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Abstract: To study the effect of improved adsorption
property of tetrapod-like ZnO (T-ZnO) on its photoca-
talytic performance, a new composite was prepared by
loading silica aerogels (SiO2(AG)) on the surface of
T-ZnO via the sol–gel method. Various characterization
methods showed that SiO2(AG) was uniformly loaded
on the surface of T-ZnO, and the morphology as well as
structural characteristics of SiO2(AG) and T-ZnO were
not changed. Nitrobenzene (NB) was selected as the
model pollutant, and the adsorption and photocatalytic
properties of T-ZnOandSiO2(AG)/T-ZnO forNBwere studied.
The photocatalytic degradation processes of NB using T-ZnO
and SiO2(AG)/T-ZnO followed the first-order reaction. Con-
sidering the initial moment reaction kinetic, the photocata-
lytic kinetic of SiO2(AG)/T-ZnO and T-ZnO was consistent
with theLangmuir–Hinshelwoodkineticmodel, andreaction
rate constant ′ > ′

( )/ - -
k kSiO AG T ZnO T ZnO2 , adsorption rate con-

stant
( )/ -

Kad SiO AG T ZnO2 > Kad T-ZnO, which demonstrated that
SiO2(AG) loading could increase T-ZnO adsorption to NB,
then promoted its photocatalytic performance.

Keywords: silica aerogels, tetrapod-like zinc oxide, adsorp-
tion property, photocatalytic performance, nitrobenzene

1 Introduction

In recent years, large varieties of nanomaterials have
become research hotspots in the fields of medicine [1–4],
architecture [5–7], energy storage [8,9], and environmental
protection [10–14] due to their many special properties
such as good chemical stability, microwave absorption,
high surface activity, and strong oxidation. Nanomaterials
have been investigated in-depth for environmental pollu-
tant treatment [15–19] because of the environmental pro-
blems caused by the discharge of persistent organic pollu-
tants with rapid development of industry [20–23].

In the past few decades, more and more attention has
been paid to nanomaterial photocatalytic technology,
which uses natural/UV light as energy and semiconductor
nanomaterials as photocatalysts to degrade organic con-
taminates via the photocatalytic process on the surface of
nanomaterials [24–26]. Among the semiconductors em-
ployed, although TiO2 is generally regarded as the best
photocatalyst, ZnO has frequently exhibited similar or
higher photocatalytic activity compared to TiO2 [27–32].
In addition, ZnO has the advantages of low cost and easy
preparation [33]. All of thesemake ZnO an ideal substitute
for TiO2. Previous studies of our research group have
found that the microsized tetrapod-like zinc oxide (T-
ZnO) had better photocatalytic activity and dispersion
than nanosized ZnO with other different morphologies,
and was easier to separate from water for reusage [20].
Among different factors affecting the efficiency of photo-
catalytic degradation of organic matter, the adsorption
behaviors of the contaminants onto the surface of
photocatalyst were typically considered to play significant
roles [34–36]. Plenty of studies have shown that adsorp-
tion behaviors were necessary for successful photocata-
lytic decomposition of organic compounds [37,38]. Thus,
improving adsorption property of T-ZnO on the basis of
keeping its morphology has been a major consideration
to further improve the photocatalytic performance of
T-ZnO.
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In recent years, porous materials such as activated
carbon, zeolites, and SiO2 were actively investigated as
advanced sorbents [39]. Many of these porous materials
have been used as support materials; loading of TiO2,
ZnO, and other semiconductors in the porous materials
has improved their adsorption and photocatalytic activity
[40–42]. One of the promising porous materials, SiO2 aero-
gels (SiO2(AG)), is a three-dimensional and multiscaled
porous nanomaterial formed by numerous fine particles
and networks. The SiO2(AG) materials possess excellent
adsorption efficiency owing to high porosity, high specific
surface area (SSA), low density, etc. [39,43,44].

To study the effect of improved adsorption property
of T-ZnO on its photocatalytic performance, we prepared
SiO2(AG)/T-ZnO composites via the sol–gel method, and
nitrobenzene (NB) was selected as the model pollutant.
The absorption and photocatalytic properties of T-ZnO
and SiO2(AG)/T-ZnO for NB were comparatively studied.
The Langmuir–Hinshelwood kinetic model was used to
calculate the photodegradation kinetic parameter.

