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Abstract: Carbon has long been applied as an electro-
chemical sensing interface owing to its unique elec-
trochemical properties. Moreover, recent advances in 
material design and synthesis, particularly nanomateri-
als, has produced robust electrochemical sensing systems 
that display superior analytical performance. Carbon 
nanotubes (CNTs) are one of the most extensively stud-
ied nanostructures because of their unique properties. In 
terms of electroanalysis, the ability of CNTs to augment 
the electrochemical reactivity of important biomolecules 
and promote electron transfer reactions of proteins is of 
particular interest. The remarkable sensitivity of CNTs to 
changes in surface conductivity due to the presence of 
adsorbates permits their application as highly sensitive 
nanoscale sensors. CNT-modified electrodes have also 
demonstrated their utility as anchors for biomolecules 
such as nucleic acids, and their ability to diminish sur-
face fouling effects. Consequently, CNTs are highly attrac-
tive to researchers as a basis for many electrochemical 
sensors. Similarly, synthetic diamonds electrochemical 
properties, such as superior chemical inertness and bio-
compatibility, make it desirable both for (bio) chemical 
sensing and as the electrochemical interface for biological 
systems. This is highlighted by the recent development of 
multiple electrochemical diamond-based biosensors and 
bio interfaces.

Keywords: bio sensors; carbon nanomaterials; carbon 
nanotubes; electrochemical sensing; synthetic diamond.

1  �Introduction
Electrochemical analysis is a simple, cost-effective method 
to quantitatively and qualitatively determine the levels of 
electroactive species in a solution. Advantages of electro-
analytical techniques over other detection methods such 
as chromatography, luminescence, and spectroscopy are 
their low cost, ease of use, accuracy, and reliability. Varie-
ties of techniques are available to researchers to study the 
electrochemistry of electroactive species in solution. Ana-
lytical techniques employed include cyclic voltammetry 
(CV), differential pulse voltammetry, chronoamperome-
try, linear sweep voltammetry, and stripping voltammetry. 
All of them are effective electroanalytical techniques after 
being optimised to obtain the best electrochemical 
response. These processes can be influenced by several 
factors, including the nature of the analyte under investi-
gation, the type of electrode, and the choice of electrolyte. 
Specifically, the size and morphology of the electrode and 
the fabrication method used can be influential on the vol-
tammetric response of the system [1].

Procedures in electroanalysis strongly depend on 
material aspects such as chemical and physical properties 
of electrode surfaces, the effects of the applied potential, 
adsorption, and coatings applied to the electrode surface 
to enhance detection. Carbon materials, such as those 
depicted in Figure 1, are widely used in electroanalytical 
investigations because of their chemical inertness, rela-
tively wide potential window, low background current, 
and suitability for different types of analysis. For example, 
other electrode materials, such as sputtered metal elec-
trodes, exhibit reduced potential windows and lifetimes 
in comparison to carbon materials [3].

Carbon nanomaterials, such as graphene, carbon 
nanotubes (CNTs), crystalline diamond, and diamond-like 
carbon, all display exceptional electrochemical properties 
which has resulted in their widespread application. The 
potential of these materials is unquestionable in sensing 
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applications, as the novel carbon-derived nanomaterials 
possess properties that are unfathomable in bulk materi-
als. This results in their capability to operate with not only 
a higher sensitivity and selectivity in harsh environments 
but also over greater temperature and dynamic ranges. 
Historically, a number of materials including platinum, 
gold, and various forms of carbon have been exploited 
as electrode materials for electrochemical detection [4–
8]. Graphene, CNTs, and diamond are the polymorphs 
of carbon that have been widely employed as electrode 
materials for electrochemical sensing in recent years. 
Consequently, this review focuses on the recent (<5 years) 
incorporation and use of carbon-derived nanomaterials 
for electrochemical sensing applications and their poten-
tial implications. Moreover, excellent properties of carbon 
nanomaterials, such as large surface-to-volume ratio, 
high conductivity, and electron mobility at room tempera-
ture, have led to numerous advances in electrochemical 
sensors. This review aims to highlight the application of 
carbon- based sensors in multiple fields as electrochemi-
cal sensors for DNA, proteins, pollutants, metal ions, 
gases, and immunosensors.

The impact of the discovery of the C60 bucky-ball by 
Kroto et al. [9], coupled with the emergence of an additional 
carbon crystal structure alongside graphite and diamond, 
led to the development of CNTs by Iijima [10]. From their 
discovery in the early 1990s CNTs have attracted signifi-
cant attention in multiple disciplines including physics 
[11], chemistry [12–14] and materials sciences [15, 16], an 
interest that has yet to wane. The interest in CNTs is due 
to their chemical stability and distinguishing mechanical 
and electronic properties. These features are ultimately a 
product of their distinct structure compared to that of tra-
ditional carbon fibres and graphite. CNTs possess a cylin-
drical structure produced from hexagonal “honeycomb” 
lattices fabricated from sp2 carbon units. This lattice 
structure results in a closed topology with nanometre 
diameters and lengths in the micron range. CNTs consist 
of two defined structural groups, single- (SWCNTs) and 
multi-wall carbon nanotubes (MWCNTs) [17, 18]. SWCNTs 
are composed of a 1–2 nm diameter closed graphite tube 
rolled (seamless) from an individual graphite sheet, 

whereas MWCNTs are the product of the “Matryoshka”-
like nesting of multiple individual graphite cylinders with 
diameters typically ranging from 2 to up to 25 nm and a 
gap between tubes similar to the interlayer spacing in 
graphite of approximately 0.34 nm [19]. The influence of 
CNT structure is particularly evident in their electrical 
behaviour, where depending on their helicity (symmetry 
of the two-dimensional carbon lattice) and diameter, they 
act in a fashion similar to that of a semiconductor or metal 
[20–23].

The electronic properties of CNTs, particularly 
SWCNTs, are well-defined and are known to exhibit com-
parable characteristics to quantum dots and wires at low 
temperatures including single-electron charging and 
Coulomb blockade [24–27]. Coupling these features with 
the additional favourable properties inherent to nano-
structures, such as high surface-to-volume ratios, unique 
confinement effects, and altered (from the bulk) physi-
cal and chemical properties [28], have resulted in wide-
ranging applications. The high number of applications is 
due to enhanced selectivity, sensitivity, and faster electro-
chemically reversible responses at standard temperatures 
and pressure. Applications include but are not limited 
to chemical sensors [29–33], catalyst scaffolds [34–37], 
energy storage and conversion [28, 32, 38], and electronic 
devices [26, 39, 40].

Additionally, when CNTs are used as electrodes in 
electrochemical reactions, they display greater electron 
transfer capabilities [41]. Moreover, they possess signifi-
cant potential as biosensors due to their ease in support-
ing protein immobilisation while maintaining the protein’s 
inherent activity [42, 43]. CNTs have been exploited in 
multiple electrochemical sensors because of their ability 
to facilitate electron transfer reactions with electroactive 
species in solution and the electrode interface [44–47].

