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Abstract: As society’s appetite for information continues 
to grow, so does our need to process this information with 
increasing speed and versatility. Many believe that the 
one-size-fits-all solution of digital electronics is becom-
ing a limiting factor in certain areas such as data links, 
cognitive radio, and ultrafast control. Analog photonic 
devices have found relatively simple signal processing 
niches where electronics can no longer provide sufficient 
speed and reconfigurability. Recently, the landscape for 
commercially manufacturable photonic chips has been 
changing rapidly and now promises to achieve economies 
of scale previously enjoyed solely by microelectronics. 
By bridging the mathematical prowess of artificial neu-
ral networks to the underlying physics of optoelectronic 
devices, neuromorphic photonics could breach new 
domains of information processing demanding signifi-
cant complexity, low cost, and unmatched speed. In this 
article, we review the progress in neuromorphic photon-
ics, focusing on photonic integrated devices. The chal-
lenges and design rules for optoelectronic instantiation 
of artificial neurons are presented. The proposed pho-
tonic architecture revolves around the processing network 
node composed of two parts: a nonlinear element and a 
network interface. We then survey excitable lasers in the 
recent literature as candidates for the nonlinear node and 
microring-resonator weight banks as the network inter-
face. Finally, we compare metrics between neuromorphic 
electronics and neuromorphic photonics and discuss 
potential applications.

Keywords: neuromorphic computing; photonic integrated 
circuits; ultrafast information processing; excitable semi-
conductor lasers.

1  �Introduction to neuromorphic 
engineering

The success of digital electronics has created a data-hun-
gry consumer society, which in turn reinvested in more 
capable, faster, and cheaper machines. For decades, the 
transistor count of CPUs doubled every 2  years, a trend 
that became known as Moore’s law. Microprocessor clock 
rates also increased exponentially, but current leakage in 
nanometric nodes became prevalent, causing a halt to this 
growth at about 4 GHz [1]. At the same time, the past decade 
has seen the breakdown of Dennard scaling [2]; the power 
density of microelectronic chips no longer stays constant as 
they get denser, that is, smaller transistors do not consume 
less power. The recent shift to multicore scaling alleviated 
these constraints, but the breakdown of Dennard scaling 
has limited the number of cores than can simultaneously be 
powered on with a fixed power budget and heat extraction 
rate, giving rise to the “dark silicon” phenomenon [3]. Pro-
jections for the 8 nm node indicate that more than 50% of 
the chip will be “dark” [3]. Fundamentally, these issues can 
be traced to two primary physical bottlenecks: the band-
width limitations of metal interconnects and the energy 
consumption and subsequently heat generation of digital 
switching [4]. In summary, operating speed and power effi-
ciency of CPUs have reached physical barriers that cannot 
be addressed through Dennard scaling. Consequently, this 
has opened up new opportunities in unconventional infor-
mation processing architectures, which include an array of 
different processing modalities [5].

The computational efficiency, measured in joules per 
MAC (multiply and accumulate operation, as revisited in 
Section 5), have been scaling similarly (Koomey’s law), 
but it has slowed down significantly in the last few years; 
it has only improved by a factor of about two over the last 
14 years, and it is now reaching an asymptotic power effi-
ciency wall of about 100 pJ/MAC.
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Respecting power budgets is now a top priority for 
digital processors. Data centers, Wi-Fi routers, and Inter-
net traffic represent a tremendous electric energy con-
sumption. Current trends indicate a shift of electricity 
usage from consumer device use to network and data 
centers [6, 7]. In the worst-case scenario, at the rate at 
which societal consumption and production of data is 
growing, it is predicted that fixed-access networks (Wi-Fi 
and LAN) and data centers will consume up to 33% of the 
world’s energy use [6].

To counter that trend, power-aware large-scale inte-
gration techniques in photonics are just emerging, being 
pushed forward by data communication applications and 
a market need for increased information flow between 
processors, on both macro and micro scales [7, 8]. This has 
led to an explosion in photonic integrated circuits (PIC), 
which are already finding their way into fast Ethernet 
switches for servers and supercomputers and will likely 
emerge in more traditional processor architectures as 
electronic interconnects fail to keep up with data volume. 
The average energy efficiency of the world’s fastest super-
computers lies in the order of 1 nJ/FLOP [Gre], where FLOP 
stands for floating-point operation, a standard computing 
unit. In green data centers and high-performance comput-
ers, there is an urgent need for unconventional, special-
purpose coprocessors with efficiencies beyond 1 nJ/FLOP, 
with a caveat: these coprocessors must operate at the 
same throughput handled by the high-speed digital and 
analog circuits it interfaces with, so they do not become 
a bottleneck.

This efficiency level is not fundamentally impossi-
ble. In fact, the human brain is estimated to being able to 
compute an amazing 1020 MAC/s using only 20 W of power 
[9] [MAC operation; cf. Section 5, similar to FLOP but more 
appropriate for digital signal processors (DSP)]. It does 
this with 1011 neurons with spike firing rate of ~ 1 Hz but 
with a large number of interconnects per neuron (104), 
highlighting the importance of distributed processing (see 
Section 2.1). The calculated computational efficiency for 
the brain is therefore nine orders of magnitude beyond 
that of current supercomputers ( < aJ/MAC). “Neuro-
morphic computing” offers hope to building large-scale 
“bioinspired” hardware for specialized processing while 
attempting computational efficiencies past the von 
Neumann efficiency wall toward those of a human brain.

1.1  �Neuromorphic microelectronics

Various technologies have demonstrated large-scale 
spiking neural networks (SNNs) in electronics, including, 

notably, Neurogrid as part of Stanford University’s Brains 
in Silicon program [10], IBM’s TrueNorth as part of the 
Defense Advanced Research Projects Agency’s (DARPA) 
SyNAPSE program [11], HICANN as part of the University 
of Heidelberg’s FACETS/BrainScaleS project [12], and 
University of Manchester’s neuromorphic chip as part of 
the SpiNNaker project [13]; the latter two are under the 
flagship of the European Commission’s Human Brain 
Project [14].

Whereas von Neumann processors rely on a single 
point-to-point link between memory and CPU, a neuro-
morphic processor typically requires a large number of 
interconnects (i.e. ~ 100 s of many-to-one fan-in per pro-
cessor) [9]. This requires a significant amount of multi-
casting, resulting in a distributed communication burden. 
This, in turn, introduces fundamental performance 
challenges that result from capacitive loads and radia-
tive physics in electronic links in addition to the typical 
bandwidth-distance-energy limits of point-to-point con-
nections [15]. Realistically scalable systems are ultimately 
forced to adopt a combination of crossbar time-division 
multiplexing (TDM) and/or packet switching (e.g. [11]). 
Address-event representation (AER) introduces the over-
head of representing spike as digital codes instead of 
physical pulses. This abstraction at the architectural level 
allows virtual interconnectivity to exceed wire density by 
a factor related to the sacrificed bandwidth, which can 
be orders of magnitude [16]. SNNs based on AER are thus 
effective at targeting biological timescales and the asso-
ciated application space: real-time applications (object 
recognition) in the kHz regime [11, 13] and accelerated 
simulation in the low MHz regime [12]. However, neu-
romorphic processing for high-bandwidth applications 
that require GHz operation per neuron (such as sensing 
and manipulating the radiospectrum and for hypersonic 
aircraft control) must take a fundamentally different 
approach to interconnection.

1.2  �Why neuromorphic photonics?

Photonics has revolutionized information transmission 
(communication and interconnects), whereas electron-
ics, in parallel, has dominated information transforma-
tion (computation). This leads naturally to the following 
question: how can we unify the advantages of the two as 
effectively as possible? [17]. CMOS gates only draw energy 
from the rail when and where called upon; however, the 
energy required to driving an interconnect from one gate 
to the next dominates CMOS circuit energy use. Relay-
ing a signal from gate to gate, especially using a clocked 
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scheme, induces penalties in latency and bandwidth com-
pared to an optical waveguide passively carrying multi-
plexed signals.

This suggests that starting up a new architecture from 
a photonic interconnection fabric supporting nonlinear 
optoelectronic devices can be uniquely advantageous in 
terms of energy efficiency, bandwidth, and latency, side-
stepping many of the fundamental trade-offs in digital 
and analog electronics. It may be one of the few practi-
cal ways to achieve ultrafast, complex on-chip processing 
without consuming impractical amounts of power [18].

Complex photonic systems have been largely unex-
plored due to the absence of a robust photonic integration 
industry. Recently, however, the landscape for manufac-
turable photonic chips has been changing rapidly and 
now promises to achieve economies of scale previously 
enjoyed solely by microelectronics. In particular, a new 
photonic manufacturing hybrid platform that combines 
in the same chip both active elements (e.g. lasers and 
detectors) and passive elements (e.g. waveguides, resona-
tors, and modulators) is emerging [19]. A neuromorphic 
photonic approach based on this platform could poten-
tially operate 6–8 orders of magnitude faster than neuro-
morphic electronics when accounting for the bandwidth 
reduction of virtualizing interconnects [20] (cf. Figure 1).

