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Abstract: The field of metasurfaces is revolutionizing the 
way we control and manipulate light and electromag-
netic fields based on engineered ultrathin structures. In 
this review article, we discuss the theory, modeling, and 
applications of metasurfaces, with particular focus on 
controlling the near-field response of sources close to the 
artificial surface. Although metasurfaces have attracted 
large attention for their ability to control and mold the 
wavefront of propagating waves, hence acting as flat 
lenses, they can also be used to modify the emission/radi-
ation from near-field sources and control the generation 
and propagation of surface waves guided and confined 
along the surface. We discuss the analytical modeling of 
metasurfaces treated as homogenized impedance sheets 
and elucidate the application and limits of this approach 
for near-field sources. We devote a large part of the review 
article to anisotropic and hyperbolic metasurfaces, which 
enable some of the most exciting and extreme examples 
of anomalous surface-wave propagation on planarized 
artificial structures, with important implications for 
light focusing, confinement, and subwavelength imag-
ing. We also connect these ideas with the emerging area 
of 2D materials and discuss how to implement hyperbolic 
metasurfaces with graphene and black phosphorus. We 
hope that this review article may provide the reader with 
relevant physical insights and useful analytical tools to 
study metasurfaces and their near-field interactions with 
localized sources and, more generally, offer an overview 
of this field and its ambitious goal of ideal light control 
on a surface.

Keywords: 2D materials; metamaterials; metasurfaces; 
nanophotonics; surface waves.

1  �Introduction
The beginning of the 21st century has seen a growing 
interest in engineered artificial materials and struc-
tures with unusual electromagnetic and optical proper-
ties. Advances in the fields of metamaterials, photonic 
crystals, nanophotonics, and metal optics have largely 
extended the range of possibilities available in applied 
electromagnetics and photonics, beyond what is achiev-
able with naturally occurring materials and conventional 
optical structures [1, 2]. Among these different areas, the 
concept of “metasurfaces” – the planarized version of 
metamaterials – has emerged as one of the most promis-
ing research directions from both fundamental and practi-
cal standpoints.

The modern field of metasurfaces builds upon earlier 
investigations on artificial surfaces, reflect- and transmit-
arrays at microwaves (e.g. [3, 4]), as well as planar peri-
odic structures at optical frequencies, such as planar 
gratings (e.g. [5–7]). However, modern metasurfaces are 
drastically distinct from these earlier examples of artifi-
cial planar structures for a number of reasons, making the 
field of metasurfaces a new and exciting area of science 
and technology. For example, historically, artificial sur-
faces at microwave frequencies have been designed by 
periodically patterning thin metallic layers to realize so-
called “frequency-selective surfaces” (FSSs) [4]. FSSs act 
as frequency filters for propagating waves, and their fre-
quency-selective response originates from their periodic-
ity comparable to the wavelength, which determines the 
allowed and forbidden frequency bands [4], similar to the 
modern concept of photonic crystals. Conversely, modern 
metasurfaces typically have periodicity much smaller 
than the wavelength and are therefore more similar to 
metamaterials, which can be homogenized in terms of 
average fields and effective macroscopic properties. As in 
3D metamaterials, the unusual properties of metasurfaces 
arise from their resonant inclusions acting as artificial 
meta-atoms and not, or not only, from their periodicity.

Many seminal contributions have helped establish 
the modern field of metasurfaces. Among several relevant 
papers, we would like to mention the theoretical works of 
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Edward F. Kuester and Christopher L. Holloway [8–12] and 
Sergei Tretyakov [13], which have established the theo-
retical framework to study metasurfaces as homogenized 
planar sheets with effective properties, and the works 
of Federico Capasso [14, 15], which have experimentally 
demonstrated the ability to control the reflection and 
transmission of light impinging on a metasurface based 
on “generalized laws of reflection and refraction” that 
originate from the inhomogeneous phase profile imparted 
by the metasurface. In many ways, Capasso’s demonstra-
tion of an optical metasurface in 2011 [14] represented the 
“tipping point” of the field of metasurfaces, as it proved 
the feasibility of the ambitious vision of replacing thick 
and bulky optical elements with ultrathin engineered sur-
faces, for light focusing, anomalous reflection/refraction, 
wavefront shaping, holography, etc. Other notable works 
have then studied the limits of metasurface efficiency [16, 
17] and have introduced new designs that improve the 
ability to control the transmitted or reflected light with 
almost ideal efficiency and unprecedented flexibility 
[18–26].