The literature indicates that CNTs demonstrated 
better behaviour than materials traditionally used as 
electrode interfaces which display good conductivity 
and chemical stability. Electrochemical transducers that 
exploit CNTs as substrates offer significant improvements 
in the performance of amperometric enzyme electrodes 
[48, 49], immunosensors [50, 51] and nucleic-acid sensing 

Figure 1: Schematic illustration of individual allotropes of CNTs. Reproduced from Ref. [2] with permission from the Royal Society of 
Chemistry.
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devices [52, 53] because of their increased sensitivity and 
improved signal-to-noise ratio. CNT-modified electrode 
interfaces are highly attractive for a myriad of amperomet-
ric oxidase- and dehydrogenase-based biosensors because 
of the augmented electrochemical reactivity of species 
such as nicotinamide adenine dinucleotide (NADH) [54–
56] and hydrogen peroxide [57, 58]. CNT-based transduc-
ers have been shown to amplify bio-catalytic reactions 
and provide a platform for multiple enzyme tags. When 
aligned as “forests”, CNTs often act similarly to molecular 
wires, providing enhanced electron transfer between the 
underlying electrode and the enzyme’s redox centre [59–
63]. The unique properties of CNTs have resulted in their 
exploitation in a range/multitude of diverse fields includ-
ing sensors [41, 64, 65], actuators [41, 66], and energy 
storage [67, 68].

As the resistivity of conducting materials is depend-
ent on the number of electron carriers available and the 
potential availability of electrons and electron holes, the 
semi-conducting nature of graphite is a result of the free 
movement of the π-electrons above and below the hexago-
nal graphene layer. On the other hand, the unique electrical 
properties of CNTs are a product of the π-bonding between 
the carbon atoms and their quasi-one-dimensional shape. 
This is a consequence of the defined circumference of the 
nanotubes, which limits the number of potential electron 
states. As a consequence, the semi-metal nature is altered, 
resulting in the opening of a band gap at the Fermi energy 
level. For CNTs with larger diameters, the potential band 
gap decreases as the spacing between the graphene layers 
decreases. Therefore, electron transfer can occur without 
scattering over relatively large distances of several micro-
metres depending on the mechanical quality of the nano-
tubes [69–71]. Electron transfer is primarily driven by the 
conducting states available along the CNT structure with 
each conducting state providing a quantum conduction 
via the transportation of one spin up and one spin down 
electron/hole. However, significant reflection at the CNT-
contact interface results in difficulties in accessing the 
various electron states, which is a consequence of their 
reduced numbers and specific configurations. This is 
because the number of transmitted electrons or holes is 
dependent on the amount of available states. Overall, this 
causes the drop in voltage conducted through both metal-
lic and semiconducting CNTs across the CNT contacts but 
not along the tube itself [71, 72].

Moreover, coupled with the non-scattering “bal-
listic” electron transfer, the mechanical robustness of 
CNTs allows them to withstand current densities up to 
1010 A  cm−2, which is ~3−4 orders of magnitude higher 
than most metals [42, 73, 74]. Consequently, due to their 

attractive electrical properties, CNTs have long been con-
sidered a potential alternative for silicon-based circuits 
[75–77], and they have many promising applications in the 
field of nano-electromechanical systems [78–80]. Indi-
vidual nanotubes can be utilised to fabricate transistors 
and the connections between transistors in integrated 
circuits because of their capability to act as either metal-
lic- or semi-conductors [81, 82]. This is highly advanta-
geous as the miniaturisation of conventional metal oxide 
semiconductors silicon transistors are fast approaching 
fundamental physical limits [83, 84]. The potential imple-
mentation of CNT-based circuits affords the potential 
continued miniaturisation of transistor dimensions as 
an essential factor for improved integrated circuit perfor-
mance and the potential implementation of CNT-based 
circuits [84].

2  �Diamond
The potential of diamond as an electrochemical trans-
ducer has attracted remarkable interest due to its chemi-
cal stability, wide potential window, low background 
current, and bio-compatibility [54, 85–87] of other com-
monly exploited materials such as silicon (Si) [88, 89], 
silicon dioxide (SiO2) [90, 91], tin dioxide (SnO2) [92, 93], 
gold (Au) [94, 95], and glassy carbon [96, 97]. High-quality 
diamond films typically possess a potential window of 
≥3.25 V, owing to the large over-potentials for both oxygen 
and hydrogen evolution [98, 99] as a result of diamond to 
be either insulating, semiconducting, or metallic, with its 
appearance moving from transparent to black (optical gap 
of 5.47 eV), as a result of the diamond’s ability to be either 
p- or n-type doped [98–100].

Diamond interfaces demonstrate distinctive proper-
ties because the electronic properties can be optimised 
by termination with either oxygen, hydrogen, or hydrox-
ide groups [100]. When terminated with hydrogen, the 
surface is hydrophobic [101, 102]. In contrast, when 
oxygen is used for termination, the surface is inherently 
hydrophilic [103]. Despite diamond being renowned for its 
bio-compatibility, chemical inertness, and DNA bonding 
stability, the application of diamond in chemical sensors 
or electronics has yet to be properly exploited. This lack 
of use was due to the associated high cost of their produc-
tion and refinement. The development of methodologies 
to cost-effectively fabricate nano-crystalline diamonds, 
which display properties that are interchangeable with 
properties of a single crystal diamond, has opened up 
multiple avenues for future research in the development 



22      A.C. Power et al.: Carbon nanomaterials and electrochemical sensors

of innovative products for a multitude of potential appli-
cations [104–106]. For example, Petrakova and colleagues 
developed a non-toxic nanoscale diamond carrier which 
demonstrated simultaneous transfection of cells and 
spatiotemporal fluorescence imaging of DNA without the 
need for DNA labelling. The system was based on fluores-
cent nano-diamond particles coated non-covalently with 
polyethylenimine. This can form reversible complexes 
with DNA as detailed below in Figure 2A, which illus-
trates the electrostatic formation of the fluorescent nano-
diamond-polyethylenimine-DNA complex. This involves 
the negatively charged nanodiamond interacting with the 
positively charged polyethylenimine, which in turn com-
plexes the DNA; once the complex penetrates the target 
cell, the DNA is then released.

2.1  �Diamond-like carbon

Carbon can crystallise in both sp2 graphite and sp3 
diamond forms, the majority of which are chemically very 
stable. Consequently, under static conditions, they can be 
considered as inert species. Both can interact with liquids 
or gases in a manner defined by the influence of sliding 
contacts, such as terminating bonds at the interface. 

Diamond-like carbon (DLC), amorphous carbon, or amor-
phous hydrogenated carbon is a non-crystalline carbon 
with a high percentage of diamond-like (sp3) bonds. 
Hydrogen-free DLC thin films have an increased fraction 
of sp3 configuration and are fabricated by either filtered 
cathodic vacuum arc, pulsed laser deposition, or mass 
selected ion beam deposition [107–110]. Alternatively, sp2 
configured hydrogenated amorphous carbon is fabricated 
via plasma enhanced chemical vapour deposition or reac-
tive sputtering techniques [111–114]. The presence of sp3 
bonding is safeguarded by ensuring that the deposition 
flux is made up of a high percentage of medium energy 
ions (approximately 100 eV) [115].

Recently, DLC films have emerged as an area of signifi-
cant interest for certain electrochemical applications. This 
interest is a result of characteristic and desirable proper-
ties being realised; such as mechanical hardness, low 
surface roughness, enhanced elastic modulus, and chemi-
cal inertness, as well as its semiconductor nature, with a 
tuneable band gap of 1 to 4 eV (approximately) [116].