1.3  �Emergence of neuromorphic photonics

The key criteria for nonlinear elements to enable a scal-
able computing platform include [17] thresholding, 
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Figure 1: Speed and efficiency metrics that are accessible by 
various neuromorphic hardware platforms.
On the top right, the two photonic neuron platforms studied in Ref. 
[20]: hybrid III-V/Si stands for III-V/silicon hybrid platform SNN PIC. 
Sub-λ stands for subwavelength photonics. The other points refer 
to the recent electronic neuromorphic hardware, as discussed in 
Section 5. The regions highlighted in the graph are approximate 
based on qualitative trade-offs of each technology.

fan-in, and cascadability. Past approaches to optical 
computing have met challenges realizing these criteria; 
so far, no optical logic device satisfying all of them has 
been proposed. More recent investigations, introduced in 
the following sections, have concluded that a photonic 
neuromorphic processor could satisfy them by imple-
menting a model of a neuron as opposed to the model of 
a logic gate.

Early work in neuromorphic photonics involved fiber-
based spiking approaches for learning, pattern recogni-
tion, and feedback [21–23]. Spiking behavior resulted from 
a combination of semiconductor optical amplifiers (SOA) 
together with a highly nonlinear fiber thresholder, but 
they were neither excitable nor asynchronous and there-
fore not suitable for scalable, distributed processing in 
networks.

“Neuromorphism” implies a strict isomorphism 
between artificial neural networks and optoelectronic 
devices (Section 2). There are two research challenges 
necessary to establish this isomorphism: the nonlinear-
ity (equivalent to thresholding) in individual neurons, as 
discussed in Section 3, and the synaptic interconnection 
(related to fan-in and cascadability) between different 
neurons, as discussed in Section 4. Once the isomor-
phism is established and large networks are fabricated, 
we anticipate that the computational neuroscience and 
software engineering will have a new optimized processor 
for which they can adapt their methods and algorithms 
(cf. Section 6).

Recent investigations have concluded that a photonic 
subcircuit called the processing network node (PNN) 
could satisfy them by implementing a model of a neuron 
as opposed to the model of a logic gate.

Photonic unconventional computing primitives such 
as the PNN (Section 3) address the traditional problem of 
noise accumulation by interleaving physical representa-
tions of information. Representational interleaving, in 
which a signal is repeatedly transformed between coding 
schemes (digital-analog) or physical variables (electronic-
optical), can grant many advantages to computation and 
noise properties. From an engineering standpoint, the 
logical function of a nonlinear neuron can be thought 
of as increasing signal-to-noise ratio (SNR) that tends to 
degrade in linear systems, whether that means a continu-
ous nonlinear transfer function suppressing analog noise 
or spiking dynamics curtailing pulse attenuation and 
spreading. As a result, we neglect purely linear PNNs as 
they do not offer mechanisms to maintain signal fidelity 
in a large network in the presence of noise.

The optical channel alone is highly expressive and 
correspondingly very sensitive to phase and frequency 
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noise. For example, the networking architecture proposed 
in Section 4 relies on wavelength-division multiplexing 
(WDM) for interconnecting many points in a photonic 
substrate together. Any proposal for networking compu-
tational must address the issue of practical cascadabil-
ity: transferring information and energy in the optical 
domain from one neuron to many others and exciting 
them with the same strength without being sensitive to 
noise. This is notably achieved, for example, by encoding 
information in energy pulses that can trigger stereotypi-
cal excitation in other neurons regardless of their analog 
amplitude.

In this article, we review the progress in neuromor-
phic photonics research, focusing especially on integrated 
photonic devices. An elegant parallel between neural net-
works and optoelectronic devices such as excitable lasers 
can be established and exploited for processing. Section 2 
introduces the concept of a “photonic neuron” followed 
by a discussion on its feasibility. Then, Section 3 presents 
a review on recent research on optical devices that could 
be used as a primitive node in photonic neural networks. 
Section 4 presents a networking architecture that effi-
ciently channelizes the spectrum of an integrated wave-
guide. Finally, Section 5 provides a quantitative analysis 
of neuromorphic photonics in the context of electronic 
approaches.

2  �Photonic neuron

2.1  �What is an artificial neuron?

Neuroscientists research artificial neural networks as an 
attempt to mimic the “natural processing” capabilities of 
the brain. These networks of simple nonlinear nodes can 
be taught (rather than programmed) and reconfigured 
to best execute a desired task; this is called “learning”. 
Today, neural nets offer state-of-the-art algorithms for 
machine intelligence such as speech recognition, natural 
language processing, and machine vision [24].

Three elements constitute a neural network: a set of 
nonlinear nodes (neurons), configurable interconnec-
tion (network), and information representation (coding 
scheme). An elementary illustration of a neuron is shown 
in Figure 2. The network consists of a weighted directed 
graph, in which connections are called synapses. The 
input of a neuron is a linear combination (or weighted 
addition) of the outputs of the neurons connected to it. 
Then, the particular neuron integrates the combined 
signal and produces a nonlinear response, as represented 
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Figure 2: Nonlinear model of a neuron.
Note the three parts: (i) a set of “synapses” or “connecting links”; 
(ii) an “adder” or “linear combiner”, performing weighted addition; 
and (iii) a nonlinear “activation function”. From Ref. [18].

by an “activation function”, usually monotonic and 
bounded.

Three generations of neural networks were histori-
cally studied in computational neuroscience [25]. The first 
was based on the McCulloch-Pitts neural model, which 
consists of a linear combiner followed by a step-like acti-
vation function (binary output). These neural networks 
are Boolean-complete, that is, they have the ability of sim-
ulating any Boolean circuit and are said to be universal 
for digital computations. The second generation imple-
mented analog outputs, with a continuous activation 
function instead of a hard thresholder. Neural networks 
of the second generation are universal for analog compu-
tations in the sense that they can uniformly approximate 
arbitrarily well any continuous function with a compact 
domain [25]. When augmented with the notion of “time”, 
recurrent connections can be created and exploited to 
create attractor states [26] and associative memory [27] in 
the network.

Physiological neurons communicate with each other 
using pulses called action potentials or spikes. In tradi-
tional neural network models, an analog variable is used 
to represent the firing rate of these spikes. This coding 
scheme called “rate coding” was believed to be a major, if 
not the only, coding scheme used in biology. Surprisingly, 
there are some fast analog computations in the visual 
cortex that cannot possibly be explained by rate coding. 
For example, neuroscientists demonstrated in the 1990s 
that a single cortical area in macaque monkeys is capable 
of analyzing and classifying visual patterns in just 30 ms in 
spite of the fact that these neurons’ firing rates are usually 
below 100 Hz (i.e. less than 3 spikes in 30 ms) [25, 28, 29], 
which directly challenges the assumptions of rate coding. 
In parallel, more evidence was found that biological 
neurons use the precise timing of these spikes to encode 
information, which led to the investigation of a third gen-
eration of neural networks based on a “spiking neuron”.
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The simplicity of the models of the previous genera-
tions precluded the investigation of the possibilities of 
using “time” as resource for computation and commu-
nication. If the “timing” of individual spikes itself carry 
analog information (“temporal coding”), then the energy 
necessary to create such spike is optimally employed to 
express information. Furthermore, Maass showed that 
this third generation is a generalization of the first two 
and, for several concrete examples, can emulate real-
valued neural network models while being more robust to 
noise [25].

For example, one of the simplest models of a spiking 
neuron is called “leaky integrate-and-fire” (LIF), as 
described in Eq. (1). It represents a simplified circuit model 
of the membrane potential of a biological spiking neuron.
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if Vm(t) > Vthresh, then release a spike and set Vm(t) → Vreset, 
where Vm(t) is the membrane voltage, Rm is the membrane 
resistance, VL is the equilibrium potential, and Iapp is the 
applied current (input). More biorealistic models, such as 
the Hodgkin-Huxley model, involve several ordinary dif-
ferential equations and nonlinear functions.

However, simply simulating neural networks on a 
conventional computer, be it of any generation, is costly 
because of the fundamentally serial nature of CPU archi-
tectures. Biorealistic SNNs present a particular challenge 
because of the need for fine-grained time discretization 
[30]. Engineers circumvent this challenge by employing 
an event-driven simulation model that resolves this issue 
by storing the time and shape of the events expanded in a 
suitable basis in a simulation queue. Although simplified 
models do not faithfully reproduce key properties of corti-
cal spiking neurons, it allows for large-scale simulations 
of SNNs, from which key networking properties can be 
extracted. These costs defeat the purpose of using spiking 
neurons for engineering applications.

