPPG and LMPG much more resemble the lipids of 
the real cell membrane than DH7PC and LDAO but do not 
support the folding of the voltage sensor. In the past few 
years, there appeared several other studies comparing the 
structure of the MP in detergents to the conformation of the 
protein in bilayer-containing mimetics. All these studies 
reveal that for many proteins, there is a micellar environ-
ment that supports the native folding of the membrane 
domain. In particular, “unnatural” LDAO micelles were 
shown to maintain the native state of the BamA insertase as 
well as DMPC/DH7PC mixtures and LPNs [115]. Bacteriorho-
dopsin, which is inactive in the majority of detergents, folds 
properly in DDM micelles as well as in the amphipols and 
DMPC/MSP LPNs [48]. Finally, KcSA ion channel can be 
assembled into the tetrameric complex in SDS micelles [41].

Another instructive example is provided by the studies 
of the β-barrel bacterial outer MP OmpX (Figure 4B). The 
spatial structure of OmpX was determined in two differ-
ent detergents: DHPC [85] and DPC [55], small DMPC/MSP 
LPNs [153], and crystals with n-octyltetraoxyethylene [201]. 
Assuming that the correct fold of the protein is observed in 
LPNs, both detergents and crystallization affect the folding 
of the protein. DHPC and, to a certain extent, DPC disturb 
the β-sheets, strands become shorter, and interstrand loops 
become longer than in LPNs. By contrast, crystallization 
reveals the adverse effect – the OmpX structure is stabilized 
excessively; all interstrand loops that are mobile in solution 
become fixed and are now parts of the β-sheet structure. 
These data demonstrated clearly that the X-ray structures 
may not be considered as a perfect etalon. Crystalliza-
tion results in the unnatural protein-protein contacts that 
affect the mobile and unstructured regions of the protein, 
making them more rigid and even resulting in the forma-
tion of the regular secondary structure. For that reason, 
it is still unknown whether the NMR-derived structure in 
DPC micelles [63] or the X-ray structure [202] correspond to 
the native state of the diacylglycerol kinase (DAGK) – the 
structures are completely different, but the nature of the 
observed discrepancy is unknown. Moreover, the solid-
state NMR study in real Escherichia coli membranes [203] 
reveals the secondary structure of DAGK, which is different 
substantially from both the X-ray and solution NMR data.

6  �Conclusions
To sum up, here we review the variety of membrane 
mimetics, applicable for the solution NMR spectros-
copy. We formulate the criteria that are used to select the 

appropriate environment for the MP in mimetic screening 
and show that the rational approach to the selection and 
adjustment of the mimetic is possible. On the basis of the 
recent structural studies of same MPs in different environ-
ment, we suggest that none of the structural data should 
be approached with prejudice, regardless of the nature of 
membrane-like environment. If due care is taken, the use 
of detergent micelles can result in the native folding of 
the MP. By contrast, the protein may be folded improperly 
even in large bilayer-containing particles. For that reason, 
all spatial structures of MPs obtained in solution either by 
NMR or by Cryo-EM need to be validated with functional 
assays, mutagenesis, or other independent experiments. 
However, this also refers to the X-ray structures: crystal-
lization may as likely disturb the native folding of the MP 
as the use of other model membrane-like media.�
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