Nitrogenated DLC films have been exploited as 
both electrochemical probes for trace metal analysis 
and as coatings for glucose oxidase biosensor selec-
tive membranes [117–120]. DLC probes have been 
reported as glucose biosensors [87, 121, 122] and as 

Figure 2: Example of a fluorescent nano-diamond-based device. (A) Schematic of the formation of fluorescent nano-diamond-polyethylen-
imine-DNA complex based on electrostatic interactions and release of DNA after entering the cell. (B) Schematics of electrical charge density 
in the proximity of a fluorescent nano-diamond particle for fluorescent nano-diamond-polyethylenimine (left) and FND-polyethylenimine-
DNA (right) complexes and the corresponding band bending of energetic levels in the diamond. (C) Photoluminescence spectra of oxidized 
fluorescent nano-diamonds and fluorescent nano-diamond-polyethylenimine and fluorescent nano-diamond-polyethylenimine-DNA com-
plexes recorded in aqueous solution (FND concentration: 0.2 mg ml−1) using an excitation wavelength of 514 nm. Formation of fluorescent 
nano-diamond-polyethylenimine complex causes a significant decrease in nitrogen vacancy-luminescence compared to oxidized fluorescent 
nano-diamonds. The level of nitrogen vacancy-luminescence increases again upon binding of negatively charged DNA, which compensates 
for the positive charge of polyethylenimine. Reproduced from Ref. [104] with permission from the Royal Society of Chemistry.
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microelectrode-based probes for multiple medical appli-
cations [107, 123–126].

The sp3- carbon/sp2 hybridisation ratio of the DLC 
interface may be adjusted and controlled depending on 
the deposition process and conditions. DLC can also be 
doped to form conductive/semi-conductive materials to 
tailor them to a specific application, whether that be elec-
tronic [127], optical [128], mechanical [129], or biomedical 
[130] applications.

3  �CNTs for chemical sensing

3.1  �Electrochemical sensors based on CNTs

With the advent of nanotechnology came the capability 
to manipulate at the atomic level and synthesise uniquely 
organised molecular structures. In the last few decades, 
CNTs have been the focus of intense research because of 
their remarkable mechanical and electronic properties 
coupled with their chemical stability and heat conduction 
[26, 131–133]. Diamond (the hardest natural material) is an 
insulator, and graphite is one of the softest conducting 
materials in nature. The electronic properties of CNTs are 
unique to the carbon family because of the unique atomic 
structure (large surface-to-volume ratios with diameters of 
a few nanometres and lengths of up to 100 μm, forming 
extremely thin wires that possess the hardness of diamond 
and the conductivity of graphene) and mechanical defor-
mations which make them useful in the development 
of miniaturised sensors that are sensitive to chemical, 
mechanical, and physical environments [60, 79, 134]. Elec-
trochemical sensors are composed of an electrochemical 
cell which incorporates a minimum of two electrodes to 
form a closed electrical circuit and a transducer where 
the charge transport (which is always electronic) occurs, 
whereas the charge transport in the analyte sample can be 
either electronic, ionic, or mixed. CNT’s electronic proper-
ties are a consequence of the graphene sheets curvature. 
Carbon’s electron clouds are transformed from a uniform 
distribution along the C–C backbone in graphite to an 
asymmetric distribution within and around the cylindri-
cal sheet of the nanotube. A rich π-electron conjugation 
forms outside the tube as a result of the electron cloud’s 
distortion making the CNT electrochemically active [2, 64, 
135, 136]. Doping SWCNTs with electron donating and with-
drawing molecules such as NO2, NH3, and O2 either trans-
fers electrons to or withdraws electrons from SWCNTs, 
giving the SWCNTs more charge carriers or holes, in turn 
increasing or decreasing their conductance [137].

It has been shown that not only can the electrochemi-
cal reactivity of important biomolecules be enhanced by 
CNTs [138–140], but the electron transfer reactions of pro-
teins can also be promoted [141, 142]. CNT modified elec-
trodes have demonstrated the capability to alleviate surface 
fouling which can occur, for example, in the case of direct 
oxidation of NADH due to the high over-potentials required, 
which result in fouling of the electrode surface by oxida-
tion products [138]. Moreover, CNTs accumulate important 
biomolecules such as nucleic acid [143–145], which aids in 
the enhancement of the probe’s selectivity and sensitivity. 
In order to exploit CNTs in electrochemical sensing appli-
cations, it is essential that the CNTs be appropriately func-
tionalised [146–148] and immobilised [139, 149].

Most commonly, CNTs are confined onto electrochem-
ical transducers by coating electrode substrates with CNTS 
[11, 40, 150] or by incorporating them into composite elec-
trodes [2, 151, 152]. While CNTs have played a significant 
role in enhancing the performance of electrochemical bio-
sensors, such as enzyme electrodes, DNA biosensors, and 
immunosensors [2], they have also demonstrated poten-
tial in electrochemical detection for various separation 
techniques including high-performance liquid chroma-
tography [153, 154] and capillary electrophoresis [155, 156].

The electrochemical functionalisation of CNTs with 
metallic nanoparticles and the application of the result-
ing metal decorated CNTs has also seen increased inter-
est in recent years particularly in areas related to sensing 
and catalysis [157–160]. For example, Wang et al. designed 
a one-pot hot-solution synthesis method for Ni12P5/CNTs 
hybrid nanostructures illustrated in Figure 3. Hybrid 
structures attained current densities of 2 and 10 mA cm−2 
when over-potentials of just 65 and 129 mV were applied. 
In conjunction, the hybrid structure also demonstrated 
enhanced electrochemical performance in applications as 
an anode material for lithium ion batteries [159].

3.2  �CNT-based amperometric transducers

The use of surfactants to disrupt the strong Van der Waal 
attractive forces between CNTs and consequently improve 
their solubility is seen throughout the literature. This meth-
odology is preferred as it preserves the structure and prop-
erties of the CNTs much better than alternative approaches 
such as covalent modification [161] of the surface.

Although various polymers [162–164], DNA [165] and 
detergents [166] have all shown potential as surfactants 
in this process, to date, sodium dodecyl sulfate (SDS) has 
been the most widely used [167–171]. SDS has been used to 
prepare suitable homogeneous dispersions of CNTs for the 
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preparation of thin films at the electrode interface [172, 173]. 
Comparison of different CNTs dispersing strategies have 
been investigated [162–164] and applied to the fabrication of 
numerous modified electrode-based sensing probes [2, 69].

An additional application of CNTs is as nano-probes. 
Here, carbon nano-probes can be exploited as atomic 
force microscopy [174, 175] or scanning tunnelling micro-
scope [176, 177] tips.

CNT tips possess a number of advantages including 
the following:

–– intrinsically small diameters [178]
–– high ratio aspects that allow them to probe deep crev-

ices and trench structures
–– ability to buckle elastically, which limits the force 

applied by the atomic force microscope probe and 
reduce deformation and damage to biological and 
organic samples [174] and

–– easily modified to create functional probes.

The use of functionalised nanotubes as atomic force 
microscope tips has opened up applications for molecular 
recognition and chemically sensitive imaging in chemis-
try and biology. Choi et al. reported significant improve-
ments in CNT tip fabrication methods. This was achieved 
through implementation of an analogue control of the 
nano manipulation in scanning electron microscopy, 
which has improved the accuracy of CNT mounting com-
pared to their previous digital control system [178].

The authors intend to further investigate the capabili-
ties of the CNT tips, through their optimisation for more 
challenging samples, including different materials and 
narrower trenches. Termeh Yousefi and co-workers dem-
onstrated the ability of CNT-atomic force microscopic tips 
to probe the surface of an individual biological cell to 
potentially measure different properties of the cell. Signifi-
cantly, the method demonstrated potential for the analysis 
of cancer cells as well as determining the physical interior 
properties of cells [174]. A study from Slattery et al. deter-
mined that modification of an atomic force microscopic 
tip with SWCNTs, such as those in Figure 4, enhanced 
the stability and sensitivity during the collection lifetime 
of an image. The authors determined that the smaller tip 
diameters also created a greater peak force which allowed 
the collection of the subsurface current collection on con-
ducting polymer samples. This meant that the SWCNT 
tips could be used to produce current voltage maps of the 
surface and for multiple measurements without compro-
mising the SWCNT attachment, making the tip suitable for 
high bias atomic force microscopic applications [179].