Alternatively, one can build an unconventional, dis-
tributed network of nonlinear nodes that directly use 
the physics of nonlinear devices or excitable dynamical 
systems, significantly dropping energetic cost per bit.

Here, we will discuss recent advances in neuromor-
phic photonic hardware and the constraints to which 
particular implementations must subject, including 
accuracy, noise, cascadability, and thresholding. A suc-
cessful architecture must tolerate eventual inaccuracies 
and noise, indefinite propagation of signals, and provide 
mechanisms to counteract noise accumulation as the 
signal traverses across the network.

2.2  �Basic requirements for a photonic 
neuron

An artificial neuron described in Figure 2 must perform 
three basic mathematical operations: vector multiplica-
tion (weighting), spatial summation (addition), and a 
nonlinear transformation (activation function). Moreover, 
the inputs to be weighted in the first stage must be of the 
same nature of the output – in the case considered here, 
photons.

As the size of the network grows, additional mecha-
nisms are required at the hardware level to ensure the 
integrity of the signals. The neuron must have a scalable 
number of inputs, referred to as “maximum fan-in” (Nf), 
which will determine the degree of connectivity of the 
network. Each neuron’s output power must be strong 
enough to drive at least Nf others (“cascadability”). This 
concept is tied closely with that of “thresholding”: the 
SNR at the output must be lower than at its input. Cascad-
ability, thresholding, and fan-in are particularly challeng-
ing to optical systems due to quantum efficiency (photons 
have finite supply) and amplified spontaneous emission 
(ASE) noise, which degrades SNR.

2.3  �Photonic neuron module: PNN

A networkable photonic device with optical I/O, provided 
that it is capable of emulating an artificial neuron, is 
named a PNN [31]. Formulations of a photonic PNN can be 
divided into two main categories: all-optical and optical-
electrical-optical (O/E/O), respectively classified accord-
ing to whether the information is always embedded in the 
optical domain or switches from optical to electrical and 
back. We note that the term “all-optical” is sometimes very 
loosely defined in engineering articles. Physicists reserve 
it for devices that rely on parametric nonlinear processes, 
such as four-wave mixing. Here, our definition includes 
devices that undergo nonparametric processes as well, 
such as semiconductor lasers with optical feedback, in 
which optical pulses directly perturb the carrier popula-
tion, triggering quick energy exchanges with the cavity 
field that results in the release of another optical pulse.

WDM efficiently uses the spectral window of optical 
waveguides, maximizing the information throughput in 
a single waveguide. Therefore, it is highly desirable and 
crucial to design a PNN that is compatible with WDM. 
All-optical versions of a PNN must have some way to sum 
multiwavelength signals, and this requires a population 
of charge carriers. On the contrary, O/E/O versions could 
make use of photodetectors (PD) to provide a spatial sum of 
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WDM signals. The PD output could drive an E/O converter, 
involving a laser or a modulator, whose optical output is a 
nonlinear result of the electrical input. Instances of both 
techniques are presented in Section 3.

2.3.1  �All-optical PNNs

Coherent injection models are characterized by input 
signals directly interacting with cavity modes, such that 
outputs are at the same wavelength as inputs (Figure 3A). 
Because coherent optical systems operate at a single 
wavelength λ, the signals lack distinguishability from one 
another in a WDM-encoded framework. As demonstrated 
in Ref. [32], the effective weight of coherently injected 
inputs is also strongly phase dependent. Global optical 
phase control presents a challenge in synchronized laser 
systems but also affords an extra degree of freedom to 
configure weight values.

Incoherent injection models inject light in a wave-
length λj to selectively modulate an intracavity property 
that then triggers excitable output pulses in an output 
wavelength λi (Figure 3B). A number of approaches 
[33–36], including those based on optical pumping, fall 
under this category. Although distinct, the output wave-
length often has a stringent relationship with the input 
wavelength. For example, excitable micropillar lasers 
[35, 37] are carefully designed to support one input mode 
with a node coincident with an anti-node of the lasing 
mode. In cases where the input is also used as a pump 
[38–40], the input wavelength must be shorter than that 
of the output to achieve carrier population inversion.

WDM networking introduces wavelength constraints 
that conflict with the ones inherent to optical injection. 

Input

λi λi

Output

λj

λa  λb  λc λi

λi

A

B

C

Figure 3: General classification of semiconductor excitable lasers 
based on (A) coherent optical injection electrical injection, (B) non-
coherent optical injection, and (C) full electrical injection. Each of 
these lasers can be pumped either electrically or optically.

One approach for networking optically injected devices is 
to attempt to separate these wavelength constraints. In an 
early work on neuromorphic photonics in fiber, this was 
accomplished with charge-carrier-mediated cross-gain 
modulation (XGM) in an SOA [21–23].

2.3.2  �O/E/O PNNs

In this kind of PNN, the O/E subcircuit is responsible for 
the weighted addition functionality, whereas the E/O is 
responsible for the nonlinearity (Figure 3C). Each subcir-
cuit can therefore be analyzed independently. The analy-
sis of an O/E WDM weighted addition circuit is referred to 
Section 4.

The E/O subcircuit of the PNN must take an elec-
tronic input representing the complementary weighted 
sum of optical inputs, perform some dynamical or non-
linear process, and generate a clean optical output on 
a single wavelength. Figure 4 classifies the six different 
ways in which nonlinearities can be implemented in 
an E/O circuit. The type of nonlinearity, corresponding 
to different neural models, is separated into “dynami-
cal systems” and “continuous nonlinearities”, both of 
which have a single input u and output y. A continu-
ous nonlinearity is described by a differential equation 

( , ).y f y u=�  This includes continuous-time recurrent 
neural networks (CTRNNs) such as Hopfield networks. 
The derivative of y introduces a sense of time, which 
is required to consider recurrent networking, although 
it does not exclude feedforward models where time 
plays no role, such as perceptron models. A dynami-
cal system has an internal state x�  and is described by 

( , ); ( , , ),x g x u y h x y u= =
� � �� �  where the second differential 

equation represents the mapping between the internal 
state x�  and the output y. There are a wide variety of 
spiking models based on excitability, threshold behav-
ior, and relaxation oscillations, covered, for example, in 
Ref. [43].

Physical implementations of these nonlinearities can 
arise from devices falling into roughly three categories: 
pure electronics, electro-optic physics in modulators, 
and active laser behavior (Figure 4). Figure 4A illustrates 
spiking lasers, which are detailed in Section 3 and offer 
perhaps the most promise in terms of garnering the full 
advantage of recent theoretical results on spike process-
ing efficiency and expressiveness. Figure 4B is a spiking 
modulator. The work in Ref. [44] might be adapted to fit 
this classification; however, to the authors’ knowledge, an 
ultrafast spiking modulator remains to be experimentally 
demonstrated. Figure 4C illustrates a purely electronic 
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approach to nonlinear neural behavior. Linear E/O could 
be done by either a modulator or a directly driven laser. 
This class could encompass interesting intersections with 
efficient analog electronic neurons in silicon [45, 46]. A 
limitation of these approaches is the need to operate slow 
enough to digitize outputs into a form suitable for elec-
tronic TDM and/or AER routing.

Figure 4D describes a laser with continuous nonline-
arity, an instantiation of which was recently demonstrated 
in Ref. [41]. Figure 4E shows a modulator with continuous 
nonlinearity, the first demonstration of which in a PNN 
and recurrent network is presented in [42]. The pros and 
cons between the schemes in Figure 4D and E are the same 
ones brought up by the on-chip vs. off-chip light source 
debate, currently under way in the silicon photonics com-
munity. On-chip sources could provide significant energy 
savings [47]. They require the introduction of exotic mate-
rials to the silicon photonics process to provide optical 
gain, but active research in this area has the goal of making 
this feasible [48, 49]. The opposing school of thought 
argues that on-chip sources are still a nascent technol-
ogy [50]. Whereas fiber-to-chip coupling presents practi-
cal issues [51], discrete laser sources are cheap and well 
understood. Furthermore, on-chip lasers dissipate large 
amounts of power [52], the full implications of which may 
complicate system design [50]. Modulator-based neurons 
could provide a more technologically feasible, although 
lower performing, alternative to spiking laser neurons for 
near-term large-scale integrated photonic neural systems. 
In either case, the conception of a PNN module, consisting 
of a photonic weight bank, detector, and E/O converter, as 
a participant in a broadcast-and-weight network could be 
applied to a broad array of neuron models and technologi-
cal implementations.

