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Abstract: We review a novel paradigm that has emerged 
in analogue neuromorphic optical computing. The goal is 
to implement a reservoir computer in optics, where infor-
mation is encoded in the intensity and phase of the opti-
cal field. Reservoir computing is a bio-inspired approach 
especially suited for processing time-dependent informa-
tion. The reservoir’s complex and high-dimensional tran-
sient response to the input signal is capable of universal 
computation. The reservoir does not need to be trained, 
which makes it very well suited for optics. As such, much 
of the promise of photonic reservoirs lies in their mini-
mal hardware requirements, a tremendous advantage 
over other hardware-intensive neural network models. 
We review the two main approaches to optical reservoir 
computing: networks implemented with multiple discrete 
optical nodes and the continuous system of a single non-
linear device coupled to delayed feedback.
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works; nonlinear optics; optical computing.
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1  Introduction
Novel methods for information processing are highly 
desired in our information-driven society. Traditional von 
Neumann computer architectures or Turing approaches 
work very efficiently when it comes to executing 

algorithmic instructions. In terms of efficiency they run 
into trouble for highly complex or abstract computational 
tasks such as speech recognition or facial recognition. Our 
brain functions in a different way and seems to be excel-
lently equipped for this kind of tasks. In our daily lives, 
we are constantly fed with impressions stemming from 
sensory information. Seeing a vehicle or a familiar face, 
hearing the ongoing traffic and conversations, and smell-
ing the food stalls – all these external impulses instantly 
produce large neural activity in our brain and allow us to 
recognize the passing bus, a good friend, a car horn, or 
that smell of freshly baked waffles inducing the physical 
response of hunger. The neural network system that con-
stitutes our brain is constantly processing these stimuli 
and uses underlying structures to interpret reality. In 
this, the human brain is highly efficient. Today, except for 
mathematical operations, our brain functions faster and 
much more efficient than any supercomputer. A recent 
estimate by Dharmendra Modha (IBM) suggests that emu-
lating a human brain requires ~30 PFlops. Even today, only 
supercomputers provide such enormous computational 
performance – at an astronomical power consumption of 
~10 MW. The human brain suffices with a mere ~20 W.

The information processing core of the human brain 
is formed by a neural network. Until today, research into 
information processing via artificial neural networks 
(ANN) is strongly dependent on advances in simulating 
ANN on von Neumann computing platforms. The highly 
successful deep learning algorithm can be seen as an illus-
trating example. Training deep neural networks requires 
a vast number of iterations optimizing the internal con-
nections of the ANN. Though already in the 1970s identi-
fied as a promising computational concept [1], such ANNs 
could only be implemented recently by employing the 
newest generation of graphical processing units [2]. This 
technological breakthrough led to record-breaking state-
of-the-art performances on several benchmarks such as 
computer vision [3]. Recently, AlphaGo, a deep learning 
algorithm by Google DeepMind trained for playing the 
board game Go [4], defeated a human professional player 
in the full-sized game of Go. The algorithm of AlphaGo 
is based on deep neural (feedforward) networks that are 
trained by a combination of supervised and reinforcement 
learning from games of self-play. Nevertheless, AlphaGo 
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consumes approximately 1 MW of power, exceeding 
power consumption of our brain by roughly four orders 
of magnitude.

To reproduce some of the brain’s computational capa-
bilities while circumventing limitations such as excessive 
power consumption, the field of neuromorphic computing 
starts to diverge from single-core von Neumann computer 
architecture. For example, IBM has developed the neuro
morphic TrueNorth chip, consisting of more than one 
million spiking neurons. Consuming only 70 mW, the chip 
has a strongly improved power efficiency when implement-
ing ANNs [5]. Furthermore, the SpiNNaker spiking neural 
network processor is used as part of the Human Brain Pro-
ject’s neuromorphic platform [6, 7]. Both systems present 
a large step towards an efficient hardware implementation 
of ANNs. Still, they rely on serial communication between 
neurons and a von Neumann approach to compute neuron 
responses. Though distributed in a highly parallel manner 
and located close to neurons, information is still stored in 
an isolated memory. Rather than true axon-like connec-
tions between individual neurons, connections are based 
on a serial bus technology. As a consequence, the system 
update rate is orders of magnitude below the bandwidth 
of individual components. Early work by Hopfield and 
Tank [8] suggested densely connected networks of micro 
electronic neurons for implementing ANN, while Denz [9] 
elaborated on optical implementations of ANN in non
linear optical media. These foresighted suggestions had a 
common divisor: the analog hardware implementation of 
all aspects of an ANN, nodes (neurons) and network con-
nections (axions and dendrites).

Structurally speaking, ANNs differ fundamentally 
from von Neumann processors. In a neural network, a 
large number of node and connection values are pro-
cessed simultaneously. Contrarily, the core of each von 
Neumann processor can only compute a single value at a 
time. Due to its inherent parallelism, photonic technology 
is expertly suited for the creation of such networks. The 
exploitation of such parallelism in optics was first real-
ized two decades ago. Early work exploited volume holo-
graphic elements for establishing connections between 
light-emitting diodes and detector arrays [10]. Using 
other bulk optical components, e.g. lenslet arrays, others 
focused on the implementation of an optical vector-matrix 
multiplier or of optical correlators [11]. While initially seen 
as promising, the developed schemes where limited by 
their fundamental working principle. Firstly, a one-to-one 
translation of ANN concepts to optical systems requires the 
implementation and accurate control of a large number of 
optical connections, something which quickly was found 
to be unrealistic. Secondly, early schemes relied on the 

nonlinear transformations by the neurons to be imple-
mented electronically, limiting the energy efficiency of 
such systems.

Recently, interest into neuromorphic computing 
using photonics has been reinvigorated. The driving force 
behind this development is a novel paradigm of neuromor-
phic computing referred to as reservoir computing (RC). 
Crucially, the term reservoir originally referred to a large, 
randomly connected fixed network of nonlinear nodes or 
neurons. It was quickly realized that such random and 
fixed connections radically reduce the complexity for a 
hardware implementation in photonics as compared to 
earlier efforts in the 1990s. With RC there is no need for 
reconfigurable optical connection links. Various (more 
standard) photonic techniques can now be used to imple-
ment optical networks for RC with a wide range of network 
topologies. In this review, we will show how such recur-
rent networks for optical RC have been implemented 
either on a photonic chip or using diffractive optics. In 
addition, we show how novel, excitable spiking photonic 
devices move the field even closer to its biological inspira-
tion, the human brain.