3.3  �CNT-based electrochemical DNA sensors

Since Palecek’s discovery that DNA was electrochemi-
cally active, with direct detection of DNA and its bases 
by electrochemical sensors [180], DNA-based sensors (or 
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Figure 3: Illustration of the synthetic process for the monodisperse Ni12P5 nanoparticles (A) and the Ni12P5/CNT nanohybrids (B). Reproduced 
from Ref. [159] with permission from the Royal Society of Chemistry.
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genosensors) have been widely used in biomedical and 
environmental research in the detection of food and envi-
ronmental pollutants and genetic diseases and identifica-
tion of viruses and bacteria [41]. The combination of CNTs 
with DNA has attracted significant attention as it contrib-
utes to the development of faster and more cost-effective 
electrochemical DNA detection methods with improved 
sensitivity.

Owing to the ability of CNTs in forming π-π bonds 
between their conjugated π systems and nucleobases, 
they are ideal candidates for use in DNA and RNA sensing. 
Moreover, due to the inherent electrical conductivity of 
CNTs, they amplify the DNA/RNA sensing signal. The 
inherent conductivity of CNTs is significant because 
methods of amplification, such as addition of nanoparti-
cles or enzymes that promote electron transfer, are nor-
mally required to strengthen the usually weak DNA/RNA 
sensing signal [142].

Gutierrez et al. reported the use of MWCNT-modified 
glassy carbon electrodes (GCEs) for the detection and 
quantification of amino acids, albumin and glucose [181]. 
The authors observed that repeatable amperometric quan-
tification of histidine, serine, and cysteine was possible 
at low potentials for sub-micromolar concentrations. The 

probes were also capable of detecting glucose at a limit 
of 182 nm. Gutierrez et  al. successfully demonstrated 
the probes application for the detection of carbohy-
drates in beverages and amino acids and albumin in 
pharmaceuticals.

Similarly, work by Li and Lee [182] improved the detec-
tion limit of a DNA sensing system by a factor of 2 (approx-
imately 140 pm) and significantly reduced the fabrication 
time by incorporating functionalised MWCNTS in the 
sensing system. They also anticipated that this advance 
in the fabrication system may be applied to the further 
miniaturisation of biosensors. DNA immobilised CNTs 
are ideally achieved by covalently binding DNA on a solid 
surface via a single point attachment. Most of the appli-
cations of immobilised oligonucleotide are based on the 
hybridisation between the immobilised oligonucleotide 
and its complementary DNA sequence. Guo et al. outlined 
the fabrication of a simple 8-hydroxy-2′-deoxyguanosine, 
8-OHdG (a commonly identified biomarker for oxidative 
DNA damage) sensor that demonstrated excellent electro-
chemical response to the oxidation of 8-OHdG; Figure 5A 
illustrates the enhanced response of the modified probe, 
while Figure 5B and C illustrate the probe’s linear response 
at different pHs and scan rates, respectively. The sensor 

Figure 4: Scanning electron micrographs of fabricated nanoprobes for AFM: (A) J-tip and (B) B-tip types. These probes were fabricated 
to scan the sidewalls of a feature. Reproduced with permission from Ref. [178], Copyright Journal of Micro/Nanolithography, MEMS, and 
MOEMS (2016) Society of Photo Optical Instrumentation Engineers.
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had good sensitivity and repeatability with a detection 
limit of 1.88 × 10−8  m. The probe itself was based on the 
modification of an underlying GCE with MWCNTS [183].

Work by Fedorovskaya et  al. [184] demonstrated the 
application of an array of vertically aligned MWCNTs elec-
trically coupled with a conducting substrate as a hybrid 
electrode for RNA recognition in solution. The authors 
prepared the hybrid electrodes by non-covalent immobi-
lisation of decaribonucleotide ((pA)10) or its 5′-pyrene con-
jugate (PyrpA(рА)9) on the MWCNTs. It was observed that 
the capacitance of the hybrid electrodes increased upon 
potential cycling in the presence of complementary target 
oligonucleotide. The hybrid electrodes selectivity was 
clearly demonstrated as only complementary target rec-
ognition resulted in the evolution of the electrode capaci-
tance. Moreover, the author observed improved selectivity, 
and stability of the electrode probe was observed when 
the 5′-pyrene conjugate (PyrpA(рА)9) was used to prepare 
the hybrid electrode as it allowed the sensing interface 
to retain the probe-target oligonucleotide duplex on the 
MWCNT surface [184].

Ozsoz’s group [185] described the development of a 
MWCNT-modified genosensor for the detection of Escheri-
chia coli. The authors reported that the modified elec-
trodes promoted enhanced adsorption of the DNA probe, 
on the electrode sensing interface. This has resulted in a 
threefold signal enhancement and lower detection limit 
(17 nm) compared to a corresponding un-modified sensor. 
The DNA probe was selectively sequenced for the target 
analyte, eliminating the necessity for an additional bio-
label and thus simplifying the sensing procedure signifi-
cantly by removing the use of a mediator and the need for 
extra experimental steps for indicator-DNA interaction.

Zhang also reported the facile and efficient fabrication 
of a label-free impedimetric genosensor using CNTs func-
tionalised with the Fe3O4 nanoparticles as the probe sup-
porting substrate [186]. Zhang detailed that the Fe3O4/CNT 

nanocomposite membrane provided a large surface area 
with ideal biocompatibility for the probe’s DNA immobi-
lisation. This method produced a highly sensitive (detec-
tion limit of 2.1 × 10−16 mol l−1) biosensor for the detection 
of the Breakpoint Cluster Region protein/ABelson murine 
Leukaemia viral oncogene homolog 1 (BCR/ABL) fusion 
gene in chronic myelogenous leukaemia. Moreover, Zhang 
outlined the exceptional selectivity of the biosensor with 
successful discrimination of the target DNA from other 
sequences. Finally, the author highlighted that the probe 
did not involve a complicated fabrication procedure, and 
the strategy employed could easily be adapted for the 
facile fabrication of other DNA electrochemical bio-sens-
ing platforms [186].

Liu and co-workers outlined the development of 
a highly sensitive (possessing a limit of detection of 
1 × 10−16  m) and specific electrochemical sensing system 
for the detection of the pathogenic bacteria Clostridium 
tetani, responsible for tetanus, that was dependent solely 
on two nanophase materials: gold nanoparticles and 
MWCNTs. Liu highlighted that the electrochemical sensor 
was an ideal and rapid method for the early diagnosis 
of tetanus, broadening the use of the DNA amplification 
method and holding great promise for future ultrasensi-
tive bioassay applications [187]. Figure 6 illustrates the 
impact of the gold nanoparticle functionalisation on the 
sensor’s MWCNT morphology (Figure 6A and B) and ulti-
mately it sensitivity to the target analyte (Figure 6D).

3.4  �CNT-based gas sensors

The need for sensing gases arises from many applica-
tions in multiple fields including industrial, environmen-
tal, and medical analyses. Conventionally, qualitative 
and quantitative gas detection has been achieved via 
bulky instrumentation. An ideal alternative to these 
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conventional methods is to use small scale sensors as 
they are considerably less expensive. However, their per-
formance in the field must match that of established ana-
lytical instruments in order to gain acceptance. Therefore, 
nanomaterials as the sensing media/interface offer dis-
tinct advantages in their sensitivity and selectivity.