2 Experimental

2.1 Reagents and materials

T-ZnO, received from Key Laboratory of Advanced technolo-
gies of Materials (Ministry of Education), Southwest Jiaotong
University,waspreparedby thegas-expandingmethodusing
metallic zincas the rawmaterial [45]. Tetraethyl orthosilicate,
anhydrous ethanol (EtOH), trimethylchlorosilane, hexane,
HCl, NH3·H2O, and NB were commercially purchased. All
reagents were of analytical-grade quality and used without
further purification. Deionized water was used in all experi-
ments.

2.2 Preparation of SiO2(AG)/T-ZnO

The SiO2(AG) was synthesized by the solvent-exchanging
procedure under ambient pressure as described in our
earlier report [20]. The SiO2(AG) powders were dispersed
with hexane under ultrasonic assistance to form a fluid sol
dispersion [46]. The designated amounts of T-ZnO were
mixed into the sol, and after stirring at 60°C for 2 h, the
SiO2 gel was deposited onto the surface of T-ZnO. SiO2(AG)/
T-ZnO composites were obtained after washing with EtOH
and drying at 60°C for 24 h.

2.3 Material characterization

The FESEM (Inspect F; FEI, Holland, the Netherlands)
and FETEM (JEM-2100F; JEOL, Japan) were used to inves-
tigate the microtopography of fabricated materials. The
crystal structure of the materials was analyzed by X-ray dif-
fraction (XRD DX-2500) with Cu Kα-ray generator (40 kV,
40mA, λ = 0.15406 nm). The pore structure and the SSA of
the prepared materials were determined by the automatic
porosity and surface area analyzer (3H-2000PS4; Beishide
Instrument Technology Co., Ltd, Beijing, China), respec-
tively, and the detecting conditions of analyzer were as fol-
lows: nitrogen as adsorbate, degassing mode of heating va-
cuum, degassing temperature of 150°C, degassing time of
180min, saturated steam pressure of 1.0434 bar, and am-
bient temperature of 14.0°C. UV-VIS diffuse reflectance
spectra (UV-VIS DRS)weremeasured using a TU-1901 spec-
trophotometer (Purkinje General).

2.4 Research of adsorption performance

Isothermal adsorption experiments were conducted in NB
solution with different concentrations (12, 24, 36, 48, and
60mg/L). The dosage of adsorbent (T-ZnO and SiO2(AG)/
T-ZnO) was 2.0 g/L. NB solution of different concentra-
tions (100mL) was placed in a 250mL conical flask and
shaken at 220 rpm for 24 h under 25°C. The adsorption
amount of NB on adsorbent was reflected by measuring the
change of concentration of NB in solution via the UV-VIS
spectrophotometer (UV-2550; Shimadzu, Japan), whichwas
calculated by:

=

( − ) ×q C C v
w

,0 e (1)

where q is the adsorption amount of NB on adsorbent,
mg/g; C0 is the initial concentration of NB in solution,
mg/L; Ce is the equilibrium adsorption concentration of
NB in solution after adsorption equilibrium, mg/L; v is
the volume of solution, L; and w is the dosage of adsor-
bent, g.

2.5 Photocatalytic performance

NB solution with different concentrations (12, 24, 36, 48,
and 60mg/L) was used as simulated wastewater. The do-
sage of photocatalyst (T-ZnO and SiO2(AG)/T-ZnO) was
2 g/L, respectively. The suspension was stirred for 30min
at room temperature under dark condition, then irradiated
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under UV (EA-180, 8w; Spectronics Corporation, America).
The sample was fetched at an interval of 30min, then cen-
trifuged (8,000 rpm, 5min), and filtered (0.22 µm filter
membrane). UV-VIS spectrophotometer was used to ana-
lyze the concentration change of NB during the photo-
catalytic degradation process. Formula of photocatalytic
removal ratio of NB is as follows:

=

−η C C
C

% ,0

0
(2)

where η% is the photocatalytic removal ratio of NB; C0 is
the initial concentration of NB (mg/L); and C is the con-
centration of NB after photocatalytic reaction (mg/L).

2.6 Photodegradation kinetics

Langmuir–Hinshelwood kinetic models are often used to
calculate photodegradation kinetic parameters, which
are as follows [47]:

= − = −

′

+

r C
t

K k C
K C

d
d 1

,ad

ad
(3)

=

′

+

′r K k C k
1 1 1 ,

ad
(4)

where r is the photodegradation reaction rate, k′ is the rate
constant of NB photocatalytic degradation, mg/(Lmin−1);
Kad is the adsorption equilibrium constant of NB on cata-
lyst surface, L/mg; C is the concentration of NB in solution,
mg/L; and t is the reaction time, min.