Going even further, not all reservoirs are neural net-
works. Analog physical systems such as the nonlinear 
behavior of ripples on a water surface have been used for 
information processing based on the RC paradigm [12]. 
RC therefore enables the implementation of neuromor-
phic computing avoiding the need of interconnecting 
large numbers of discrete neurons. In this review, we will 
revisit the concept of delay embedded RC, using only a 
single nonlinear node with delayed feedback. Contrary 
to optical network-based RC, nodes of a delay-based 
reservoir are implemented in a spatially continuous 
medium (i.e. the delay line). These nodes are considered 
virtual as they are not implemented as components or 
units in hardware. As a consequence, coupling between 
the virtual nodes of such a reservoir are intrinsically 
fixed. Nevertheless, delay-based RCs have shown similar 
performance as spatially distributed RCs, with the 
advantage that the hardware requirements are minimal 
as no complex interconnection structure needs to be 
formed. In photonics, it allows even for the use of hard-
ware that is more traditionally associated with optical 
communications.

RC rekindled neuromorphic computing activities in 
photonics. Today, multiple photonic RC systems show 
great promise for providing a practical yet powerful 
hardware substrate for neuromorphic computing, both 
systems based on discrete nonlinear nodes (neurons), as 
well as implementations based on nondiscrete continu-
ous systems. This development now opens the field of 
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nanophotonics for advanced implementations of neuro-
inspired computational systems.

2  �Reservoir computing
In Figure  1, we show the functional architecture of a 
standard reservoir computer as it is most generally imple-
mented in software. To ease the discussion, we will con-
sider that the reservoir is an ANN consisting of discrete 
neurons. It consists of three neural layers: an input layer 
(in red), the reservoir itself (in green), and one output 
layer (in blue). Here, for simplicity, we show a system with 
a one-dimensional readout. Information is injected into 
the reservoir according to input connectivity matrix Win. 
For k input channels and a reservoir of N nodes, Win is of 
dimension (k × N). The internal connectivity of the reser-
voir is defined by a connectivity matrix Wint of dimension 
(N × N). Wout determines the connection weights between 
reservoir and readout layer nodes. Here, an (l × N)-dimen-
sional readout matrix simultaneously creates l computa-
tions with a single reservoir.

RC finds its main merit in a simplification resulting 
from the particular properties of matrices Win, Wint, and 
Wout. Introduced independently by Jaeger and Haas [13] 
and Maass et  al. [14], their most striking innovation was 
the usage of random distributions for input connections 
Win and internal connections Wint. Both matrices remain 
constant over time and do not participate in the training 
procedure. Training therefore is restricted to modifications 
to matrix Wout. Due to the random distribution of Wint, the 
resulting randomly connected reservoir naturally features a 
fraction of recurrent connections. As such, RC conceptually 
belongs to the field of recurrent neural networks (RNNs). 
Similar to connections with finite propagation speed in 

the brain, recurrence forms temporally delayed connectiv-
ity loops within the reservoir. Therefore, the current state 
depends on information originating from different earlier 
time steps: RNNs provide short-term or working memory. 
RC in particular allows feature extraction on complex time 
series with excellent performance [13–17]. Inside RNNs, this 
memory merges with computation, clearly going beyond 
the von Neumann concept. The processing capabilities are 
clearly due to the analogue dynamics within the network, 
although digital implementations have also been consid-
ered. The output layer is the only one which can be altered. 
This allows for parallel processing with an output layer 
which is higher dimensional. It also allows for the process-
ing of new tasks after a rewiring of said layer alone.

The term reservoir computing was coined by Ver-
straeten et al. [17] in 2007. It was meant to unify two closely 
related RNN structures: the echo state network by Jaeger 
[18], described in 2001, and the liquid state machine by 
Maass et al. [14], in 2002. Though highly attractive, RNNs 
are notoriously difficult systems to train. The main inten-
tion of Jaeger and Maass was a strong simplification of 
the training algorithm of RNNs, originally motivating the 
random injection and internal connectivity matrices Win 
and Wint. However, soon it was realized that random and 
temporally fixed connections are of enormous benefit for 
implementing RC in hardware. These features particular 
to RC will be described in depth in the following sections.

2.1  �The hardware reservoir

Already indicated by one of its original names, liquid state 
machine, a reservoir corresponds to a nonlinear dynami-
cal system. Allowing for a random Wint, the scheme is tol-
erant against variations of the internal interactions with 
the RNN. One of the few requirements on a reservoir is the 
following: internal weights Wint need to be scaled such 
that the reservoir is put into a suitable dynamical regime. 
Though task-dependent, typically one has to bring the res-
ervoir close to an instability by globally scaling Wint, i.e. 
multiplying each interconnection strength with the same 
amount. Without external input the system should return 
to a quiescent state. Under such conditions a reservoir 
experiences fading memory: the longer ago information 
was injected, the less influence it is supposed to exert onto 
the current state of the reservoir.

These particular features make RC excellent for a 
implementation in complex dynamical systems. The state 
of the reservoir X(n) is determined by

	 in in int( ) ( ( 1) ),X n f W x W X n b= + − + � (1)

xin

Input layer Reservoir Readout layer
x1

x2

yout = ∑ wi xi

xN 

Figure 1: Standard layout of a reservoir computer, comprising an 
input layer (red), the reservoir (green) with randomized but fixed 
connections, and the linear readout layer (blue). Here, for simplicity 
a one-dimensional readout layer is drawn (l = 1).
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where b is the vector of biases and xin(t) is sequentially 
injected input data. Generally, xin(t) is a k-dimensional 
input vector, which might be discrete or continuous in 
nature. The exact internal connectivity is not crucial as 
long as it is globally scalable. In fact, Rodan and Tino [19] 
showed that very simple and nonrandom internal connec-
tivity leads to very promising computational performance. 
The same applies to data injection. Going even further, 
in Eq. (1), no specific nonlinear function f(x) is defined. 
Countless nonlinear and high-dimensional hardware 
systems are therefore suitable for implementing Eq. (1).

Shortly after the conditions on Eq. (1) were strongly 
relaxed, the number of nonlinear dynamical systems 
exploited for RC increased in a short amount of time. 
Only 4 years after the initial demonstration of RC in hard-
ware, experimental realization included a Mackey-Glass 
type nonlinearity [20], sin2 nonlinearities [21, 22], and a 
semiconductor optical amplifier (SOA) [23] as well as a 
semiconductor laser nonlinearity [24]. Among the main 
conclusions of these studies is the robustness of compu-
tational performance. Each of these systems has different 
system-specific properties such as dynamical parameters, 
different nonlinearities f(x), and different internal (Wint) 
and external (Wext) connectivity. Still, all systems funda-
mentally produced comparable figures of merit on a wide 
range of computational tasks.