Work by Cai et al. [188] systematically investigated the 
sensing mechanisms of multiple CNT-based devices for 
the detection of NH3 and NO2. The authors determined that 
the interaction between the molecule and the CNTs at the 
metal-CNT contact was the dominant sensing mechanism 
at low analyte concentrations. The authors noted that 
both ammonia and nitrogen dioxide can physisorb to a 
pristine CNT, but adsorption only resulted in small current 
changes through the device. It was also observed that if a 
CNT is attached to a gold nanowire lead, the most sensi-
tive detection site was at the CNT near the CNT-Au contact, 
where chemisorption occurs. The resulting change in elec-
tron transfer and low-bias current led to a 30% increase in 
the sensitivity of the sensor.

Dhall and Jaggi reported an efficient procedure for the 
fabrication of two CNT hybrid composites for the detection 
of hydrogen gas. The authors exploited Raman and X-ray 

diffraction analysis to confirm the formation of hybrid 
composites. The results indicated that a nickel oxide func-
tionalised, platinum decorated MWCNTs was more sensi-
tive when compared to a cuprous oxide-functionalised, 
platinum decorated MWCNTs hybrid composite producing 
double the signal response for 0.05% H2 gas at 25°C [189].

Work by Kim and co-workers [190] detailed the fabri-
cation of a p-channel field-effect transistor-type NOx gas 
sensor; using MWCNTs, a gold electrode was deposited on 
to a MWCNT film coated on to a p-type silicon wafer. The 
fabricated sensor proved useful for the detection of NOx 
gas at various gate-source voltages. The authors observed 
that the decreased resistivity of the gas sensor as a func-
tion of absorbed NOx could be countered by increasing the 
electrode spacing of the sensor.

In a study by Cismaru et al. [191] the design of a new 
type of radio frequency (RF) gas sensor was based on 
an electromagnetic band cap resonator with couple-line 
structure in the centre area, covered by an MWCNT’s 
transducer layer for the detection of methane. The charac-
teristic interaction between methane molecules and CNTs 
was enhanced by the coupled waveguides which resulted 
in a high value of sensitivity, 10 times greater than that 
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observed for a sensor unmodified by MWCNTs. More-
over, the frequency downshift was a further proof of the 
effect of methane on CNTs, i.e. an increase in resistance 
due to a decrease in the number of holes in the CNT elec-
tronic structure. The results presented, together with the 
compact dimensions of the device, clearly demonstrate 
the capabilities of CNTs in RF applications for sensing 
purposes [191].

Asad et al. [192] described the development of wear-
able copper-SWCNTs-based sensors that exhibit enhanced 
response for hydrogen sulfide gas over a range of 5 ppm 
to 150 ppm. The authors demonstrated the rapid response 
time the sensor with a recovery time of 10–15 s. The work 
also demonstrated the high selectivity of the sensor for the 
target gas, hydrogen sulfide, particularly in the presence 
of high concentrations of interfering gases. The authors 
report that the copper-SWCNT modified polyethylene tere-
phthalate flexible sensors were stable and offered repro-
ducible responses at room temperature with the sensing 
performance remaining consistent over various bending 
radii. The authors hypothesised that the response 
observed was due to the copper-SWCNT system strongly 
adsorbing hydrogen sulfide. The fabricated sensors were 
capable of real-time analysis of hydrogen sulfide with 
high sensitivities (concentrations as low as 5  ppm) and 
low power (1 V) consumption that enabled their integra-
tion with low power microelectronic circuits.

Zhang’s group [193] reported the fabrication of a novel 
NO2 sensor that exploits reduced graphene oxide-CNT-
SnO2 hybrids as the sensing element. These were prepared 
by hydrothermal treatment of graphene oxide-CNT in the 
presence of tin(IV) chloride. The sensors displayed high 
sensitivity (5 ppm NO2), rapid response (8 compared to the 
135 s reported previously [194]) and fast recovery rate (77 
compared to 200 s to return to baseline). Enhanced selec-
tivity and response stability for NO2 at room temperature 
was also achieved in comparison to previously reported 
reduced graphene oxide -based NO2 sensors [193].

Abdulla et  al. [195] reported the development of a 
polyaniline functionalised multiwalled carbon nanotubes 
(PANI/MWCNTs) based nanocomposite for the detection 
of trace levels of ammonia (NH3) gas. The authors outline 
that the PANI/MWCNT nanocomposite based sensors 
improved sensor response (15.5% vs. 2.58%) and response/
recovery characteristics (response time of 6 s rather than 
965 s and a recovery time of 35 s rather than 1140 s) in com-
parison to an un-functionalised probe.

Flexible electronics have multiple potential applica-
tions including integrated electronic devices and wearable 
sensors. At present, a large area of research had focused 
on improving such devices’ robustness with an emphasis 

on their flexibility, particularly its reliability. Inspired by 
the natural world, researchers are attempting to mimic the 
“healability” of multiple organisms. Moreover, to further 
appeal to industry researchers, they are striving to develop 
transparent materials that can be affixed to products such 
as clothing without impacting its appearance. Bai et  al. 
[196], report the development of a flexible “healable” 
transparent chemical gas sensor device assembled from a 
functionalised graphene film with oxygenated functional 
groups, such as carbonyl, hydroxyl and epoxy groups 
MWCNTs network-coated polyelectrolyte multilayer film. 
The authors described how the layer by layer assembled 
polyelectrolyte multilayer films successfully imparted 
“healability” to the functionalised MWCNT network layer 
by the lateral movement of the underlying healable layer, 
bringing the separated areas of the MWCNT layer back into 
contact in the presence of water. The authors detail how 
the sensor may be cut and restored multiple times with a 
small (2%) drop in the sensors performance after several 
cycles. It was shown that with the superior CNT network 
structures being anchored on self-healing substrates, the 
sensor exhibited robust flexibility, good transparency, and 
reliable water-enabled “healability” and was capable of 
gas sensing performance at room temperature. This work 
demonstrated the potential to develop healable transpar-
ent nano-electronics with the exciting benefits of reduced 
raw material consumption, decreased maintenance costs, 
improved lifetime, and robust functional reliability [196].

In their work Piloto and co-workers [197] demon-
strated the scalable fabrication of ultrathin CNT conduc-
tometric sensors that operate at room temperature in a 
surfactant-free process. This is a benefit as the majority 
of CNT fabrication processes are not scalable or depend 
on CNT surfactant based dispersions; the surfactants are 
often difficult to remove and can cause issues in their later 
applications. The films were robust, thin, and could be 
integrated into flexible and transparent electronic appli-
cations. The sensor performed well at low concentrations, 
exhibiting limits of detection of 1 ppm for NO2 and 7 ppm 
for NH3. The authors attributed the high sensitivity to the 
high density of CNTs deposited in an ultrathin film (~5 nm) 
by dip coating. Further improvements in the sensing per-
formance were achieved via sonication of the CNTs film. 
The authors hypothesised that the CNT films can be used 
as sensing layer for the development of inexpensive, high 
performance room temperature gas sensors.

Finally, Humayun et  al. [198] reported the fabrica-
tion of chemoresistive sensors based on SnO2 nanocrystal 
functionalised MWCNTs for detecting CH4 gas with 10 ppm 
limit of detection. The authors stated that the sensor’s sen-
sitivity even for trace analytes (single ppm level), coupled 
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with its significant reversible relative resistance change, 
was directly related to the extent of successful function-
alisation of the MWCNT surface by the SnO2 nanocrystals, 
as no response was observed for CH4 by un-functionalised 
MWCNT based probes.