Both discussed all-optical and O/E/O PNN approaches 
depend on charge carrier dynamics, whose lifetime even-
tually limits the bandwidth of the summation operation. 
The O/E/O strategy, however, has a few advantages: it 
can be modularized, it uses more standard optoelectronic 
components, and it is more amenable to integration. 
Therefore, here, we gave more attention to this strategy. 
Moreover, although the E/O part of the PNN can involve any 
kind of nonlinearity (Figure 4), not necessarily spiking, we 
are focusing on spiking behavior because of its interesting 
noise resistance and richness of representation. As such, 
we study here excitable semiconductor laser physics with 
the objective of directly producing optical spikes.

In this light, the PNN could be separated into three 
parts, just like the artificial neuron: weighting, addition, 
and neural behavior. Weighting and adding define how 
nonlinear nodes can be “networked” together, whereas 
the neural behavior dictates the “activation function” 
shown in Figure 2. In Section 3, we review the recent devel-
opments of semiconductor excitable lasers that emulate 
spiking neural behavior. In Section 4, we discuss a scal-
able WDM networking scheme.

3  �PNN part I: excitable lasers
In the past few years, there has been a bloom of optoelec-
tronic devices exhibiting excitable dynamics isomorphic to 
a physiological neuron. Excitable systems can be roughly 
defined by three criteria: (a) there is only one stable state 
at which the system can indefinitely stay at rest; (b) when 
excited above a certain threshold, the system undergoes a 
stereotypical excursion, emitting a “spike”; and (c) after 
the excursion, the system decays back to rest in the course 
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Figure 4: Classification of O/E/O PNN nonlinearities and possible implementations.
(A) Spiking laser neuron. (B) Spiking modulator. (C) Spiking or arbitrary electronic system driving a linear electro-optic (E/O) transducer 
– either modulator or laser. (D) Overdriven continuous laser neuron, as demonstrated in Ref. [41]. (E) Continuous modulator neuron, as 
demonstrated in Ref. [42]. (F) Continuous purely electronic nonlinearity with optical output. From Ref. [18].
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of a “refractory period” during which it is temporarily less 
likely to emit another spike.

3.1  �Example of excitability behavior 
analogous to LIF

Excitable behavior can be realized near the threshold of 
a passively Q-switched two-section laser with saturable 
absorber (SA). Figure 5A and B shows an example of inte-
grated design in a hybrid photonics platform. This device 
comprises a III-V epitaxial structure with multiple quantum 
well (MQW) region (the gain region) bonded to a low-loss 
silicon rib waveguide that rests on a silicon-on-insulator 
(SOI) substrate with sandwiched layers of graphene acting 
as an SA region with a sandwiched heterostructure of 
two monolayer graphene sheets and an hexagonal boron 
nitride (hBN) spacer. The gain section of this structure is 
electrically pumped. The full cavity structure includes III-V 
layers bonded to silicon and a quarter-shifted wavelength 
grating. The laser emits light along the waveguide struc-
ture into a passive silicon network. Figure  5C–E shows 
experimental data from a fiber ring laser prototype, dem-
onstrating the key properties of excitability.

In general, the dynamics of a two-section laser com-
posed of a gain section and an SA can be described by 
the Yamada model [Eqs. (2)–(4)] [53]. This 3D dynamical 
system, in its simplest form, can be described by the fol-
lowing undimensionalized equations [34, 37]:

	

d ( ) [ ( ) ( ) ( )] ( )
d G
G t A G t G t I t t
t

γ θ= − − +
�

(2)
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t
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�
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where G(t) models the gain, Q(t) is the absorption, I(t) is 
the laser intensity, A is the bias current of the gain region, 
B is the level of absorption, a describes the differen-
tial absorption relative to the differential gain, γG is the 

relaxation rate of the gain, γQ is the relaxation rate of the 
absorber, γI is the inverse photon lifetime, θ(t) is the time-
dependent input perturbations, and εf(G) is the spontane-
ous noise contribution to intensity; ε is a small coefficient.

In simple terms, if we assume electrical pumping at 
the gain section, the input perturbations are integrated 
by the gain section according to Eq. (2). An SA effectively 
becomes transparent as the light intensity builds up in the 
cavity and bleaches its carriers. It was shown in [34] that 
the near-threshold dynamics of the laser described can be 
approximated to Eq. (5):

	

d ( ) ( ( ) ) ( );
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t

γ θ= − − +
�

(5)

if G(t) > Gthresh, then release a pulse and set G(t) → Greset, 
where G(t) models the gain, γG is the gain carrier relaxa-
tion rate, and A is the gain bias current. The input θ(t) 
can include spike inputs of the form ( ) ( )i ii

t tθ δ τ= −∑  
for spike firing times τi, Gthresh is the gain threshold, and 
Greset ~ 0 is the gain at transparency.

m
m m L app
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if Vm(t) > Vthresh, then release a spike and set Vm(t) → Vreset, 
where Vm(t) is the membrane voltage, Rm is the membrane 
resistance, VL is the equilibrium potential, and Iapp is the 
applied current (input).

One can note the striking similarity to the LIF 
model in Eq. (1): setting the variables γG = 1/RmCm, A = VL, 
θ(t) = Iapp(t)/RmCm, and G(t) = Vm(t) shows their algebraic 
equivalence. Thus, the gain of the laser G(t) can be thought 
of as a virtual “membrane voltage”, the input current A as 
a virtual “equilibrium voltage”, etc.

A remarkable difference can be observed between the 
two systems, though: whereas in the neural cell membrane 
the timescales are governed by an RmCm constant of the 
order of milliseconds, the carrier dynamics in lasers are 
as fast as nanoseconds. Although this form of excitability 
was found in two-section lasers, other device morpholo-
gies have also shown excitable dynamics. The advantage 

Figure 5: Excitable dynamics of the graphene excitable laser.
Blue and red curves correspond to input and output pulses, respectively. (A) Cutaway architecture of a hybrid InGaAsP-graphene-silicon eva-
nescent laser (not to scale) showing a terraced view of the center. (B) Cross-sectional profile of the excitable laser with an overlaid electric 
field (E-field) intensity 

�
2| |E  profile. (C–E) Excitable dynamics of the graphene “fiber” laser. (C) Excitatory activity (temporal integration of 

nearby pulses) can push the gain above the threshold, releasing spikes. Depending on the input signal, the system can have a suppressed 
response due to the presence of either subthreshold input energies (integrated power θ∫ 2| ( )|t dt ) or (D) a refractory period during which the 
laser is unable to pulse (regardless of excitation strength). (E) Restorative properties: repeatable pulse shape even when inputs have differ-
ent energies. Reproduced from Shastri et al. [39]. Licensed under CC BY.
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of constructing a clear abstraction to the LIF model is that 
it allows engineers to reuse the same methods developed 
in the computational neuroscience community for pro-
gramming a neuromorphic processor. In the next section, 
we present recent optical devices with excitable dynamics.

3.2  �Semiconductor excitable lasers

Optical excitability in semiconductor devices are being 
widely studied both theoretically and experimentally. 
These devices include multisection lasers, ring lasers, 
photonic crystal nanocavities, tunneling diode attached 
to laser diodes, and semiconductor lasers with feedback, 
as summarized in Table 1. We group them under the termi-
nology “excitable lasers” for convenience, but exceptions 
are described in the caption of the table.

Generally speaking, these lasers use III-V quantum 
wells or quantum dots for efficient light generation. 
However, they fall into one of three injection categories 
(illustrated in Figure 3) and possess very diverse excit-
ability mechanisms. It is difficult to group the rich dynam-
ics of different lasers – which often requires a system of 
several coupled ordinary differential equations to repre-
sent it – using classification keywords. We focus on two 
fundamental characteristics: the way each laser can be 
modulated (injection scheme column) and on the physi-
cal effect that directly shapes the optical pulse (excitable 
dynamics column).

The injection scheme of the laser will determine 
whether it is compatible to all-optical PNNs (Section 2.3.1) 
or O/E/O PNNs (Section 2.3.2). Some of them (B, C, and 
H) operate free of electrical injection, meaning that bits of 
information remain elegantly encoded in optical carriers. 

However, as we have pointed out in Section 2.3, avoiding 
the E/O conversion is much more difficult when you are 
trying to build a weight-and-sum device compatible with 
WDM, which is an essential building block for scalable 
photonic neural networks (Section 4).

The excitable dynamics determines important prop-
erties such as energy efficiency, switching speed, and 
bandwidth of the nonlinear node. The “optical interfer-
ence” mechanism typically means that there are two com-
peting modes with a certain phase relationship that can 
undergo a 2π topological excursion and generating an 
optical pulse in amplitude at the output port. This mecha-
nism is notably different from the others in which it does 
not require an exchange of energy between charge carrier 
populations and the cavity field. As a result, systems 
based on this effect are not limited by carrier lifetimes 
yet are vulnerable to phase noise accumulation. Other 
mechanisms include photon absorption, stimulated emis-
sion, thermo-optic effect, and electron tunneling. There, 
the electronic dynamics of the device governs the popula-
tion of charge carriers available for stimulated emission, 
thereby dominating the timescale of the generated pulses. 
Models of these mechanisms and how they elicit excit-
ability are comprehensively detailed in Ref. [93], but a 
quantitative comparison between performance metrics of 
lasers in Table 1 is still called for. Qualitatively, however, 
excitable lasers can simultaneously borrow key properties 
of electronic transistors, such as thresholding and cascad-
ability (cf. Section 1.3).