Despite its relatively young history, many review 
papers and book chapters have been written on the field 
of electromagnetic and optical metasurfaces and their 
many applications in different frequency ranges, span-
ning from novel antenna designs to flat optical lenses 
[27–30]. Most of these papers focus on the response of 
metasurfaces illuminated by propagating plane waves or, 
more generally, fields that originate far from the surface 
(several wavelengths away; i.e. in the “far-field”), with the 
goal of tailoring the transmitted or reflected wavefront at 
will. In the present review article, instead, we focus on the 
response of metasurfaces excited by sources in the “near-
field”, for example, a point dipole placed near the surface, 
which may model a short antenna, or a localized quantum 
emitter. This problem is qualitatively different from the 
far-field problem for several reasons and involves relevant 
physical effects that are not discussed in most papers 
dedicated to metasurfaces. Notably, a near-field source 
may excite the “surface modes” of the artificial surface, 
which can be exploited and engineered to confine and 
guide electromagnetic fields in specific directions along 
the metasurface. Metasurfaces may therefore be used to 
control the emission/radiation of localized sources and 
guide the radiated energy along the planar structure in the 
form of surface waves with tailored propagation and radi-
ation properties. Figure 1 illustrates this general vision 
of near-field light control on engineered surfaces. Fur-
thermore, even the analytical modeling of metasurfaces 
excited in the near-field requires different and specific 
considerations compared to the conventional far-field 

case. For example, particular care should be taken to 
ensure that the homogenization process is accurate even 
from the point of view of sources and observation points 
very close to the metasurfaces, as will be discussed in the 
following.

We also would like to highlight that, in the general 
context of applied electromagnetics, engineering the radi-
ation of a source in proximity to a metasurface is essen-
tially the same task as designing a leaky-wave antenna, 
a well-studied problem in the microwave and antenna 
communities [31, 32]. In this scenario, the near fields of an 
electrically small antenna (e.g. a cap-loaded short dipole 
at microwaves) can be transformed into guided surface 
waves, which propagate along the surface and may gradu-
ally lose energy due to material absorption, or leaky-wave 
radiation into free space [33, 34]. Indeed, the antenna 
community has investigated and proposed several strat-
egies to control and tune the propagation and leakage 
properties of surface waves using, for example, modu-
lated metasurfaces or transformation-optics techniques 
[35–40]. Therefore, the concepts and methods discussed 
in this review article, while being focused on nanopho-
tonic structures and applications, also apply to metasur-
faces at microwave frequencies. In addition, many of the 
analytical modeling techniques discussed here are indeed 
directly borrowed from microwave and antenna theory.

Within this context, in this review article, we first 
discuss the general theory and analytical modeling of 
metasurfaces, with particular emphasis on their inter-
actions with localized near-field sources, and we then 
concentrate on a specific class of metasurfaces, namely, 
anisotropic and hyperbolic metasurfaces, which are of 
particular interest for their ability to control and guide 
the surface waves in anomalous and extreme ways, with 
important implications for several practical applications. 
Finally, we also discuss the connection of these ideas 

Localized
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Figure 1: Illustration of an engineered metasurface illuminated by a 
source in the near-field.
In this illustration, a strongly anisotropic metasurface composed 
of strips of different materials is used to control the emission from 
a localized source in the near-field and guide the resulting surface 
waves in desired directions along the surface.
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with emerging 2D materials, such as graphene and black 
phosphorus (BP).

2  �Theory: analytical modeling, 
homogenization conditions, 
and limits

In this section, we review the general theory and analyti-
cal modeling of metasurfaces, which can be applied  to 
either far-field or near-field excitations, with the goal 
to provide the reader with the necessary analytical tools 
to study these problems in different scenarios.

In general, the analysis of the interaction between a 
point source and a metasurface requires considerable com-
putational effort due to the complex nature of the inter
action, which includes the combined effects of free-space 
radiation and excitation of guided modes. In this context, 
conventional full-wave numerical simulators, based, for 
example, on finite-element or finite-difference methods, 
cannot directly be used to solve the problem of a periodic 
surface with a single nonperiodic source, as the application 
of periodic boundary conditions would simply lead to the 
infinite periodic replication of the point source. The easiest 
approach to overcome this issue is to consider a finite, yet 
sufficiently large, structure, with a large number of periods, 
and a single nonperiodic source; however, this approach 
has several drawbacks, especially because it is very compu-
tationally demanding and time-consuming. Furthermore, it 
was shown in Ref. [8] that finite-thickness effective-medium 
models of metasurfaces, in terms of effective material prop-
erties as for 3D metamaterials, are typically inappropriate 
and ineffective. Instead, metasurfaces are more correctly 
modeled as 2D surfaces in terms of homogenized effective 
surface conductivities or surface impedances [13, 41–46] 

(or equivalent electric and magnetic susceptibility tensors 
[9–12]), as discussed in the following.