Electrochemistry has always provided analytical tech-
niques characterised by instrumental simplicity, moder-
ate cost, and portability [199]. The application of diamond 
surfaces as electrochemical sensing interfaces has rapidly 
increased in recent years with the advent of improved 
fabrication and modification techniques. Here we discuss 
the effectiveness of diamond as a substrate for an electro-
chemical sensor and its application as a probe for numer-
ous analytes.

4  �Boron-doped diamond (charac-
terisation of diamond surfaces)

The ratio of sp2/sp3 carbon is often an indicator for 
diamond purity, and Raman spectroscopy is the tradi-
tional technique for estimating this ratio [200]. In a recent 
work, the sp2 content of carbon sites was determined 
using boron-doped diamond electrodes to examine 
the electroactive quinone groups present [201]. The sp2 
content is generally associated with the provision of pH 
active functional groups and enhanced electrocatalytic 
properties. Ayres et  al. also noted that this technique 
was sensitive enough to detect quinone groups even on 
electrodes which had low sp2 content, observing that 
quinone signal demonstrated a 3× signal to noise ratio. 
The authorswere also able to distinguish between four 
different electrodes and place them in order of increas-
ing sp2 surface content and proposed quinone surface 
coverage measurements as an alternative method to 
Raman microscopy.

4.1  �Metronidazole

Metronidazole is a substituted imidazole antibiotic widely 
used to treat anaerobic bacterial infection caused by Heli-
cobacter pylori and protozoal infections [202]. Ammar 
et  al. [203] conducted CV and square wave voltammetry 
of metronidazole at a boron–doped diamond electrode in 
an aqueous medium. For comparison, performances of a 
silver electrode and a GCE were also studied. In cyclic vol-
tammetric experiments, Ammar reported an irreversible 
cathodic peak corresponding to the nitro group in metro-
nidazole, with the maximum current obtained using the 

boron-doped diamond electrode. In addition, a limit of 
detection of 65 nmol l−1 was obtained.

4.2  �Ziram

In another study, Stankovic et  al. reported the ampero-
metric detection of the pesticide ziram using boron-
doped diamond electrodes. The working electrode was 
embedded in a polyether ether ketone body with an inner 
diameter of 3 mm and was characterised to possess a resis-
tivity of 0.075 Ω cm and a boron doping level of 1000 ppm. 
A wide linear range from 10 to 1000 nm was obtained with 
an estimated limit of detection of 2.7 nm at the electrode, 
and replicative experiments showed a standard deviation 
of less than 3%. The proposed method was successfully 
applied for ziram quantification in spiked river water 
samples [204].

4.3  �Oxalic acid

Watanabe et al. [205] reported the development of a pro-
totype microfluidic device using boron-doped diamond 
electrodes patterned on alumina chips. The device was 
utilised to analyse the oxalic acid content in vegetables. 
Detection of this compound in biological materials is 
desirable, because it acts as an anti-nutrient, as a toxin, 
and in the formation of calcium oxalate which gives rise 
to kidney stones. As the oxalate di-anion (C2O4

2−) is oxi-
dised at a high positive potential; it can be electrochemi-
cally detected using a boron-doped diamond electrode, 
which was otherwise demonstrated to be difficult using 
conventional electrodes such as GCEs [206]. This is a 
consequence of boron-doped diamond electrode’s supe-
rior resistance to fouling, a product of their compact sp3 
configuration, in comparison to the porous sp2 structure 
of glassy carbon. The authors reported that flow injec-
tion analysis of oxalic acid at the fabricated device was 
successful and that electrochemical conditioning steps 
without changing the solution were effective for obtaining 
reliable and reproducible signals. Furthermore, the high 
durability of boron-doped diamond allowed its applica-
tion in robust treatments not only for conditioning but 
also as a measure against fouling.

4.4  �Imatinib

Boron-doped diamond has also been applied to an elec-
troactive probe surface by Brycht et al. [207] to detect the 
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anticancer drug imatinib on a voltammetric platform. CV 
of imatinib at the electrode displayed an electrochemical 
irreversible response. The sensor was found to demonstrate 
irreversible and exclusive (in the absence of imatinib no 
redox peaks were observed over the entire working poten-
tial range) oxidation of imatinib, which is an advantageous 
trait for trials in the in vivo space. A limit of detection of 
6.3 nmol l−1 for imatinib was estimated.

4.5  �7-methylguanine

Another biologically derived entity, 7-methylguanine, 
is of interest to analysts due to its possible association 
with cancerous tumours [208]. Recent work by Sanjuán 
et al. has developed two detection schemes for 7-meth-
ylguanine. The first was a polycrystalline boron-doped 
diamond film mounted in polyether ether ketone doped 
with a 0.1% of boron as the working electrode, and its 
performance was compared with that of a GCE. The 
second electrochemical configuration used a 50  μl 
working solution drop on a screen-printed graphite 
electrode where the 3.0 mm diameter graphitic working 
surface of the screen printed electrode served as the 
counter electrode and the Ag/AgCl pseudo reference 
acted as the reference electrode. This electrode scheme 
is depicted in Figure 7.

The authors found that a ~50% lower capacitive 
current and better defined oxidative peak features for 
7-methylguanine were achieved at the boron-doped 
diamond electrodes relative to a GCE. Electrode selectiv-
ity in the presence of guanine and adenosine, which are 
known interfering species in the voltammetric determina-
tion of 7-methylguanine [210], was also evaluated. Sepa-
rations of 120  mV and 300  mV were observed between 
peaks attributed to guanine and adenosine and 7-meth-
ylguanine, respectively [209]. Furthermore, calibration 
plots for 7-methylguanine were found to be linear in the 
range of 10–200 μm, with regression (R2 = 0.997) and 
a sensitivity of 0.0332 μA μm−1. Sanjuán and colleagues 
[209] also identified the potential for applying the boron-
doped diamond electrodes as sensing devices for 7-meth-
ylguanine in biological samples (DNA by extraction or 
other biological fluids, such as urine), which can serve 
as a biomarker for the detection of abnormal methylation 
patterns.

4.6  �Uric acid, ascorbic acid and dopamine

Dopamine is a major neurotransmitter involved in initiat-
ing many behavioural responses to various stimuli, and it 
also plays a crucial role in the functioning of the central 
nervous, cardiovascular, renal, and hormonal systems, as 
well as emotional and reward processes [101]. Uric acid 
is the final oxidation product of purine metabolism and 
exists in biological fluids such as blood or urine. Disor-
ders of uric acid are symptoms of several diseases such 
as gout and hyperuricemia [211]. Therefore, there is con-
siderable research input into sensitive and selective detec-
tion of both species in the physiological space. To this 
end, nitrogen-incorporated ultrananocrystalline diamond 
electrodes have been the focus of interest and were evalu-
ated in the electrochemical detection of uric acid and 
dopamine by Skoog et al. [212].