In addition to individual laser excitability, there have 
been a few demonstrations of simple processing circuits. 
Temporal pattern recognition [39] and stable recurrent 
memory [39, 70, 74] are essential toy circuits that demon-
strate the basic aspects of network compatibility.

Table 1: Characteristics of recent excitable laser devices. Note that this table does not have a one-to-one correspondence with Figure 4, 
because some of them are not E/O devices. However, we observed that devices A, D, and F belong to category 2.3.2(a) and device E 
resembles more closely category 2.3.2(c).

Device   Injection scheme   Pump   Excitable dynamics   Refs.

A. Two-section gain and SA   Electrical   Electrical   Stimulated emission   [34–37, 39, 54–61]
B. �Semiconductor ring laser   Coherent optical   Electrical   Optical interference   [44, 62–65]
C. �Microdisk laser   Coherent optical   Electrical   Optical interference   [32, 66]
D. �2D Photonic crystal nanocavitya   Electrical   Electrical   Thermal   [67–69]
E. �Resonant tunneling diode PD and laser diodeb  Electrical or incoherent optical  Electrical   Electrical tunneling   [70–72]
F. �Injection-locked semiconductor laser with 

delayed feedback
  Electrical   Electrical   Optical interference   [73–83]

G. �Semiconductor lasers with optical feedback   Incoherent optical   Electrical   Stimulated emission   [84–90]
H. �Polarization switching VCSELs   Coherent optical   Optical   Optical interference   [33, 91, 92]

aTechnically, this device is not an excitable laser but an excitable cavity connected to a waveguide.
bThe authors call it “excitable optoelectronic device” because the excitability mechanism lies entirely in an electronic circuit rather than the 
laser itself.
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3.3  �Elemental circuits of excitable lasers

Although many neuromorphic semiconductor excitable 
lasers have been proposed and demonstrated, few have 
so far been interconnected in an integrated platform. In 
this section, we discuss simple circuits that could be con-
structed using only two excitable lasers and that could 
verify important properties of the tested technology. The 
first one tests the property of cascadability, which funda-
mentally demonstrates that the excitable dynamics can 
overcome noise and attenuation [44]. The second one tests 
the capability of pattern recognition, which fundamen-
tally demonstrates the ability of such circuits to encode 
and decode information present in spike timing.

3.3.1  �Cascadability

As discussed in Section 2, the concept of cascadability 
is crucial for creating strong recurrent connections and 
neural networks of more than one neuron. Recurrent 
connections are important in neuroscience because they 
enable attractor networks and short-term information 
retention, playing a crucial role in memory function and 
recall [94]. Cascadability also enables the propagation 
and multiplication of signals across the network, a neces-
sary requirement for distributed processing.

Cascadability has been proposed and numerically 
demonstrated in both optically [44, 66] and electrically 

[39, 58, 60] injected lasers. Cascadability in optically 
injected PNNs presents a challenge because optical inter-
ference is sensitive to optical phase noise. On the con-
trary, in O/E/O PNNs, it presents a challenge because 
of the quantum efficiency limit – output pulses must 
contain more photons than the inputs required to trigger 
them. As discussed in Section 4, interconnection induces 
a power penalty to the optical signal’s intensity. There-
fore, to drive a scalably large number of PNNs, amplifica-
tion could play a significant role in either the O/E or the 
E/O stage.

A stable recurrent circuit was prototyped in an excita-
ble graphene fiber ring laser (Figure 6) [39]. This is a proof-
of-concept demonstration of cascadability and pulse 
regeneration. This circuit represents a test of the device’s 
ability to handle feedback and the stable shape of subse-
quent pulses is not only an indication of cascadability but 
also of signal fidelity restoration.

3.3.2  �Temporal pattern recognition

In the context of neurobiology, networks of spiking 
neurons convert analog data (detected from the outside 
world) into spike trains and recognize spatiotemporal 
bit patterns. Spatiotemporal patterns play an important 
role in both visual [95] and audio [96] cortical processing. 
An interesting phenomenon that can happen in an SNN 
with fixed delays is “polychronization”, as discovered by 

Figure 6: Self-recurrent bistable circuit.
(A) Set-up to test the self-referent connection. (B) Input and output waveforms. The first output pulse is fed back to the input after being delayed 
by ~ 100 μs, which initiates another excitatory pulse at the output. This recursive process results in a train of output pulses “ad eternum” at 
fixed intervals. Inset shows an output pulse profile and sech2 fitting curve. Reproduced from Shastri et al. [39]. Licensed under CC BY.
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Izhikevich [97]. A subset of a large network of neurons can 
“polychronize” when a specific spatiotemporal stimulus is 
presented to a small number of neurons, and that triggers 
a repeatable, daisy-chain spiking pattern in the network. 
The neurons activated by the input pattern forms a “poly-
chronous group”. Thus, the polychronous group can rec-
ognize a particular spatiotemporal pattern input into a 
defined set of neurons. With synaptic plasticity, learning 
could occur due to strengthening, appearance, or extinc-
tion of polychronous groups, adding an elastic memory 
functionality to the network.

A simple pattern recognition circuit was prototyped 
by cascading two excitable graphene fiber ring lasers 
(Figure 7) with a delay τ between them. The objective was 
to distinguish (i.e. recognize) a specific input pattern: a 
pair of pulses separated by a time interval Dt = τ, equal to 
the delay between the excitable lasers.

This simple circuit demonstrates important features 
necessary for robust optical processing: well-isolated 
input/output ports allow for the construction of feedfor-
ward networks, and the spatiotemporal recognition of 
spikes allows the system to classify patterns. We expect 
more complex recognition and decoding as the number of 
neurons is increased.

The recent progress in the field of integrated excitable 
lasers is very encouraging. We identify in the literature 
a collection of researchers in different parts of the world 
producing responsible, scholarly work founded in experi-
mental validation and first principles. Today, multiproject 
wafer services offer rapid prototyping of concept systems 
in multiple platforms [98, 99], while device researchers are 
working toward a powerful and versatile active/passive 
photonic hybrid platform [19]. In addition, alternative 
implementations of a PNN offer flexibility with respect 
to which platform it could be instantiated. In summary, 
these advances together with thorough qualitative analy-
sis have cleared the way for the creation of a reconfigura-
ble photonic neuromorphic processor.

4  �PNN part II: network architecture

4.1  �Isomorphism to biological spiking 
neuron

Neurons only have computational capabilities if they are 
in a network. Therefore, an excitable laser (or spiking 

Figure 7: Temporal pattern recognition circuit.
(A) Simple circuit with two cascaded graphene excitable lasers. (B) Measured output pulse peak power and pulse duration as a function 
of the time interval between the two input pulses. (C) Measured input and output waveforms at specific instances: (i) Dt − τ = − 45 μs, (ii) 
Dt ≈ τ = 135 μs, and (iii) Dt − τ = 35 μs. The output pulse energy is largest when Dt = τ showing the system only reacts to a specific spatiotem-
poral input pattern. Reproduced from Shastri et al. [39]. Licensed under CC BY.



T. Ferreira de Lima et al.: Progress in neuromorphic photonics      589

laser) can only be viewed as a neuron candidate if it is 
contained in a PNN. The configurable analog connection 
strengths between neurons, called weights, are as impor-
tant to the task of network processing as the dynamical 
behavior of individual elements. In Section 3, we have dis-
cussed several proposed excitable lasers exhibiting neural 
behavior and cascadability between these lasers. In this 
section, we discuss the challenges involving the creation 
of a network of neurons using photonic hardware, in par-
ticular, the creation of a weighted addition scheme for 
every PNN. Tait et al. [31] proposed an integrated photonic 
neural networking scheme called “broadcast-and-weight” 
that uses WDM to support a large number of reconfigu-
rable analog connections using silicon photonic device 
technology.

A spiking and/or analog photonic network consists 
of three aspects: a protocol, a node that abides by that 
protocol (the PNN), and a network medium that supports 
multiple connections between these nodes. This section 
will begin with broadcast-and-weight as a WDM protocol 
in which many signals can coexist in a single waveguide 
and all nodes have access to all the signals. Configurable 
analog connections are supported by a novel device called 
a microring resonator (MRR) weight bank (Figure 8). Sec-
tions 4.3 and 4.4 summarize the experimental investiga-
tions of MRR weight banks.