The process of photocatalytic degradation begins
with the catalyst surface adsorbing organic mass. Ce is
the initial moment (t = 0) concentration of the solution
while in adsorption equilibrium. The reaction time is cal-
culated by the following equation:








=

′

+

′

( − )t
K k

C
C k

C C1 ln 1 .
ad

e
e (5)

Formulae (3) and (5) can be simplified to formulae (6)
and (7), respectively, when the organic content is extre-
mely low. Formula (6) is also used for inefficient adsorp-
tion of organic mass. In this case, the reactions are man-
ifested as first-order reactions.

= − = ′ =r C
t

K k C kCd
d

,ad (6)








= ′ =

C
C

K k t ktln ,e
ad (7)

where k is the apparent rate constant, min−1.

3 Results and discussion

3.1 Microtopography of SiO2(AG)/T-ZnO

The microtopography of SiO2(AG) and SiO2(AG)/T-ZnO is
demonstrated in Figure 1. As displayed in Figure 1a and c,
SiO2(AG) powders were composed of numerous narrow-
size-range nanoparticles and presented loose sponge-like
porous shapes. The SEM image of SiO2(AG)/T-ZnO nano-
composites (Figure 1b) shows typical structures with four
needles extending from the same center, ascribable to the
T-ZnO [18] and SiO2(AG) particles uniformly loaded on
the surface of these needles. Figure 1(d) shows that the
morphology of SiO2(AG) loaded on the surface of T-ZnO
has no obvious change.

3.2 Crystal structure of SiO2(AG)/T-ZnO

As shown in Figure 2, a bread-like dispersion peak was
observed in 2θ = 20–25°, which is the characteristic peak
of amorphous SiO2(AG) [48]. Other peaks corresponded
with the characteristic peaks of the wurtzite ZnO structure
[18]. The peaks of SiO2(AG)/T-ZnO further indicated that
SiO2(AG) and T-ZnO still retained their crystal structural
characteristics after forming SiO2(AG)/T-ZnO composites.

3.3 SSA and pore structure of SiO2(AG),
T-ZnO, and SiO2(AG)/T-ZnO

SSA and pore structure of SiO2(AG), T-ZnO, and SiO2(AG)/
T-ZnO were analyzed via the N2 adsorption–desorption
method. As can be seen in Figure 3, N2 adsorption–
desorption isotherms of SiO2 (AG), T-ZnO, and SiO2(AG)/
T-ZnO were type IV, II, and IV adsorption isotherms,
respectively. Figure 3(a) indicates that SiO2(AG) powders
were porous materials, and the hole was a narrow tubular
pore with open ends and wide mouth [49]. Figure 3(b)
shows N2 adsorption behavior on T-ZnO is gas physical
absorption, which indicated that T-ZnO was a nonporous
material [47]. Figure 3(c) shows that the SiO2(AG) loaded
on the surface of T-ZnO still maintained its original shape,
and the adsorption of SiO2(AG)/T-ZnO was significantly
increased compared with T-ZnO. The SSA, pore size, and
pore volume of SiO2(AG), T-ZnO, and SiO2(AG)/T-ZnO are
shown in Table 1. Compared to T-ZnO, the SSA, pore size
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distribution, and pore volume of SiO2(AG)/T-ZnO were
significantly improved.

3.4 UV-VIS DRS analysis

SiO2(AG), T-ZnO, and SiO2(AG)/T-ZnO were characterized
by UV-VIS DRS. As shown in Figure 4, SiO2(AG) had lower

absorbance within the wavelength range between 200
and 800 nm. T-ZnO and SiO2(AG)/T-ZnO showed strong
absorption between 200 and 400 nm. Within the limits of
visible light, the absorption of SiO2(AG)/T-ZnO was en-
hanced slightly. The UV-VIS DRS of SiO2(AG)/T-ZnO was
similar to that of T-ZnO.

3.5 Adsorption property of T-ZnO and
SiO2(AG)/T-ZnO

Adsorption isotherms of T-ZnO and SiO2(AG)/T-ZnO for
NB are demonstrated in Figure 5. In the range of the
organic concentration of this experiment, the adsorption
amount of SiO2(AG)/T-ZnO and T-ZnO to NB grew with
the increase of the equilibrium concentration and equili-
brium adsorption capacity up to 3.23 and 2.21 mg/g, re-
spectively. T-ZnO had poor adsorption properties for NB
because of small SSA of T-ZnO. The adsorption perfor-
mance of SiO2(AG)/T-ZnO was better than T-ZnO, because
the SiO2(AG) loaded on the surface of T-ZnO has good
adsorption for NB [39].