The authors conducted linear scan voltammetry 
of uric acid and dopamine in vitro from 0.2 to 0.8 V at 
10 mV/s. Uric acid concentrations varying from 0 to 200 
μm were evaluated, and a distinct oxidation peak was 
observed at a potential of 0.48 V as well as a linear rela-
tionship between the uric acid concentration and the 
peak current throughout the detection range. Dopamine 
concentrations were detected in a linear concentration 
range from 0 to 30 μm at an oxidation peak potential 
of 0.65 V. Importantly, the oxidative peaks between the 
two analytes were separated by ~200  mV when tested 
separately. However, attempts to detect the two analytes 
simultaneously were unsuccessful, and only a single 

WE: BDD

RE: pseudo Ag/AgCI

CE:  Graphite

Figure 7: Electrochemical cell configuration used for the electro-
analytical detection of 7-methylguanine [209]. Reprinted from Ref. 
[209], with permission from Elsevier.
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peak was observed due to overlapping of the individual 
signals [212]. Other researchers have also previously 
alluded to this overlap and obtained satisfactory reso-
lution during simultaneous detection of dopamine and 
uric acids at nitrogen-doped diamond electrodes. For 
example, Shalini et  al. [213, 214] demonstrated simulta-
neous detection of dopamine, uric acid, and ascorbic acid 
with significant peak separation using nitrogen-doped 
diamond electrodes. They noted that the nitrogen-doped 
diamond electrodes demonstrated superior peak separa-
tion compared to others such as boron-doped diamond, 
graphite, and GCEs and hypothesised that this was due to 
the electrodes sp2 graphitic phase and the nanowire-like 
structure, a consequence of the incorporation of N2 in the 
growth plasma of the diamond electrodes. The authors 
also suggested that nitrogen-incorporated ultrananocrys-
talline diamond microneedle-based device may serve as 
an attractive platform for minimally invasive, continuous 
monitoring of physiologically relevant molecules [212].

Boron-doped diamond electrodes have also been 
applied towards the detection of dopamine and ascor-
bate. The simultaneous detection of both species using 
GCEs is well known to be constrained by the similar oxida-
tion potentials of both, as well as the larger concentration 
of ascorbate compared to that of dopamine in the brain 
where both are encountered. Furthermore, the oxidised 
product of dopamine, dopamine quinone, is reduced back 
to dopamine by ascorbate, thus giving rise to an ampli-
fied dopamine oxidation signal in the presence of ascor-
bate [215]. To be able to resolve the overlapping signals 
between both ascorbate and dopamine represents sig-
nificant research gains in developing probes for in vivo 
dopamine/ascorbic acid detection. To this end, Qi et  al. 
have prepared boron-doped diamond with different thick-
ness using hot filament chemical vapour deposition and 
evaluated their performance in detecting dopamine and 
ascorbate. CV of both species performed at the electrodes 
showed a clear peak potential difference on 8-h and 12-h 
deposited electrodes, indicating that the thickness of 
electrodes exhibited a strong impact on the resolution 
of dopamine/ascorbate oxidation peaks. Additionally, 
a limit of detection of 1 μm dopamine in the presence of 
1 mm ascorbic acid was the lowest at the 12-h deposited 
boron-doped diamond electrode [216].

Yang and co-workers have compared the electrochem-
ical properties and biosensing performance of nanodia-
mond-derived carbon nano-onions with three commonly 
used carbon materials: MWCNTs, graphene nanoflakes, 
and glassy carbon [217]. Carbon nano-onions are spheri-
cal, closed carbon shells similar to the concentric layered 
structure of an onion. They are also often referred to as 

carbon onions or onion-like carbon. Those names cover 
all kinds of concentric shells, from nested fullerenes to 
small (<100  nm) polyhedral nanostructures [218]. Dai 
et  al. reported the simultaneous detection of ascorbate, 
dopamine and uric acid at a nickel modified boron-doped 
diamond electrode by differential voltammetric measure-
ments. The nanodiamond-derived carbon nano-onions 
demonstrated a superior sensitivity for dopamine detec-
tion over the MWCNTs. Moreover, nanodiamond-derived 
carbon nano-onions exhibited nearly 6 times larger 
current density arising from dopamine oxidation than 
MWNCTs, along with sufficient peak separations of all 
three analytes (peak separations of ascorbate-dopamine 
and dopamine-uric acid were 274 mV and 122 mV, respec-
tively). Overall, nanodiamond-derived carbon nano-
onions showed excellent electrocatalytic activities with 
fast electron transfer kinetics and large oxidation current 
densities, thus revealing a great potential for the detection 
of redox-active biomolecules with ultra-high sensitivity at 
the material [217].

In a recent work, Peltola et  al. [219] have combined 
tetrahedral amorphous carbon with nanodiamonds to 
provide a new platform for biosensor applications. The 
electrodes were subjected to CV in various concentra-
tions of dopamine in the presence of 1 mm ascorbic acid in 
phosphate buffered saline and rinsed in the same buffer 
between measurements. Performance evaluation of the 
electrodes showed that hydroxyl functionalised nanodia-
mond showed the lowest detection limit (50 nm) for dopa-
mine, followed by nanodiamond modified with a mixture 
of amine and hydroxyl groups and amine functionalised 
nanodiamond (100 nm). The dopamine detection limit 
for carboxyl functionalised nanodiamond was an order 
of magnitude higher (500 nm) than for hydroxyl modified 
nanodiamond. All the electrodes showed a broad linear 
range for dopamine detection: amine and hydroxyl func-
tionalised nanodiamond 100 nm−1 mm, amine modified 
nanodiamond 100 nm to 1  mm, carboxyl functionalised 
nanodiamond 500 nm–100 μm, and hydroxyl functional-
ised nanodiamond 50 nm–1 mm. Sensitivities of the drop-
casted electrodes were 0.195–0.248 A m−1 cm−2. Overall, the 
authors concluded that by using nanodiamonds on tetra-
hedral amorphous thin films, sensitivity towards dopa-
mine could be improved.

4.7  �Glucose

Most glucose sensors are based on the classic Clark’s 
experiment of glucose oxidase-glucose coupling at a 
sensor interface [220]. However, in recent times, various 
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types of electrodes have been employed in such analysis 
particularly in biosensing where the problem associated 
with the transient decay of enzyme activity or pH- and 
temperature-related disruptions have been mitigated with 
the development of enzymeless sensors [221, 222]. Readers 
are referred to the several publications devoted to enzyme-
less glucose detection, such as those of Scognamiglio et al. 
[223], Hasan et al. [224], and Carbone et al. [225].

Recently, Deng et  al. [226] have reported developing 
a nickel-microcrystalline graphite-boron doped diamond 
electrode for detecting glucose in vitro. The electrode deter-
mines the concentration of glucose via its oxidation to 
gluconolactone. The electrocatalytic activity of the nickel-
based electrodes for glucose oxidation is associated with 
the formation of nickel oxide hydroxide layer at the elec-
trodes surface. Deng observed that the electrode exhibited 
two linear dependence of current responses with glucose 
concentration ranges of 0.002–0.5 and 0.5–15.5 mm with a 
high sensitivity of 1010.8 and 660.8 μA mm−1 cm−2, respec-
tively. The electrode also exhibited a low detection limit 
of 0.24 μm (S/N = 3), good selectivity and reproducibility, 
and excellent stability during the long-term electrochemi-
cal detection [226].

A stable and sensitive non-enzymatic glucose sensor 
prepared by modifying a boron-doped diamond elec-
trode with nickel nanosheets and nanodiamonds has 
been reported by Dai and co-workers [217]. The electrode 
exhibited a stable, fast response, with two concentra-
tion ranges (similar to that of Deng et al. above): 0.2–12 
and 31.3–1055.4 μm with a sensitivity of 20 μA mm−1 cm−2 
and 35.6 μA mm−1 cm−2, respectively. The detection limit 
was estimated to be 0.05 μm (S/N = 3). The authors have 
attributed the lower sensitivity to the adsorption of inter-
mediates from the oxidation of glucose (gluconolactone 
and sodium gluconate in a 0.1 m NaOH electrolyte), and 
the slower adsorption of glucose at higher concentration. 
Notably, the authors also applied the electrodes to human 
serum samples, where the recovery values of glucose 
obtained by standard additions of glucose to the serum 
samples ranged from 96.1% to 103.1%, confirming that 
the sensor could be used practically for routine analysis 
of glucose in real-life biological samples [217].