As usually done, the electromagnetic boundary con-
ditions between two regions of space can be expressed as 
a set of equations for the normal and tangential compo-
nents of the electric/magnetic fields on the two sides of 
the boundary. For the tangential components, we have

	

1 2

1 2

ˆ (H H ) J
ˆ (E E ) J

s
e
s
m

+ × − =
− × − =
z
z

� (1)

which indicate that an arbitrary jump in the tangential 
component of the fields requires the presence of electric 
and magnetic surface currents, Jse and Jsm (ẑ is the normal 
direction to the interface). The boundary conditions for 
the normal components are automatically satisfied if the 
conditions on the tangential components are satisfied. 
Within this framework, the original problem of a generic 
metasurface in a host medium or host structure, as shown 
in Figure 2, can be modeled as an electric conductivity 
tensor σe and a magnetic conductivity tensor σm, relat-
ing the currents induced on the metasurface to the local 
tangential component of the fields. At this point, one has 
to distinguish between two general cases of interest: (i) 
Penetrable metasurfaces, namely, metasurfaces allow-
ing nonzero fields at both sides (as in the case of meta-
surfaces used as flat lenses and transmit arrays). In this 
case, for metasurfaces with no magnetoelectric coupling, 
the current on the metasurface should be calculated from 
the “average” of the fields at the two sides of the meta-
surface, namely, avg

TJ Es
e e= ⋅σ  and avg

m TJ H ,s
m = ⋅σ  where 

avg 1 2
T T T

1E (E E )
2

= +  and avg 1 2
T T T

1H (H H )
2

= +  are the average 

tangential fields on the surface [47, 48]. Instead, in the 
most general case of metasurfaces with magnetoelectric 
coupling (bianisotropy), it is generally not possible to cal-
culate the induced electric and magnetic currents from 

Figure 2: Analytical modeling of metasurfaces.
Original problem of a planar array of meta-atoms in a host medium/structure (left) and the corresponding equivalent homogenized problem 
(right) represented as a generic sheet with electric conductivity tensor σe and magnetic conductivity tensor σm. Adapted with permission 
from Ref. [46].
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the average fields, as these average values do not have a 
well-defined physical meaning due to the magnetoelec-
tric coupling [29, 48]. In this case, one should calculate 
the induced currents from the “incident” fields through a 
6 × 6 admittance matrix, which corresponds to an equiva-
lent T-circuit [29]. (ii) Impenetrable metasurfaces, where 
the fields exist only at one side of the metasurface (as in 
the case of metasurfaces realized by patterning/modulat-
ing a metallic ground plane). In this case, Eq. (1) reduces 
to × = = ⋅1 1

T
ˆ H J Es

e ez σ  and 1 1
T

ˆ E J H ,s
m m− × = = ⋅z σ  which relate 

the tangential component of the fields on the same side 
through the electric or magnetic surface conductivity (in 
this case, the currents are not proportional to the averaged 
fields at the two sides of the metasurface). We will further 
discuss the difference between penetrable and impenetra-
ble metasurfaces and their modeling in terms of two- and 
one-sided surface impedances in Section 2.2.

In the case of a penetrable metasurface between two 
half-spaces, as in Figure 2, the electric field En, in each 
region n = 1, 2, generated by a generic current source J 
above the metasurface, can be obtained as

	
E G (r, r ) J(r )n n

ej d
Ω

ωµ Ω= − ⋅′ ′ ′∫ � (2)

where μ is the magnetic permeability of the surround-
ing medium and Gn

e is the “electric homogenized dyadic 
Green’s function” representing the electromagnetic 
response at any point r, in region n = 1, 2, to an arbitrary 
polarized point source at a specific location r′ (here and 
throughout the review article, we assume harmonic fields 
with time convention ejωt). In other words, the dyadic 
Green’s function represents the (vectorial) electromag-
netic spatial impulse response of the system. Next, con-
sidering a source in region 1, the corresponding Green’s 
function in this region can be decomposed in “free-space” 
Green’s function (namely, the Green’s function in the 
absence of the metasurface) and “scattered/reflected” 
Green’s function (i.e. 1 1 1