Combining the simplifications and advantages intro-
duced, RC has opened lines of research that go beyond 
common digital implementations and even beyond neural 
networks consisting of discrete elements. In principle, any 
dynamical system which has a high-dimensional phase 
space is a good candidate for RC [25]. The RC concept offers 
a highly attractive approach to neuromorphic computa-
tion in hardware. Substrate and reservoir implementation 
dimension can be chosen to maximally exploit system-
specific properties for computation. Typical reservoirs 
comprise several hundred nodes, a complexity readily 
present in physical systems. Full analog physical imple-
mentations such as water ripples [12], mechanical oscil-
lators [26], tensegrity structures [27, 28], soft bodies [29], 
and the optical devices and circuits which are the subject 
of this review have all been implemented. RC has indeed 
grown to include systems which are not necessarily based 
on a network topology of discrete components.

As opposed to digital implementations simulating 
RNNs, a physical system promises higher bandwidths, 
and parallelism and lower power consumption. The 
main obstacle for the practical implementation of res-
ervoir computers (and indeed of all ANNs of consider-
ate size) in physical substrates is that each of the many 
nodes has to be built and connected to the others: i.e. the 

connectivity problem. Integration on a photonic chip is 
one way to deterministically tackle this interconnection 
problem either by integrated waveguides or by imaging 
techniques. Nevertheless, the technology imposes limi-
tations on the number and strength of the interconnec-
tions that can be achieved. Another approach is to use the 
natural circular connectivity present in delays systems 
and as such radically simplify the interconnection topol-
ogy. We are convinced that nanophotonic concepts and 
devices could not only result in a breakthrough in terms of 
integration density and computation speeds in the pres-
ently considered optical RC implementations but also 
lead to novel architectures benefitting from nanopho-
tonic’s inherent properties. In this way, optical computing 
devices could revolutionize tasks where fast and energy-
efficient processing is of the essence. Example applica-
tions include optical header recognition, optical signal 
recovery, and fast control loops.

2.2  �The input layer

As defined in Win, the connection between k-dimensional 
input data and an N-dimensional reservoir is randomly 
distributed. In a physical implementation, such a struc-
tured injection matrix corresponds to a random connec-
tion between a dynamical system’s multiple degrees of 
freedom (reservoir) and an external modulation signal 
(injected information). The original motivation behind 
random injection was the creation of a highly diverse res-
ervoir response [14, 18]. The computational power of ANNs 
generally relies on creating multiple nonlinear transfor-
mations of the same input information. Only then will a 
training procedure be capable to approximate the func-
tional relationship for the desired computational opera-
tion. A random injection matrix therefore is a natural 
choice when aiming at maximizing the diversity of the 
reservoir responses without specifically optimizing Wint.

As with the random internal connectivity Wint, a 
random Win as proposed by Jaeger and Maass had addi-
tional and strongly beneficial effects for hardware imple-
mentations. Physical implementation of such connections 
is highly practical. As is the case for the internal connec-
tivity Wint, the injection connectivity Win only has to be 
globally scaled. Combined with the fading memory prop-
erty mentioned in Section 2.1, Win and Wint have to be set 
such that the data-driven reservoir system features (i) 
the approximation and (ii) the separation property. The 
approximation property corresponds to consistency of 
a driven system [30, 31]: for multiple repetitions of iden-
tical input data, the system has to produce comparable 
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responses. The hardware reservoir then is robust against 
reservoir inherent and input data noise. The separation 
property demands that reservoir responses will sufficiently 
differ for multiple input data differing by more than noise. 
As shown by Uchida et al. [30] and Oliver [31], nonlinear 
dynamical systems typically can be brought into such state 
using a small number of global control parameters.

As for a hardware implementation of the reservoir 
itself, the data input procedure is highly flexible. The 
implementation dimension can again be chosen such 
that system-specific properties are maximally exploited. 
This is illustrated by comparing spatially and temporally 
implemented reservoir. The first approach requires the 
parallel realization of a large number of different spatial 
coupling coefficients. In photonics, this can be realized, 
e.g. by multimode imaging [24]. Still, a spatially distrib-
uted reservoir might require more involved device control. 
If one therefore targets the reduction of experimental com-
plexity, one can implement a reservoir in a single device 
via a delay system. Information injection then changes to 
a single modulation signal multiplexed in time [20].

2.3  �The training procedure

As introduced in the previous sections, Jaeger [18] and Maass 
et al. [14] created a neuromorphic computational concept 
utilizing dimensionality expansion based on random non-
linear mapping. The exploitation of such a mapping for 
information processing is illustrated in Figure 2. Informa-
tion originating from an arbitrary measurement process 
is typically underrepresented: not all dimensions of a sys-
tem’s phase space can be accessed simultaneously. Going 
even further, for abstract problems it is often not apparent 
which those dimensions are. As a consequence, relevant 
computations can typically not be obtained from a linear 

operation upon available data. This situation corresponds 
to Figure 2A. Two different classes within the sample data 
(red and yellow spheres) cannot be linearly separated 
within the two-dimensional sample space. Mapping the 
two-dimensional data onto a high-dimensional reservoir, 
the random nonlinear mapping results in a dimensional-
ity expansion. For a reservoir with a sufficient number of 
independent projections, one can find additional dimen-
sions which allow for such a linear separation. This case is 
illustrated in Figure 2B. The possibility to find dimensions 
suitable for a linear separation becomes more likely with an 
increasing size of the reservoir.

Mathematically, the readout of a reservoir computer 
can therefore be formed by a linear combination of the res-
ervoir states. During training, T consecutive input vectors 
are applied to the reservoir. The N will respond to these 
input sample, and each node state will therefore change. 
These node states are consecutively collected in an N × T 
state matrix S. For a multivariate l-dimensional output, 
the readout layer is defined by the l × N weights matrix 
Wout. Now, the goal is to choose this output weights matrix 
in such a way that the actual output Y = WoutS matches the 
desired output Ŷ as close as possible in the least-squares 
sense. This is a linear problem, for which the solution is 
calculated by using the Moore-Penrose pseudoinverse S† 
of the state matrix S:

	 † 1( ) ,T TS S S S−= � (2)

	 †
out

ˆ( ) .TW YS= � (3)

Typically, standard RNN training is a formidable 
problem that is computationally involved. In fact, in RC 
only weighted connections from the state of the dynami-
cal system to the output are trained. As a consequence, 
the reservoir itself and input layer connections remain 
unaltered and do not need to be reconfigured individually. 