4.2  �Broadcast-and-weight protocol

WDM channelization of the spectrum is one way to effi-
ciently use the full capacity of a waveguide, which can 
have usable transmission windows up to 60 nm (7.5 THz 
bandwidth) [103]. In fiber communication networks, a 
WDM protocol called broadcast-and-“select” has been 
used for decades to create many potential connections 
between communication nodes [104]. In broadcast-and-
select, the active connection is selected not by altering 
the intervening medium but rather by tuning a filter at the 
receiver to drop the desired wavelength. Broadcast-and-
“weight” is similar but differs by directing multiple inputs 
simultaneously into each detector (Figure 8B) and with a 
continuous range of effective drop strengths between − 1 
and + 1, corresponding to an analog weighting function.

The ability to control each connection, each weight, 
independently is a crucial aspect of neural network 
models. Weighting in a broadcast-and-weight network is 
accomplished by a tunable spectral filter bank at each 
node, an operation analogous to a neural weight. The 
local state of the filters defines the interconnectivity 
pattern of the network.
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Figure 8: Configurable analog weights in neuromorphic photonics.
(A) Broadcast-and-weight network. An array of source lasers outputs 
distinct wavelengths (represented by solid color). These channels 
are wavelength multiplexed (WDM) in a single waveguide (multi-
color). Independent weighting functions are realized by tunable 
spectral filters at the input of each unit. Demultiplexing does 
not occur in the network. Instead, the total optical power of each 
spectrally weighted signal is detected, yielding the sum of the input 
channels. The electronic signal is transduced to an optical signal 
after nonlinear transformation. Adapted from Ref. [100]. (B) Tunable 
spectral filter constructed using MRR weight bank. Tuning MRRs 
between on- and off-resonance switches a continuous fraction 
of optical power between drop and through ports. A balanced PD 
yields the sum and difference of weighted signals. (C) Left: Optical 
micrograph of a silicon MRR weight bank, showing a bank of four 
thermally tuned MRRs. Right: Wide area micrograph, showing fiber-
to-chip grating couplers [101]. Adapted from Ref. [102].

A great variety of possible weight profiles allows a 
group of functionally similar units to instantiate a tremen-
dous variety of neural networks. A reconfigurable filter can 
be implemented by an MRR – in simple words, a waveguide 
bent back on itself to create an interference condition. The 
MRR resonance wavelength can be tuned thermally (as in 
Figure 8C) or electronically on timescales much slower than 
signal bandwidth. Practical, accurate, and scalable MRR 
control techniques are a critical step toward large-scale 
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analog processing networks based on MRR weight banks. 
We present them in Section 4.3. The analysis of scaling and 
design for MRR weight banks is then given in Section 4.4.

4.3  �Controlling photonic weight banks

Sensitivity to fabrication variations, thermal fluctuations, 
and thermal crosstalk have made MRR control an impor-
tant topic for WDM demultiplexers [105], high-order filters 
[106], modulators [107], and delay lines [108]. Commonly, 
the goal of MRR control is to track a particular point in the 
resonance relative to the signal carrier wavelength, such 
as its center or maximum slope point. On the contrary, an 
MRR weight must be biased at arbitrary points in the filter 
roll-off region to multiply an optical signal by a continuous 
range of weight values. Feedback control approaches are 
well suited to MRR demultiplexer and modulator control 
[109, 110], but these approaches rely on having a reference 
signal with consistent average power. In analog networks, 
signal activity can depend strongly on the weight values, 
so these signals cannot be used as references to estimate 
weight values. These reasons dictate a feedforward control 
approach for MRR weight banks.

4.3.1  �Single-channel control accuracy and precision

How accurate can a weight be? The resolution required 
for effective weighting is a topic of debate within the neu-
romorphic electronics community, with IBM’s TrueNorth 
selecting four digital bits plus one sign bit [111]. In Refs. [102, 
112], the continuous weight control of an MRR weight bank 
channel was shown using an interpolation-based calibra-
tion approach. The goal of the calibration is to have a model 
of applied current/voltage vs. effective weight command. 
The calibration can be performed once per MRR and its 
parameters can be stored in memory. Once calibration is 
complete, the controller can navigate the MRR transfer func-
tion to apply the correct weight value for a given command. 
However, errors in the calibration, environmental fluctua-
tions, or imprecise actuators cause the weight command to 
be inaccurate. It is necessary to quantify that accuracy.

Analog weight control accuracy can be characterized 
in terms of the ratio of weight range (normalized to 1.0) to 
worst-case weight inaccuracy over a sweep and stated in 
terms of bits or a dynamic range. The initial demonstra-
tion reported in Ref. [102] indicates a dynamic range of the 
weight controller of 9.2 dB – in other words, an equivalent 
digital resolution of 3.1 bits.

4.3.2  �Multichannel control accuracy and precision

Another crucial feature of an MRR weight bank is the 
simultaneous control of all channels. When sources of 
crosstalk between one weight and another are consid-
ered, it is impossible to interpolate the transfer function of 
each channel independently. Simply extending the single-
channel interpolation-based approach of measuring a set 
of weights over the full range would require a number of 
calibration measurements that scale exponentially with 
the channel count, as the dimension of the range grows 
with channel count. Simultaneous control in the presence 
of crosstalk therefore motivates model-based calibration 
approaches.

Model-based, as opposed to interpolation-based, 
calibration involves parameterized models for crosstalk-
inducing effects. The predominant sources of crosstalk 
are thermal leakage between nearby integrated heaters 
and, in a lab set-up, interchannel cross-gain saturation 
in fiber amplifiers, although optical amplifiers are not 
a concern for fully integrated systems that do not have 
fiber-to-chip coupling losses. Thermal crosstalk occurs 
when the heat generated at a particular heater affects 
the temperature of neighboring devices (see Figure 8C). 
In principle, the neighboring channel could counter this 
effect by slightly reducing the amount of heat its heater 
generates. A calibration model for thermal effects pro-
vides two basic functions: forward modeling (given a 
vector of applied currents, what will the vector of result-
ant temperatures be?) and reverse modeling (given a 
desired vector of temperatures, what currents should 
be applied?). Models such as this must be calibrated 
to physical devices by fitting parameters to measure-
ments. Calibrating a parameterized model requires at 
least as many measurements as free parameters. Ref. 
[113] described a method for fitting parameters with 
O(N) spectral and oscilloscope measurements, where 
N is the number of MRRs. As an example, whereas an 
interpolation-only approach with 20 points resolu-
tion would require 204 = 160,000 calibration measure-
ments, the presented calibration routine takes roughly 
4 × [10(heater) + 20(filter) + 4(amplifier)] = 136 total cali-
bration measurements. Initial demonstrations achieved 
simultaneous four-channel MRR weight control with an 
accuracy of 3.8 bits and precision of 4.0 bits (plus 1.0 sign 
bit) on each channel (Figure 9). Although optimal weight 
resolution is still a topic of discussion in the neuromor-
phic electronics community [9], several state-of-the-art 
architectures with dedicated weight hardware have 
settled on 4-bit resolution [111, 115].
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4.4  �Quantitative analysis for photonic 
weight banks

Engineering analysis and design rely on quantifiable 
descriptions of performance called metrics. The natural 
questions of “how many channels are possible” and sub-
sequently “how many more or fewer channels are garnered 
by a different design” are typically resolved by studying 
trade-offs. Increasing the channel count performance 
metric will eventually degrade some other aspects of per-
formance until the minimum specification is violated.

Studying trade-offs between these metrics are impor-
tant for better designing the network and understanding its 
limitations. Just as the case with control methodologies, it 
was found that quantitative analysis for MRR weight banks 
must follow an approach significantly different from those 
developed for MRR demultiplexers and modulators [100].

In conventional analyses of MRR devices for multi-
plexing, demultiplexing, and modulating WDM signals, 
the trade-off that limits channel spacing is interchannel 
crosstalk [103, 116, 117]. However, unlike MRR demultiplex-
ers where each channel is coupled to a distinct waveguide 
output [105], MRR weight banks have only two outputs 
with some portion of every channel coupled to each. All 
channels are meant to be sent to both detectors in some 
proportion, so the notion of crosstalk between signals 
breaks down (Figure 8B). Instead, for dense channel 
spacing, different filter peaks viewed from the common 
drop port begin to merge together. This has the effect of 
reducing the weight bank’s ability to weigh neighboring 
signals independently. To quantify this effect as a power 
penalty, the cross-weight penalty metric must include 

a notion of tuning “range” (Section 4.4.1). After this has 
been described, an example channel density analysis is 
carried out to derive the scalability of weight banks that 
use microresonators of a particular finesse (Section 4.4.2).