5  �Environmental analysis
Hybrid diamond/graphite nanostructures for electro-
chemical applications have been synthesised using 
microwave plasma enhanced chemical vapour deposition 
by Guo and co-workers [183]. During the electrochemical 

study, a conductive hybrid diamond/graphite film was 
used as working electrode. Guo reported quasi-reversible 
behaviour at the electrode surface, mass controlled elec-
trode reactions in aqueous and organic solutions, and a 
wide potential window of about 3.1 V. Moreover, the elec-
trode enabled low detection limits of 5.8 ppb for Ag+ and 
5.6 ppb for Cu2+, respectively. The good recovery values in 
tap water samples demonstrate the accuracy and feasibil-
ity of the hybrid diamond/graphite electrodes. The hybrid 
diamond/graphite electrode is thus a potential candidate 
for trace heavy metal ions detection.

Phenol has been found in various sources includ-
ing industrial effluents, coal gasification, pesticide pro-
duction, fertilisers, dyes, and other chemicals. Despite 
it being biodegradable, the presence of phenol can be 
growth inhibitory to microorganisms at elevated concen-
trations [227]; thus, its screening and quantification are 
important. Ajeel et al. [228] have developed carbon black 
diamond composite electrodes for anodic degradation of 
phenol with the removal efficiency for phenol reported at 
more than 97% after 27 h at pH 3.

Very recent work by Hébert and co-workers has seen 
the development of a hybrid of the porous, conductive 
polymer of polypyrrole and diamond to yield a material 
with high double layer capacitance, low interfacial imped-
ance, high charge storage capacitance, high resistance to 
corrosion, and high biocompatibility [229]. The material 
was found to yield a double layer capacitance as high 
as 3  mF cm−2 and an electrochemical impedance typi-
cally 600 times lower than that an of un-functionalised 
diamond electrode in aqueous LiClO4 [230].

6  �Biosensors
Lactate levels in clinical practice are often used as a surro-
gate for illness and to gauge response to therapeutic inter-
ventions [231]. Tissue hypoxia or oxygen debt that causes 
high lactate levels in a person can often be a result of 
sepsis, shock, heart attack/failure, organ failure, or diabe-
tes. For these important reasons, lactate determination is 
a routine parameter in clinical evaluations, often through 
blood-gas analysers as the conventional route for lactate 
determinations, despite emerging strip-based technology 
[232]. Recently, the modification of a gold electrode with 
un-doped diamond nanoparticles to constitute a sensor 
and its applicability to the application of lactate was 
evaluated and reported [233]. Briones concluded that the 
sensor showed clear electrocatalytic responses towards 
lactate, demonstrating a linear concentration range from 
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0.05 mm to 0.7 mm, a sensitivity of 4.0 μA/mm, a detection 
limit of 15 μm, and a good reproducibility (RSD 6%). Thus, 
compared with commercial strip methods that yield limits 
of detection of 0.21, 0.30, and 20 mg/L, the lactate sensor 
achieved a reasonable limit of detection.

Cochlear implants have been used for several 
decades to treat patients with profound hearing loss 
[234]. Despite this, cochlear implants provide only a very 
crude mimicking of only some aspects of the normal 
physiology [235]. A major problem is the delivery of 
independent stimulation signals to individual audi-
tory neurons. Fine hearing requires significantly more 
stimulation contacts with intimate neuron/electrode 
interphases from ordered axonal re-growth, something 
current technology cannot provide.

Cai et  al. have explored the potential application of 
micro-textured nano-crystalline diamond surfaces on 
cochlear implant electrode arrays. The authors concluded 
that regenerating auditory neurons showed a strong affin-
ity to the nano-crystalline diamond pillars, and the tech-
nique could be used for neural guidance and the creation 
of new neural networks. Together with the unique anti-
bacterial and electrical properties of nano-crystalline 
diamond, patterned surfaces could provide designed 
neural/electrode interfaces to generate independent elec-
trical stimulation signals in cochlear implant electrode 
arrays for the neural population [188].

Zhang et al. [236] have used a simple approach of low-
power sonication-assisted seeding technique to fabricate a 
bio-functionalised nanodiamond – seeded interdigitated 
electrode for label-free pathogen detection. Their findings 
showed that higher surface coverages were important for 
improved bacterial capture and could be achieved through 
proper choice of solvent, nanodiamond concentration, 
and seeding time. Based on electrochemical impedance 
spectroscopy of phosphate buffer solutions over a range 
of conductivities (737 μS cm−1 to 16,500 μS cm−1) at these 
nanodiamond-seeded interdigitated electrodes, the nano-
diamond seeds were found to serve as electrically conduc-
tive islands only a few nanometers apart. When sensing 
bacteria from 106 CFU/ml E. coli O157:H7, the charge trans-
fer resistance at the interdigitated electrodes decreased 
by ~38.8%, which was nearly 1.5 times better than that 
reported previously using redox probes. Further in the case 
of 108 cfu/ml E. coli O157:H7, the charge transfer resistance 
decreased by ~46%, which was similar to the magnitude 
of improvement reported using magnetic nanoparticle-
based sample enrichment prior to impedance detection. 
Thus, the authors concluded that nanodiamond seeding 
allowed impedance biosensing in low conductivity solu-
tions with competitive sensitivity [236].

7  �Conclusion
The unique properties of carbon nanomaterials have 
extensively contributed to the development and evolu-
tion of electrochemical sensors and biosensors. Both the 
novel and modified carbon based probes often display 
enhanced analytical performance with respect to conven-
tional non- nanostructured electrochemical systems.

Electroanalytical methods using sensing and bio-
sensing devices involving carbon nanostructure modi-
fied electrodes are showing promise for application to 
real-life analytical detection. In particular, CNTs and 
diamond have been exploited as electrode materials for 
electrochemical sensing for a myriad of analytes. The 
unique properties of CNTs, diamond, and diamond-like 
films have extensively contributed to the design of novel 
nanostructured electrochemical sensors and biosen-
sors, with enhanced analytical performance compared 
to traditional electrochemical sensing systems. Although 
some challenges still remain, for example, reproducibil-
ity and scalability of current “nano” devices, the sensing 
systems are very much affected by the properties of the 
nanostructures used (e.g. diameter and the chirality of 
SWCNTS). Furthermore, more appropriate estimations of 
some performance characteristics and their application 
for sensing analytes in real-world samples are necessary 
before potential commercialisation.

The impact of carbon nanomaterials in modern elec-
trochemical systems is supported by the superior perfor-
mance analytically, coupled with their novel properties 
such as the electrocatalytic ability of carbon nanomaterial 
modified electrodes, such as the enhanced active surface 
area of CNTs and the anti-fouling capability of diamond 
and diamond like surfaces.

Moreover, as new, tuneable methodologies for the 
synthesis and functionalisation of carbon nanomaterial 
continue to be developed, the authors envision that this 
will result in a rising number of important electroana-
lytical applications in the near future in multiple fields 
of interest, such as rapid and sensitive medical analyses, 
drug quality monitoring, food and environment security.

The authors also anticipate that a large portion of 
future efforts will be focused on the development of bioin-
spired new hybrid carbon sensors that are capable of being 
processed on flexible substrates. The overall progress of 
this research field will have enormous implications for 
both fundamental scientific discovery and technologi-
cal development. The potential sensors could be used 
to study electron transfer in naturally occurring biomol-
ecules. Particularly, such an investigation of the interface 
of biology and electronics could lead to the fabrication of 
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novel portable devices for use in advancing both human 
health and environmental monitoring globally.�
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