Not linearly separable
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Figure 2: Illustration of the operation principle of reservoir computing. In its original (x, y) representation, two different classes of data 
cannot be linearly separated (left panel). Upon adding an additional dimension, (x, y, z) representation, a linear separation via a linear 
hyperplane can be found. Reservoir computing is based on the creation of additional dimensions to provide such hyperplanes. Figure 
adapted from Appeltant et al. [20].
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Once the readout layer weights have been determined, the 
system can be used with new and unseen test data of the 
same class. Besides the significant reduced complexity 
of the training, the limited number of connections which 
have to be modified individually strongly aids implemen-
tations in hardware and mass production.

This is not to say that RC is without its own challenges. 
It is possible that the resulting system is overtrained and 
cannot generalize sufficiently to unseen inputs. Therefore, 
the training procedure in principle needs to be comple-
mented with Tikhonov regularization or ridge regression 
techniques. However, in experimental implementations 
noise stemming from internal physical processes and from 
the measurement itself may be sufficient to counter overfit-
ting [32]. All the optical implementations of RC discussed 
in this review use this training method. Many variations to 
this scheme exist, and an overview of current RC trends and 
software applications is given in Lukoševičius et al. [33].

Because the reservoir itself is not trained and only the 
output connections are, the RC concept can rely on any 
nonlinear dynamical system, as long as it exhibits consist-
ent responses, a high-dimensional state space, and fading 
memory. As the training procedure does not modify the 
dynamical state of the reservoir, the l number of readout 
layer nodes corresponds to l-independent computations 
executed in parallel. The computational concept is there-
fore fully parallel, starting with multi-valued input data, 
continuing with the creation of high-dimensional reser-
voir responses until final computation of multi-valued 
output data.

3  �Spatially distributed reservoir 
computing

Spatially extended reservoirs are the most intuitive imple-
mentations of a RNN. RNNs are typically illustrated as a 
complex network of spatially distributed nonlinear nodes. 
Such spatially extended networks allow for the implemen-
tation of various connection topologies. In the following, 
we will introduce multiple concepts how such spatially 
extended photonic networks have been implemented or 
suggested.

3.1  �On chip silicon photonics reservoir 
computer

Motivated by a large-scale industry, silicon photonics 
is a platform of unparalleled appeal for technological 

implementations [34]. Once realized, photonic circuitry 
can be produced with the mature production technology 
of the silicon semiconductor industry. As such, a silicon 
photonic RC chip is an attractive system for ultra high 
speed and low-power consumption optical computing.

Already in 2008, Vandoorne et al. [35] suggested the 
implementation of photonic RC in an on-chip network 
of SOAs. Consequently, the computational performance 
of SOAs connected in a waterfall topology was evaluated 
numerically. The power-saturation behavior of a SOA 
resembles the nonlinear function of a hyperbolic tangent 
(tanh). This function can be computed efficiently, and as 
such numerical RC systems are often based on the tanh 
as the nonlinearity of the nodes. For the first photonic 
RC, it was therefore intended to optically reproduce the 
encouraging performance of the numerical counterparts 
[35–37]. It was, however, quickly realized that constantly 
driving a SOA into power saturation results in poor energy 
efficiency.

For the first realization in hardware, Vandoorne et al. 
[38] therefore chose a different approach. A linear pho-
tonic network consisting of optical waveguides, optical 
splitters, and optical combiners was implemented using a 
Silicon-on-Insulator system. The resulting chip is shown 
in Figure 3A. Network nodes are indicated by the colored 
dots; blue arrows indicate topology of the network. In 
this way, the system acts as a very complex and random 
interferometer. The realization of such passive compo-
nents is technologically mature. Still, the choice of a 
linear system might be perplexing at first glance, as it 
lacks an essential ingredient for RC: nonlinearity. What 
Vandoorne et  al. realized is that the detection process 
via a standard fast photo diode solves this problem. A 
photodetector always detects optical power; hence, the 
detected signal of their photonic reservoir will be given 
by Xn ∝ ||E||2. However, the system cannot be operated all 
optically as it fundamentally relies on an optoelectronic 
conversion in the detector.

One advantage of working with passive elements is 
that they are relatively broad-band (few nanometers). 
Therefore, no precise control of wavelength is needed, 
and even several wavelengths could be sent through 
the system at the same time realizing parallel process-
ing at different wavelength. Precise control of the optical 
phase between nodes is also not needed as it is exactly 
that diversity that leads to good processing capabilities. 
Novel learning techniques could be used to accommo-
date for phase drift over longer times. As a drawback, one 
could consider the increased optical losses as the chip is 
scaled to more nodes and the difficulty of measuring the 
response on all the nodes in parallel.
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In a network of passive elements, the timescale of 
the working memory and hence the input data clock 
frequency is dictated by the propagation delay between 
individual nodes. For typical distances on a photonic 
waveguide chip this would require hundreds of Gbit/s 
injection rates. While attractive for future technological 
implementations, experimental characterizations would 
be unrealistic using current modulation, detection, and 
arbitrary waveform generator technology. Vandoorne et al. 
therefore additionally separated each node by a photonic 
delay line in form of a spiral waveguide of 2 cm length. The 
spiral delay line structures can be seen in Figure 3A. The 
system can then be fed at data rates in the range of 0.12 
up to 12.5 Gbit/s. A negative side effect of this downscal-
ing mechanism is a rather large footprint of 16 mm2 for a 
chip of 16 nodes, besides the increased optical losses in 
the bended waveguides.

Computational performance of the system was evalu-
ated via multiple tasks. For that, information was opti-
cally injected (1531 nm) into the reservoir at a single point 
(black arrow in Figure 3A), which represents a massive 
simplification to the random input connectivity consid-
ered in software RC. Node responses were sampled indi-
vidually by repeating the experiment several times and 
recorded by an optical sampling scope. Only 11 nodes 
where then used for experimentally evaluating the com-
putational performance of the system (depicted in red). 
Figure 3B shows experimental results for the recogni-
tion or classification of optical headers of different bit 
lengths. For optical headers with a 5 bit length excellent 
results were obtained experimentally in a large range of 
the ratio of interconnection delay and bit period around 1. 
For longer bit sequences, larger chips need to be designed 
and the results shown are so far only numerical [38]. This 

functionality can be equivalently framed as matched fil-
tering synthesized from random filter responses. Multiple 
further tests such as Boolean operations with memory and 
the classification of spoken digits were evaluated, both 
experimentally and in a numerical implementation of the 
system. In all tests, the system produced adequate results.