4.4.1  �Cross-weight power penalty metric

In the single-channel case, an ideal tunable weight bank 
possesses a range of tuning states that include directing 
an incident optical signal completely to a through port 
(positive weight), completely to a drop port (negative 
weight), or to any intermediate ratio of both (Figure 8B). If 
a real weight incurs some loss, its weight range becomes a 
subset of the ideal. If there is a difference in loss between 
the drop and through ports, then the attainable weight 
range will also be unbalanced. Because the neural 
network abstraction should be able to provide a program-
mer with a range of weights from − 1 to + 1, we require 
that the range is usable only up to the minimum absolute 
extremum. Comparing the usable range to the ideal range 
yields a ratio, W, which quantifies the real device’s ability 
to perform tunable optical weighting.

	
(1 D) min max( ), max( ) ,

p p
cW µ µ − = −

  �
(6)

where p is the tuning parameter and μ is the weight.
In the N-channel case, the ideal WDM weight bank is 

able to switch WDM channels completely independently 
from one another. However, if a given tuning parameter 
can affect multiple weight values, then the bank’s weight 
range cannot be linearly separated into a composition of 
nonideal single-channel weight ranges. In other words, 

Figure 9: Demonstration and characterization of multi-channel analog weight control using microring resonator weight banks shown in Fig. 8.
(A) 2D weight sweep showing controller accuracy and precision. After the calibration procedure, the target weight was swept five times 
over a grid of values from − 1 to 1 (black grid). Black points are measured weight data. Red lines show the mean offset from each target grid 
point. Blue ellipses indicate one standard deviation around the mean. From this plot, it is deduced that the weight can be controlled with an 
accuracy of 3.8 bits. (B) [6, 14, 32, 37, 51, 73, 84, 111, 114] Output time trace of signals corresponding to points labeled in (A). The expected 
weighted signal is in red, whereas measured traces are in blue. From Ref. [113].
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the N-dimensional range of states becomes warped. 
Figure 10 depicts this mapping for a simulated two-chan-
nel bank that is parameterized by the MRR detunings.

As in the 1D case, a usable range can be defined as 
the largest balanced interval (i.e. a zero-centered square 
in 2D) that is completely covered by the attainable weight 
range. The usable range (green square in Figure 10B) is 
compared to the theoretical ideal (black bounding box in 
Figure 10B) to obtain an amplitude ratio between usable 
and ideal – a fill factor W.

This definition of cross-weight penalty can be 
extended conceptually to higher dimensions and WDM 
weight banks with an arbitrary number of channels. In N 
dimensions, the boundary is a (N − 1)-dimensional closed 
manifold parameterized by the (N − 1)-dimensional vector 

.s�  The cross-weight penalty can then be defined as

	 1
(N D) min max | ( ) | .x is i N

cW sµ
∈ …

 − =    
�

�

�
(7)
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Figure 10: Example of cross-weight power penalty in a two-channel 
MRR weight bank.
(A) The device has two tuning degrees-of-freedom, which are 
resonance detunings of each filter. A (red, blue) color vector is 
used to indicate tuning state, which means that (A) depicts (red = x, 
blue = y). (B) The range of possible weight states attainable by the 
weight bank relative to the ideal range (outer bounding box). (red, 
blue) color indicates the tuning state that maps to a particular 
weight point. The usable range (green box) is graphically the largest 
square that lies fully within the possible weight range centered at 
zero. (C) Drop port spectra of the same model over a 5 × 5 parameter 
grid, with trace color used to indicate tuning. Frequency is normal-
ized so that the MRR 1 peak has a center of 0 and full-width half-
maximum (FWHM) of 1.0. Channel spacing in this simulation is 1.31 
line widths and waveguide loss is 2 dB cm − 1. From Ref. [100].
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Figure 11: Cross-weight power penalty surface as a function of 
channel spacing δω and bus WG length offset DL.
Power penalty contours are plotted at 0.5 dB increments between 
1 dB (blue) and 10 dB (yellow). The penalty increases as channel 
density decreases, eventually reaching an asymptote. This trade-off 
also depends significantly and approximately periodically on DL, 
indicating the influence of coherent multi-MRR interactions in the 
bus WGs. (Outer panels) Ranges of possible weight states, plotted 
as in Figure 10B, at 10 selected operating points that are indicated 
in Figure 10A by red circles. The top row, DL = 0.105, represents the 
best-case trade-off between power and channel density, and the 
bottom row, DL = 0.037, represents the worst-case. From Ref. [100].

Wx quantifies the “effective insertion loss” of a pho-
tonic weight bank, provided that it is capable of fully inde-
pendent and balanced control. Supposing Wx = 0.5, then 
the weight bank is equivalent to an ideal Wx = 1.0 weight 
bank with an insertion loss of 0.5. Wx can therefore be 
stated as a power penalty in dB: − 10 log(Wx) describes the 
additional input power (in dB) required to make a non-
ideal weight bank behave as an ideal weight bank.

4.4.2  �Weight bank channel limits

The final step of channel density analysis is to study the 
degradation of a limiting metric as WDM channel spacing 
becomes more dense. A useful figure of merit for discuss-
ing the efficacy of a resonator-based circuit at a WDM 
task is the ratio of finesse to channel count. A theoretical 
minimum of this figure is 1.0.

Figure 11 shows the resulting power penalty contours 
of − 10 log(Wx) vs. channel spacing, δω, and bus length 
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changes, DL. The penalty is asymptotic in channel spacing, 
meaning there is an absolute minimum channel spacing 
regardless of acceptable power penalty. The power penalty 
cannot quite reach 0 dB because of optical losses. In Ref. 
[100], Tait et al. discovered that both the channel density 
wall and the trade-off between density and power are sig-
nificantly affected by bus length changes. The resulting 
approximate periodicity (here, ~ 0.12 in arbitrary length 
units) is indicative of a coherent multi-MRR interference 
condition that could be exploited to decrease the power 
penalty figure [100]. What’s perhaps surprising is that the 
effect of bus length remains significant even when chan-
nels are spaced relatively far apart. The 1 dB contour line 
(blue) fluctuates between 2.7 and 3.4 line widths over a 
period of DL.

WDM channel spacing, δω, can be used to deter-
mine the maximum channel count given a resonator 
finesse. Whereas finesse can vary significantly with the 
resonator type, normalized spacing is a property of the 
circuit (i.e. multiplexer vs. modulators vs. weight bank). 
Making an assumption that a 3  dB cross-weight penalty 
is allowed, we find that the minimum channel spacing 
falls between 3.41 and 4.61 line widths depending on bus 
length. High finesse silicon MRRs, such as that shown in 

Refs. [118] (finesse = 368) and [119] (finesse = 540), could 
support 108 and 148 channels, respectively. Other types 
of resonators in silicon, such as elliptical microdisks [120] 
(finesse = 440) and traveling-wave microresonators [121] 
(finesse = 1140), could reach up to 129 and 334 channels, 
respectively.

MRR weight banks are an important component of 
neuromorphic photonics – regardless of PNN imple-
mentation – because they control the configuration of 
analog network linking photonic neurons together. In 
Ref. [113], it was concluded that ADC resolution, sensitiv-
ized by biasing conditions, limited the attainable weight 
accuracy. Controller accuracy is expected to improve by 
reducing the mismatch between tuning range of inter-
est and driver range. Ref. [100] arrived at a scaling limit 
of 148 channels for an MRR weight bank, which is not 
impressive in the context of neural networks. However, 
the number of neurons could be extended beyond this 
limit using spectrum reuse strategies (Figure 12) proposed 
in Ref. [31] by tailoring interference within MRR weight 
banks as discussed in [100] or by packing more dimen-
sions of multiplexing within silicon waveguides, such 
as mode-division multiplexing. As the modeling require-
ments for controlling MRR weight banks become more 
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Figure 12: Spectrum reuse strategy.
(A) Fully interconnected network by attaching PNNs to a broadcast loop (BL) waveguide. (B) Slightly modified PNN can transfer information 
from one BL to another. (C) Using this scheme, neuron count in one chip is only limited by footprint, but PICs can be further interconnected 
in an optical fiber network.
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computationally intensive, a feedback control technique 
would be transformative for both precision and modeling 
demands. Despite the special requirements of photonic 
weight bank devices making them different from com-
munication-related MRR devices, future research could 
enable schemes for feedback control.

5  �Neuromorphic platform 
comparison

We have recently produced a quantitative comparison 
between neuromorphic hardware architectures [18, 20]. 
Weighted addition is critical for neural network imple-
mentations, and as the number of operations scales quad-
ratically with the number of nodes in all-to-all connected 
networks, it represents the most costly hardware scalabil-
ity bottleneck [9]. Thus, for analysis, we can deconstruct 
this operation as a parallelized set of MACs and use it as 
a reference unit of computation. The MAC operation takes 
the following form: a ← a + (w + x). It includes both a mul-
tiplication (i.e. x is multiplied by the “weight” w) and an 
addition (the result is accumulated to variable a).