Figure 1: Morphologies of SiO2(AG) and SiO2(AG)/T-ZnO samples. (a) SEM image of SiO2(AG); (b) SEM image of SiO2(AG)/T-ZnO; (c) TEM
image of SiO2(AG); and (d) TEM image of SiO2(AG)/T-ZnO.

Figure 2: XRD pattern of SiO2(AG)/T-ZnO sample.
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3.6 Kinetic study of NB degradation by
T-ZnO and SiO2(AG)/T-ZnO

The NB photocatalytic degradation curves of T-ZnO and
SiO2(AG)/T-ZnO are shown in Figure 6. Compared to T-
ZnO, SiO2(AG)/T-ZnO had better photocatalytic effect for

NB with different initial concentrations. The degradation
processes of different initial concentrations of NB were
fitted by the pseudo first-order kinetic equation. Figure 7
obviously indicates that the degradation processes of NB
by T-ZnO and SiO2(AG)/T-ZnO followed the first-order
reaction.

Considering the initial moment reaction kinetic, the
curves of 1/Ce and 1/r0 are displayed in Figure 8, and the
relevant fitting equations are as follows:

( )/ - = + =

r C
RSiO AG T ZnO: 1 35.397 4.1307 0.976,2

0 0

2

- = + =

r C
RT ZnO: 1 63.695 6.7816 0.9915.

0 0

2

The degradation kinetics of SiO2(AG)/T-ZnO and
T-ZnO were consistent with the Langmuir–Hinshelwood

Figure 4: UV-Visible diffuse reflectance spectra of SiO2(AG), T-ZnO,
and SiO2(AG)/T-ZnO. Figure 5: Adsorption isotherms of NB by T-ZnO and SiO2(AG)/T-ZnO.
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Figure 3: N2 adsorption–desorption isotherm ((a) SiO2(AG), (b) T-ZnO, and (c) SiO2(AG)/T-ZnO).

Table 1: SSA, pore size, and pore volume of SiO2(AG), T-ZnO, and
SiO2(AG)/T-ZnO

Sample SiO2(AG) T-ZnO SiO2(AG)/T-ZnO

SSA (m2/g) 896 0.4310 86.8132
Pore size (nm) 8.93 — 7.08
Pore volume (mL/g) 2.0065 0.0006 0.1418
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kinetic model. The degradation rate constant and adsorp-
tion constant of NB using SiO2(AG)/T-ZnO and T-ZnO
could be calculated, which were k′ = 0.2421 mg/Lmin−1,
Kad = 0.1167 L/mg and k′ = 0.1475 mg/Lmin−1, Kad =
0.1065 L/mg. The results indicated that ′ >

( )/ -
kSiO AG T ZnO2

′
-

kT ZnO, ( )/ -
Kad SiO AG T ZnO2 > Kad T-ZnO. According to the phe-

nomenon, we concluded that the loading of SiO2(AG)
could increase T-ZnO adsorption to NB, and then pro-
moted photocatalysis.

4 Conclusion

SiO2(AG)/T-ZnO composites were prepared via a simple
and controllable method. Various characterization me-
thods showed that the morphology and structural char-
acteristics of SiO2(AG) and T-ZnO were retained after
SiO2(AG) loading on the surface of T-ZnO. The photo-
catalytic degradation processes of NB using T-ZnO and
SiO2(AG)/T-ZnO followed the first-order reaction. SiO2

Figure 6: Degradation curves of different initial concentrations of NB by SiO2(AG)/T-ZnO (a) and T-ZnO (b).

Figure 7: Degradation-fitting curves of NB by SiO2(AG)/T-ZnO (a) and T-ZnO (b).
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(AG)/T-ZnO had better photocatalytic performance. Con-
sidering the initial moment reaction kinetic, the photo-
catalytic kinetic of SiO2(AG)/T-ZnO and T-ZnO was con-
sistent with the Langmuir–Hinshelwood kinetic model,
and reaction rate constant ′ > ′

( )/ - -
k kSiO AG T ZnO T ZnO2 , adsorp-

tion rate constant
( )/ -

Kad SiO AG T ZnO2 > KadT-ZnO, which
demonstrated SiO2(AG) loading could increase T-ZnO
adsorption to NB, then promoted its photocatalytic
performance. Compared with the conclusions of the im-
portant relevant papers of this study, loading SiO2(AG) on
the surface of T-ZnO can retain themorphology and struc-
tural characteristics of T-ZnO and SiO2(AG) unchanged,
and the photocatalysis of SiO2(AG)/T-ZnO composites for
NB can be significantly improved. The improvement of the
catalytic performance of the material by this method is
better than that of other porous materials combined with
semiconductor materials.
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