3.2  �Diffractively coupled VCSEL as a RC

A second approach to the implementation of a spa-
tially extended photonic reservoir is based on diffrac-
tive imaging using a standard diffractive optical element 
(DOE). In this way, Brunner and Fischer [24] demonstrated 
coupling inside a network of vertical cavity surface emit-
ting lasers (VCSEL). Figure 4A shows a chip from Prince-
ton Optronics hosting an array of 8 × 8 VCSELS, regularly 
spaced by a pitch of 250 μm. Due to the structure of a 
VCSEL, optical emission is directed vertical to the surface 
of the chip. A special feature of this device is that bias 
current of each laser can be controlled individually.

Coupling between individual lasers was realized 
based on diffractive multiplexing in an imaging setup. 
As schematically illustrated in Figure 4B, an image of 
the VCSEL array is formed on the left side of the imaging 
lens. Here, the VCSEL array lattice pitch combined with 
the focal distance of the imaging lens results in an angle 
φ between principal rays of neighboring lasers. This 
angle can be adjusted via the lens focal length. At the 
same time, a DOE beam splitter creates multiple copies 
of an incoming ray. These copies correspond to different 
diffractive orders, which are respectively spaced by the 
DOE angle offset θ. Based on the small angle approxi-
mation, it can then be shown that images formed by the 
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diffractive orders of one laser will overlap with the non-
diffracted image of its neighbors. As shown in Figure 4B, 
coupling between individual elements can be established 
by placing a reflector in the image plane of the setup. For 
the used DOE, a 5 × 5 coupling matrix was established. In 
the experiment shown in Figure 4B, a spatial light modu-
lator (SLM) was located in the imaging plane, allowing 
for practical control of the networks coupling weights. 
Multiple semiconductor inherent properties result in a 
highly nonlinear response of the semiconductor lasers. In 
general, VCSELs are highly energy efficient and allow for 
modulation bandwidths reaching tens of gigahertz. Once 
coupled, the system showed nonlinear dynamics induced 
by the network coupling [24]. A Köhler integrator follows 
the photonic VCSEL array reservoir. In a Köhler integrator, 
microlens arrays decompose a complex optical field into 
multiple single-mode fields, which consecutively can be 
focused by a lens to a single, uniform focal spot. Modi-
fying the input field via a SLM and placing a detector at 
the Köhler integrator focal spot therefore realizes the inte-
grated and weighted network state needed for RC.

Inherent to the manufacturing process, lasers located 
on the array are subject to parameter variations across 
the laser chip. The introduced diffractive network there-
fore is subject to diversity, and an inherently complex 
network was established. The reservoir dynamical time-
scale is given by the external coupling delay time, which 
in Brunner and Fischer [24] was ~2 ns. The global network 
state is therefore updated at a rate of 0.5 GHz. Beside the 
network coupling, diffractive imaging also allows for 
optically modulating multiple lasers in parallel. Brunner 
and Fischer [24] locked eight semiconductor lasers of 

the introduced array to an external injection laser which 
was intensity modulated with a sine wave of 33 MHz. The 
responses of the eight lasers were recorded, and, due to 
the diverse nonlinear responses of the eight lasers, they 
were able to synthesize several different nonlinear trans-
formations of the input data using a linear combination in 
the readout layer. The experimental results are shown in 
Figure 5, in which the computed functions are compared 
to the corresponding target ones. Nonlinear transforma-
tions were created offline. The readout weights for each 
computed function are shown in Figure 5 (right).

The small number of lasers coupled in Brunner and 
Fischer [24] was mainly limited by optical aberrations of 
the imaging setup. For smaller DOE diffraction angles Θ, 
the scheme should be scalable to networks consisting of 
hundreds of nodes in an area smaller than 1 mm2. As such, 
the scheme would allow for all-optical RC with networks 
of competitive sizes. While the scheme is flexible, bulk 
optics are a significant limitation for a commercial appli-
cation. For a technologically relevant implementation 
the miniaturization of the introduced approach would 
first have to be demonstrated. As this system is based on 
injection locking, careful attention needs to be paid to the 
wavelength uniformity of the laser array.

3.3  �Excitable photonic devices for RC

A different approach to the photonic implementation 
of RC is by exploiting the excitability properties of spe-
cific photonic devices. The spiking behavior of excit-
able photonic devices, which can be implemented by 
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semiconductor technology, resembles the properties of 
biological neurons [39–44]. Networks of such excitable, 
nanophotonic devices would therefore correspond to a 
neural network implementation very close to their bio-
logical inspiration. Also, the typical spike energies can be 
in the fJ–pJ range, leading to a very advantageous power 
consumption for RC based on excitable photonic devices.

When biased adequately close to a stability threshold, 
a laser with a saturable absorber becomes an excitable 
system [39, 41, 43, 44]. In their dynamical behavior, these 
devices approximate the integrate and fire behavior of 
biological neurons with remarkable quality. With current 
semiconductor technology, highly energy-efficient lasers 
can be implemented thanks to high-quality Bragg mirrors 
and large differential optical amplification. In addition, 
saturable absorbers can be realized and incorporated in 
such lasers.

Shastri et  al. [44] numerically simulated a simple 
optical network consisting of two excitable lasers. As 
saturable absorber they implemented a single layer of 
graphene. In 2014, the same group evaluated larger net-
works based on electro-optically excited semiconductor 
lasers [45]. Wavelength division multiplexing technology 
was used for addressing single lasers, which results in a 
limitation of ~60 nodes per chip.

In 2011, Barbay et al. [39] demonstrated excitable neu-
ron-like pulsing behavior of a monolithic semiconductor 
micro-pillar laser. The system is highly simplistic, only 
adding an additional quantum well in order to achieve 

excitability. In 2014, Selmi et  al. [46] demonstrated that 
a similar system experiences a refractory period. Upon 
initial excitation by an optical pulse, the system remains 
nonexcitable during its refractory period. This behavior is 
also present in biological neurons.

Optical excitability has also been observed in micro-
ring and disk lasers [40, 42]. The dynamical behavior of 
these integrated laser devices is not related to a satura-
ble absorber but rather to internal symmetry breaking 
properties.