For consistency, we compare architectures that have 
similar functionality: we limit ourselves to fully recon-
figurable systems of SNNs. The analysis includes elec-
tronic neuromorphic architectures introduced in Section 
1.1. For the photonically enhanced system, we studied an 
optoelectronic neural network with PNNs instantiated 
within the hybrid silicon/III-V platform [58, 122]. We also 
consider a future photonic crystal instantiation based on 
fundamental physical considerations. Calculated metrics 

are based on realistic device parameters derived from the 
literature.

Results are summarized in Table  2. The most strik-
ing figure is the number of operations per second, which 
exceeds electronic platforms by three orders of magni-
tude compared to the analog/digital accelerated HICANN 
and three orders of magnitude compared to the others 
that are purely digital implementations. This stems from 
both the high bandwidths and low latencies possible with 
photonic signals. The optoelectronic approach is also 
able to achieve energy efficiencies that are on the same 
order of magnitude as those in electronics, which avoids 
the heat problems that have prevented digital CMOS elec-
tronics from reaching similar operating bandwidths. The 
optoelectronic approach is able to achieve such energy 
efficiency at high speeds because power is mainly con-
sumed statically by the lasers, whereas the passive filters 
have low leakage current. This contrasts to CMOS digital 
switches, whose power consumption increases dynami-
cally with clock speed. Processor fan-in is similar in both 
platforms despite very differing technologies. The area 
per MAC is more stringent in a photonically enhanced 
system, as photonic elements cannot be shrunk beyond 
the diffraction limit of light. This is because each data 
channel requires a weighting filter in the PNN, such as an 
MRR pair, which adds a footprint penalty. However, this 
is compensated by the fact that a single waveguide can 
carry many wideband channels simultaneously, unlike 
electronic wires. Nonetheless, although photonically 
enhanced systems cannot compete with the miniaturiza-
tion of future nanoelectronics, the estimated footprint of 
such a system is currently on par with some of the elec-
tronic systems presented here.

Table 2: Comparison between different neuromorphic processors.

Chip   MAC rate per 
processor

  Energy per 
MAC (pJ)

  Processor 
fan-in

  Area per 
MAC (μm2)

  Synapse 
precision (bit)

Photonic hybrid III-V/Si (current work)  20 GHz  1.3  108  205  5.1
Sub-λ photonics (future trend)   200 GHz  0.0007  ~ 200  20  8
HICANN [12]   22.4 MHz  198.4  224  780  4
TrueNorth [11]   2.5 kHz  0.27  256  4.9  5
Neurogrid [10]   40.1 kHz  119  4096  7.1  13
SpiNNakera [13]   3.2 kHz  6e5  320  217  16

III-V/Si hybrid stands for estimated metrics of an SNN in a PIC in a III-V/Si hybrid platform. Sub-λ stands for estimated metrics for a platform 
using optimized subwavelength structures, such as photonic crystals. An MAC event occurs each time a spike is integrated by the neuron. 
Neuron fan-in refers to the number of possible connections to a single neuron. The energy per MAC for HICANN, TrueNorth, Neurogrid, and 
SpiNNaker was estimated by dividing wall-plug power to number of neurons and to operational MAC rate per processor. The area per MAC 
was estimated by dividing the chip/board size to the number of MAC units (neuron count times fan-in). All numbers therefore include over-
heads in terms of footprint and area.
aNeurons, synapses, and spikes are digitally encoded in event headers that travel around cointegrated processor cores. Therefore, all 
numbers here are based on a typical application example.
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6  �Outlook
After half a century of continuous investment and com-
mercial success, digital CMOS electronics dominates the 
industry of general-purpose computing. However, with 
growing demand for connectivity, there is an urgent need 
for ultrafast coprocessors that could relieve the stress in 
digital processing circuits. Here, we have presented the 
elements of a reconfigurable photonic hardware that can 
emulate SNNs operating a billion times faster than the 
brain. As we identify proper metrics for a neuromorphic 
photonic processor, research efforts are incipiently tran-
sitioning from individual devices to systems design. We 
are witnessing a fast maturation of standardized photonic 
foundries in several platforms. Chrostowski and Hoch-
berg [98] said that we are entering a nascent era of fabless 
photonics, where users can create computer-assisted chip 
designs and have it fabricated by these foundries using 
quality-controlled repeatable processes. We anticipate 
that neuromorphic photonic coprocessors (Figure 13) will 
be fabricated and packaged using fabless services in the 
medium term.

Applications for neuromorphic photonic processors 
can be clustered into two categories: (1) a front-end stage 
for radiofrequency (RF) systems and data centers and 
(2) ultrafast processing for specialized fast applications 
[18]. The first category uses the low-latency, parallelism, 
and energy-efficient properties of photonics to alleviate 
the throughput of RF systems, for example, by execut-
ing dimensionality reduction tasks such as principal 
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Figure 13: Diagram description of a fully packaged neuromorphic 
processor.
Whereas two layers of electronics provide reconfigurability, the 
photonic SNN permits low-latency functionality. Nf: Fan-in of each 
neuron.

component analysis or blind-source separation. The 
second category takes advantage of the raw speed (band-
width and latency) of the photonic processor to execute 
iterative algorithms mapped to recurrent neural networks.

Neuromorphic photonic processors join a class of 
photonic hardware accelerators designed to assist in 
acquisition, feature extraction, and storage of wideband 
waveforms [123]. These accelerators manipulate the spec-
trotemporal of a wideband signal, a task difficult to accom-
plish in analog electronics over broad bandwidth and 
with low loss. Reservoir computing is another promising 
model of analog computing. In reservoir-based models, 
a fixed complex system (the reservoir) generates an enor-
mous number of nonlinear functions of inputs, and then 
a readout layer is trained to approximate the desired task 
out of a linear combination of reservoir functions. Res-
ervoir computers consisting of a photonic reservoir with 
electronic readout layer have received substantial recent 
attention from the photonics community and have experi-
mentally demonstrated a range of machine learning tasks 
[124–128].

6.1  �Real-time RF processing

After some initial front-end processing (i.e. heterodyning 
and amplification), most radio transceiver systems are 
processed by either DSPs or field programmable gate 
arrays (FGPAs) for more complex signal operations. 
However, the speeds of these processors (i.e. ~ 500 MHz) 
limit the overall throughput of RF carrier signals, which 
can easily be in GHz range. Clever sampling and paral-
lelization can help alleviate this bottleneck but at the cost 
of much higher latency and a significant resource/energy 
overhead. Specialized RF application-specific integrated 
circuits (ASICs) are another option but are expensive, 
require significant development time, and have limited 
reconfigurability. Future imagined multiple-in multi-
ple-out (MIMO) systems – which, in the case of massive 
MIMO, can be on the order of ~ 100 s of input and output 
channels [129, 130] – are especially susceptible to this bot-
tleneck and may require a radically new solution.

Adding a photonic processing chip to the front of a 
radio transceiver would allow very complex operations 
to be performed in real time, which can significantly 
offload electronic postprocessing and provide a techno-
logy to make faster, more relevant RF decisions on-the-fly. 
Massive MIMO systems based on beamforming in phased 
array antennas require a processor that can distinguish 
and operate on hundreds of high bandwidth signals 
simultaneously, a feat that is currently speed limited by 
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current electronic processors [129, 131]. A photonic neural 
network model is a perfect fit for addressing this kind 
of technological challenge: efficient MIMO beamform-
ing relies on MAC operations that are already applied in 
neural network models via “weighted addition”. In addi-
tion, classification algorithms can be built efficiently 
using the neural network approach, allowing for RF fin-
gerprinting and signal identification.

6.2  �Nonlinear programming

Another way of taking advantage of raw speed is via an 
“iterative” approach. Iterative algorithms find success-
fully better approximations to a problem of interest and 
often require many time steps to reach a desired solution. 
A large class of problems that can be solved iteratively 
include “linear and nonlinear programming problems”.

Quadratic programming (QP) are optimization prob-
lems with quadratic multivariable objective function 
subject to constraints. A notable example of a compu-
tational problem that can be reduced to a QP includes 
model predictive control (MPC). The ability of MPC to 
handle large MIMO systems with physical constraints 
has led to very successful applications in slow processes, 
where there is sufficient time for solving the optimization 
problem between sampling instants. The application of 
MPC to faster systems, therefore, relies on new ways of 
finding faster solutions to QP problems [132]. It has been 
shown that QPs can be mapped onto recurrent neural net-
works that converge to an attractor state corresponding to 
the solution of QPs [133].

Because one of the most salient advantages of a pho-
tonic approach is its low time-of-flight (in picoseconds) 
between communicating processors, the convergence 
rates can be significantly improved by implementing them 
on a photonic platform. These processors represent some 
of the most effective yet generalized tools for acquiring 
and processing information and controlling highly mobile 
systems, such as a hypersonic aircraft [134].
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