So far, no hardware implementations of such excit-
able systems have been exploited for the implementation 
of ANNs or RC. However, the latest developments demon-
strate the possibilities of photonics for the realization of 
spiking ANNs of unparalleled speed. Advances in this field 
might circumvent the von Neumann approach to calculat-
ing neuron responses in the TrueNorth and SpiNNaker 
architectures.

4  �Delay-based reservoir computing
The concept of delay line-based RC, using only a single 
nonlinear node with delayed feedback, was introduced 
some years ago by Appeltant et al. [20] and Pacquot et al. 
[47] as a means of minimizing the expected hardware com-
plexity in photonic systems. The first working prototype 
was developed in electronics in 2011 by Appeltant et  al. 
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[20], and performant optical systems followed quickly 
after that [21, 22].

Nonlinear systems with delayed feedback and/or 
delayed coupling, often simply put as delay systems, are 
a class of dynamical systems that have attracted consider-
able attention, because they arise in a variety of real-life 
systems [48]. In optics, delayed coupling often coming from 
unwanted reflections was originally considered a nuisance 
leading to oscillations and chaos. By now, intentional 
delayed optical feedback or coupling has led to many appli-
cations [49], such as secure chaos communications [50], 
high-speed random bit generation [51], and now also RC.

Due to the circular symmetry of a single delay line, 
delay systems have been interpreted as an implementation 
of a discrete reservoir with a circular connection topology 
[20]. However, a key property of neural networks is the 
notion of a discrete node that exhibits a nonlinear rela-
tion between an output and multiple inputs. The network 
can take on a number of, if not arbitrary, directed graph 
topologies. This was the case in all of the optical RC imple-
mentations covered in Section 3. The spatially distributed 
reservoir computers covered in this review have many 
network degrees of freedom, even though they are fixed 
artificially. In contrast, delay-based photonic reservoirs 
are fixed intrinsically: they take the form of a time-delayed 
dynamical system with a single nonlinear state variable. 
Thus, from a network perspective, there is only one (hard-
ware) node. Mathematically, delay systems are described 
by delay differential equations (DDE) that differ funda-
mentally from ordinary differential equations as the time-
dependent solution of a DDE is not uniquely determined 
by its state at a given moment. For a DDE, the continu-
ous solution on an interval of one delay time needs to be 
provided in order to define the initial conditions correctly. 
As such, a low-dimensional system with delayed feedback 
offers the high-dimensional phase space which is the 
basis for RC. Hence, the delay-based approach allows for 
a far simpler system structure, even for very large reser-
voir sizes. The tremendous advantage of delay-based RC 
lies in the minimal hardware requirements as compared 
to the more hardware-intensive systems from Section 3. It 
allows even for the use of hardware that is more tradition-
ally associated with optical communications.

In essence, the idea of delay line RC constitutes an 
exchange between space and time: what has been done 
spatially with many nodes as in Sections 2 and 3 is now 
done in a single node that is multiplexed in time. There is 
a price to pay for this hardware simplification: compared 
to an N-node standard spatially distributed reservoir, the 
dynamical behavior in the system has to run at an N times 
higher speed. In Figure 6, we show a diagram of a delay 

line-based RC. The input signal xin(t) undergoes a sample 
and hold operation every τ, which is also exactly the dura-
tion of the delay in the feedback loop. One could also say 
that a new input sample is applied every τ. Then, this 
input is multiplied with a masking signal m(t). This mask 
repeats every τ, and within one period, it is a piecewise 
constant function with a fixed sequence of N values. This 
sequence is chosen from a certain set {m1, m2, …}, and 
these are spaced

	 N
τ

θ =
�

(4)

in time. The θ-spaced points in the delay line are called 
virtual nodes or virtual neurons. Therefore, θ is also called 
the virtual node separation or distance. The mask together 
with the inertia of the nonlinear node controls the con-
nectivity between the virtual nodes, and a virtual inter-
connection structure is created. The masked signal J(t) is 
then applied to a nonlinear time-dependent node, which 
also receives input from the delayed feedback. The mask 
is introduced to diversify the response of the virtual nodes 
to the input signal and plays a similar role as the input 
weights in Figure 1. The optimal choice for the amount of 
different mask values and their exact values is task and 
system dependent. No research has been done on the 
distribution types used to draw the mask values. Limited 
research has been done for two-valued mask functions, 
suggesting a nonrandom mask construction procedure 
based on maximum length sequences [52]. The node dis-
tance θ has to be sufficiently short to keep the nonlinear 
node in a transient state throughout the entire delay line. 
Typically, a number of 20% of an internal timescale is 
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Figure 6: Structure of a delay line based reservoir computer. A 
one-dimensional input signal (in red) is first preprocessed using the 
masking function m(t). Virtual nodes are defined along the delay 
line and form the reservoir (in green). The output layer (in blue) is 
unaltered from the standard RC structure.
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quoted [20, 32]. However, there is no reason to assume that 
this could not be task and system bias dependent. If θ is 
too short, the nonlinear node will not be able to follow the 
high-bandwidth input signal, and the response signal will 
be too small to measure. If θ is too long, the virtual inter-
connection structure between the virtual nodes is lost. 
However, if one would slightly misalign the period of the 
mask and the input sampling period to the length of the 
delay line, a slightly different virtual network structure 
would be recovered [47]. It is clear that the operation speed 
of a delay-based RC is limited by the delay length τ as input 
date samples are fed in at this period. The delay itself is 
defined by the numbers of virtual nodes N that are neces-
sary to compute a specific task and the node distance θ.

As shown in Figure 6, the masked input J(t) is scaled 
by an input scaling factor γ and the feedback by a feed-
back strength η. This is to bias the nonlinear node in the 
optimal dynamical regime. Optimal values for the input 
scaling γ and η depend on the task at hand, as well as 
the specific dynamical behavior of the nonlinear node. 
Finding the optimal point for these parameters is a non-
linear problem which can be approached by, for example, 
a gradient descent or by simple scanning of the parameter 
space. After each τ interval a new output value yout(n) is 
obtained. It is calculated as a linear combination of the 
θ-spaced taps on the delay line, which comprise the virtual 
neurons. This output value is kept constant over an entire 
delay time τ. Each virtual node is a measuring point or tap 
in the delay line. However, these taps do not have to be 
physically realized. Since the x signal revolves unaltered 
in the delay line anyway, a single measuring point suf-
fices. For training, the reservoir state x(t) is sampled per 
time step θ. The samples are then reorganized in a state 
matrix S as before having width N and length equal to T, 
the number of input samples. The ith column of S repre-
sents the time series of the ith virtual node. Its precise 
content is determined by the input, the masking, and 
the dynamical behavior of the nonlinear node. The state 
matrix S is built using one input sample at a time. The 
corresponding node states are recorded when one entire 
input sample – stretched over one delay – has passed the 
nonlinear node, i.e. when the entire delay line is filled 
with responses to the same data sample. From there on, 
the training proceeds exactly as described in Section 2.3.

4.1  �Optoelectronic delay-based reservoir 
computing

The first optical hardware implementations of RC were 
independently developed by Larger et al. [22] and Paquot 

et al. [21]. Both implementations were based on the opto-
electronic implementation of an Ikeda-like ring optical 
cavity [53, 54]. The optoelectronic implementation of RC 
is schematically depicted in Figure 7. The optical part of 
the setup, which is fiber based, includes a laser source, a 
Mach-Zehnder modulator, and a long optical fiber spool. 
The Mach-Zehnder modulator provides the nonlinear 
modulation transfer function (sin2 – function), while the 
long optical fiber provides the delayed feedback loop. 
The electronic part of the setup is typically composed of a 
photodiode, a filter, and an amplifier. The injection of the 
external input and the extraction of the system output are 
both done in the electronic part.

The optoelectronic system has been widely employed 
for RC. A number of classification, prediction, and system 
modelling tasks have been performed with state-of-the-art 
results. To name a few, excellent performance has been 
obtained for speech recognition [21, 22, 55], chaotic time 
series prediction [22, 56, 57], nonlinear channel equali-
zation [21, 57–59], and radar signal forecasting [58, 59]. A 
summary of the results obtained for each task is given in 
Table  1. The operating speed of optoelectronic RC imple-
mentations is in the megahertz range, although this kind of 
setup has the potential to operate at gigahertz speeds [60].

Laser modulator
Mach-Zehnder

Amplifier

Readout

Input

Filter

Fiber spool

Detection

Figure 7: Scheme of the optoelectronic reservoir computer. 
The optical (electronic) path is depicted in red (blue) color.

Table 1: Summary of the best reported results obtained by the opto-
electronic reservoir computer for computationally hard tasks.

Task Result

Isolated spoken digit recognition 0.04% (WER) [22]
Santa Fe time series prediction 0.02 (NMSE) [56]
Nonlinear channel equalization (SNR 20 dB) 10−3 (SER) [21]
Nonlinear channel equalization (SNR 28 dB) 10−4 (SER) [21]
Radar signal forecasting (LSS, 1 day) 10−3 (NMSE) [59]
Radar signal forecasting (LSS, 5 days) 10−2 (NMSE) [59]

WER, word error rate; NMSE, normalized mean square error; SER, 
symbol error rate; SNR, signal-to-noise ratio; LSS, low sea level.
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An important factor contributing to the extensive use 
of the optoelectronic version of RC is that it can be mod-
elled with high accuracy. The systems presented in Larger 
et al. [22] and Paquot et al. [21] can be respectively mod-
elled with similar, but not identical, scalar equations. First, 
we present the first-order DDE that describes the temporal 
evolution of the system introduced in Larger et al. [22]:

	 2( ) ( ) sin [ ( 1) ( 1) ],x s x s x s J sε β η γ Φ+ = − + − +� � (5)

where β is the nonlinearity gain, Φ denotes the offset 
phase of the Mach-Zehnder modulator, γ is the relative 
weight of the input information J compared to the system 
signal x, and η corresponds to the feedback scaling. Para-
meter ε = TR/τ is the oscillator response time TR normal-
ized to the delay time τ, and s = t/τ is the normalized time. 
Equation (5) describes a system with inertia. In contrast to 
Eq. (5), the system introduced in Paquot et al. [21] can be 
described with a simple model that considers the nonlin-
ear transformation to be instantaneous.

	 ( ) sin[ ( 1) ( ) ],x s x s J sη γ Φ= − + + � (6)

Equation (6) is a valid approximation of the optoelec-
tronic system when the frequency responses of all hard-
ware components are significantly faster than the input 
injection rate, which is of the order 1/τ. Both experimental 
systems provide direct access to all variables and para-
meters [21, 22]. The system modelled by Eq. (6) can be used 
for RC purposes as long as the delay time and the length 
of the mask are slightly misaligned [21]. This ensures that 
the virtual nodes are interconnected as a RNN. A detailed 
comparison of the technical implications derived from the 
differences between Eqs. (5) and (6) is beyond the scope 
of this review. However, it is worth noting that the perfor-
mance of both approaches for RC purposes is comparable. 
By taking either Eq. (5) or (6) as a theoretical model, it is 
possible to evaluate the computational properties of the 
optoelectronic system. As a result, the system depicted 
in Figure 7 and its variants have served as a paradigmatic 
example for several experimental and numerical studies 
of photonic RC [61, 62].

Most hardware implementations of optoelectronic RC 
focus on the practical demonstration of the reservoir layer. 
The input and output layers are emulated offline on a 
standard computer. There are, however, first works aiming 
at the complete implementation of the three layers of RC 
on analogue hardware. In this way, a proof of concept for 
standalone optoelectronic reservoir computers has been 
demonstrated [58]. For the analogue input layer, a mask 
that combines two sinusoidals with different frequen-
cies suffices. The design of the analogue output layer is 
more involved. Figure 8 shows the components required 

to implement the linear readout out out ,i
iy W x= ∑  with i =[1, 

…, N]. The optical signal from the reservoir is modulated 
with a dual-output Mach-Zehnder modulator, with the 
readout weights Wout computed during the training phase. 
Since the optical signal is strictly positive, a balanced 
photodiode is placed after the dual-output Mach-Zehnder 
modulator, allowing for positive and negative response 
values. The output signal of the balanced photodiode is 
filtered by an RLC filter that is carrying out the analogue 
summation of the weighted reservoir values. The resulting 
signal of the analogue output layer is the corresponding 
output of the reservoir computer yout.

The issue of how to train the readout weights of hard-
ware RC implementations is a relevant aspect that has been 
seldom considered. Typically, the training of the readout 
weights is performed off-line on a standard computer after 
the responses of the reservoir to the input examples have 
been recorded. An interesting approach to train on-line 
the readout weights is to use dedicated hardware such as 
field-programmable gate arrays (FPGAs) [63]. Although 
FPGAs are digital electronic devices, they are prepared to 
interact with analogue signals via on-board analogue-to-
digital and digital-to-analogue converters. Interestingly, 
the increasing clock speeds of commercial FPGAs can 
easily reach hundreds of megahertz. The on-line training 
can then be realized by employing gradient descent or 
genetic algorithms. On-line learning capabilities offer the 
possibility to adapt to changing environments [63].

Going beyond RC, we would like to discuss two other 
machine learning approaches that have been imple-
mented on the optoelectronic hardware depicted in 
Figure 7. To start with, the optoelectronic system without 
delayed feedback loop has served as a hardware plat-
form to implement the extreme learning machine (ELM) 
concept [57]. ELMs are feedforward neural networks with 
a single hidden layer, i.e. a reservoir without internal con-
nectivity, in which the input layer is randomly mapped 
to the hidden layer [64]. In Ortín et  al. [57], it has been 
shown that the optoelectronic implementation of ELM 
yields comparable results to RC as long as past inputs 
are explicitly included in the input layer. A more power-
ful approach is that of implementing general machine 
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learning models on a hardware device [65]. Full optimi-
zation of the complete system, including input mask, 
system parameters, and output weights, is possible 
thanks to the back-propagation through time (BPTT) algo-
rithm. It has been experimentally and numerically shown 
that the performance of the optoelectronic system can be 
greatly enhanced when BPTT is used as a training proce-
dure [65, 66]. This paves the way to implement advanced 
machine learning concepts on high-speed physical hard-
ware devices.

4.2  �All optical delay-based reservoir 
computing

In this review, the classification between optoelectronic 
and all-optical implementations of delay-based RC is done 
on the basis of the nature of the input and the reservoir. 
We discuss in this section those implementations with an 
optical input to an all-optical reservoir. Several practical 
implementations, either based on, e.g. semiconductor 
lasers [67], SOAs [23], or passive optical cavities [68] fall 
in this category. The number of virtual reservoir nodes in 
these hardware implementations is typically in the range 
50–400.

The first two experimental realizations of all-opti-
cal RC were based on active devices. Duport et  al. [23] 
employed the nonlinear response of a SOA placed in a 
ring optical cavity, while Brunner et al. [67] employed the 
nonlinear response of a semiconductor laser subject to 
feedback. In both cases, the external input was injected 
as a modulated optical field. The output layer was imple-
mented off-line after detection. These experimental reali-
zations demonstrate the potential of the RC paradigm in 
photonics for computationally hard tasks. In particular, 
the photonic reservoir based on a semiconductor laser 
with feedback has shown unconventional information 
processing capabilities at Gbyte/s rates [67], the fastest 
reservoir computer up to date. This system is schemati-
cally depicted in Figure  9, where a semiconductor laser 
is subject to the injection of a modulated laser (external 
input) and an optical feedback loop with a delay of 77.6 
ns forming the reservoir. Since the injection data rate in 
Brunner et al. [67] was 5 GSamples/s, the node distance 
θ was 200 ps, and the total number of nodes was 388. 
This reservoir computer was used to classify spoken digits 
and to forecast chaotic time series with high accuracy. A 
similar system was also employed to demonstrate high-
speed optical vector and matrix operations [69]. Numeri-
cal simulations of this kind of system suggest that the 
information processing capabilities can still be improved 

by either increasing the injection strength [70] or by 
changing the input mask [71].

All-optical RC based on delay systems has the 
potential to be integrated in a photonic chip. Nguimdo 
et  al. [72] has shown numerically that the necessary 
optical bias injection can increase the optical modula-
tion bandwidth of semiconductor lasers, allowing for 
shorter virtual node distances and hence shorter delay 
times on the order of a few nanoseconds rather than the 
70 ns employed by Brunner et  al. [67]. Nguimdo et  al. 
[73] has suggested that an on-chip semiconductor ring 
laser subject to optical feedback can be used to simul-
taneously solve two different tasks, e.g. a classification 
task and a time series prediction task. The phase sensi-
tivity found on semiconductor lasers with short optical 
external cavities, typical of integrated systems, can be 
avoided if the readout layer is slightly modified [74]. This 
proves that RC based on delay systems can be transferred 
to photonic integrated circuits.

An important step towards the development of high-
speed, low-consumption, analogue, photonic comput-
ers is the use of passive devices. Here, we discuss two 
implementations of all-optical RC that use passive optical 
devices. First, Dejonckheere et  al. [75] demonstrated a 
photonic RC system based on a semiconductor satura-
ble absorber mirror (SESAM) that is placed in a ring-like 
optical cavity. A schematic view of this experimental 
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Figure 9: Scheme of the all-optical reservoir computer based on 
a semiconductor laser subject to delayed optical feedback. The 
experimental setup comprises the laser diode, a tunable laser 
source to optically inject the information, a Mach-Zehnder modula-
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setup can be seen in Figure 10. The external input modu-
lates a superluminescent light-emitting diode, whose 
light is injected into the delay-based photonic reservoir. 
This system yields performances similar to other pho-
tonic reservoir computers [75], with the SESAM being a 
nonlinear passive element. Finally, we discuss a photonic 
RC based on a coherently driven passive cavity. Vinckier 
et al. [68] demonstrated that a simple linear fiber cavity 
can be used as a reservoir computer as long as the output 
layer is nonlinear. The optical field that propagates in the 
cavity is detected with a photodiode, which performs a 
quadratic transformation of the impinging optical field. 
This nonlinear transformation is sufficient to perform 
computationally hard tasks such as nonlinear channel 
equalization or spoken digits recognition [68]. As such, 
this is a simple all-optical reservoir computer with high 
power efficiency.

5  �Outlook
The combination of nanophotonics and the RC paradigm 
has the potential to disrupt photonic information process-
ing in the coming years. The two main advantages offered 
by photonic hardware implementations of RC are the low 
power consumption and the high processing speeds com-
pared to other traditional approaches. Combined with 
optical sensors, this technology could transform the way 
photonic information is being processed. We foresee a 
clear trend towards the integration and miniaturization 
of the hardware implementations, which so far have been 
realized in systems with a relatively large footprint with 

a few notable exceptions [38]. Here, one can envision the 
true synergetic potential when combining nanophotonics 
with novel neuromorphic computing approaches.

Photonic RC systems bring intelligence to optical 
systems in a native platform. The range of applications 
that could benefit from such devices is extremely broad, 
from optical header recognition and signal recovery to fast 
control loops.
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