0G G Ge r= + ). For the second region, 
beyond the metasurface, only the “transmitted” Green’s 
function is necessary, 2 2G G .e t=  As usually done, reflected 
and transmitted Green’s functions can be written in an 
angular spectrum representation (namely, a plane-wave 
expansion), which takes the general form [49–51]
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where ˆ ˆ ˆk x y zn x y nzk k k± = + ±  is the total wavevector in each 

region, 2 2 2
nz n x yk k k k= − −  is the normal wavenumber, and 

Mr and Mt are matrices that depend on the reflection and 
transmission coefficients for s- and p-polarized fields [for 
s-polarization or transverse-electric (TE) polarization, 
the electric field is parallel to the interface, whereas, 
for p-polarization or transverse-magnetic (TM) polariza-
tion, the magnetic field is parallel to the interface]. These 
coefficients can be determined by imposing the bound-
ary conditions (1) and, for simple cases, they are given 
in the literature (see Ref. [46]). The integrand of Eq. (3) 
may diverge at the poles of the reflection/transmission 
coefficients. These singularities are associated with the 
eigenmodes of the structure (i.e. the solutions of the 
source-free wave equation) and correspond, in our case, 
to the surface modes of the metasurface. In general, these 
guided modes are classified as (i) “bound surface waves” 
(e.g. surface plasmon polaritons) with purely imaginary 
out-of-plane wavenumber kz, which indicates the degree 
of confinement of the mode to the surface, and (ii) “leaky 
surface waves”, with complex out-of-plane wavenumber 
kz, indicating confinement and radiation leakage as the 
wave propagates along the surface. We refer the reader 
to Refs. [31, 47] for an in-depth discussion of bound and 
leaky waves in different planar geometries and Refs. [32, 
52] for other, more exotic effects such as the existence of 
trapped states known as bound states in the continuum, 
or embedded eigenstates, in planar gratings and artificial 
surfaces.

For a given metasurface and excitation, the theoreti-
cal formulation above allows determining the electro-
magnetic fields everywhere if the electric and magnetic 
conductivity tensors that model the metasurface are 
available. Several methods have been proposed in the lit-
erature to determine the tensors σm and σe either in terms 
of electric and magnetic susceptibilities [8, 9, 12, 47, 50] 
(susceptibilities are related to the electric and magnetic 
polarizability densities of the scatterers per unit area) or 
surface impedances and admittances [41, 42]. The proper-
ties of the elements composing the metasurface determine 
which method is easier to apply [46]. For example, for a 
simple metasurface composed of metal patches, the sus-
ceptibilities are available in Refs. [50, 53] and the surface 
impedance values are available in Refs. [41, 42], whereas, 
for more complex periodic elements, Holloway et  al. in 
Ref. [47] provide a method for finding the susceptibilities 
from numerical computations.

2.1  �Accuracy of metasurface homogenization

As mentioned in Section 1, the analysis of near-field inter-
actions between a source and a metasurface requires to 
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pay particular attention to the validity of the metasurface 
homogenization. In this section, we would like to provide 
the reader with qualitative insight into the accuracy of this 
modeling approach.

The “characteristic lengths” involved in the problem 
under consideration are the spatial periods of the meta-
surface elements px and py (see Figure 2), the wavelength 
in the surrounding medium λ1, the distance of the source 
from the metasurface z0, and the distance of an obser-
vation point z. In particular, the latter two parameters 
play a crucial role in the validity of the homogenization 
approach for a source/observation in the near field of the 
metasurface, whereas only the metasurface period rela-
tive to the incident wavelength is important in the case 
of a conventional metasurface problem with far-field illu-
mination and observation point. The “first homogeniza-
tion condition” requires that the incident field radiated by 
the point source should vary little over one spatial period 
of the metasurface along the x- and y-directions [42]. 
The field radiated by an ideal point source can be repre-
sented as a continuous plane-wave spectrum containing 
(i) propagating waves with transverse (in-plane) wave-
number 2 2

1| |T x yk k k k= + ≤  and (ii) evanescent waves with 
2 2

1| |.T x yk k k k= + >  While all propagating waves satisfy the 
first homogenization condition for a metasurface with 
p  λ1 where p = Max(px, py), the situation is a bit trickier for 
the evanescent portion of the spectrum. First, if a surface 
mode is excited on the metasurface with wavenumber kSW, 
it is necessary that the surface-mode wavelength is larger 
than the metasurface period: p  λSW = 2π/kSW. This limit, 
combined with the fact that surface waves with larger in-
plane wavenumber kSW decay faster in the out-of-plane 
direction, allows setting an approximate lower bound on 
the distance of the source from the surface. In fact, for a 
sufficiently distant point source, the evanescent waves 
with transverse wavenumber large enough to “see” the 
periodicity of the metasurface may completely decay 
before even reaching the metasurface. Based on numeri-
cal experiments, it was found in Ref. [42] that these con-
siderations lead to an approximate lower bound for the 
source distance above the surface that reads: z0 > p.

The “second homogenization condition” requires 
that the evanescent field scattered by the metasurface 
should be negligible at the observation point. Assuming 
that the first condition is satisfied, the field scattered by 
the metasurface admits a Bloch-Floquet representation 
in which all higher-order space harmonics are evanes-
cent. In this case, the second condition is satisfied if the 
space harmonic with smallest attenuation constant in 
the orthogonal z-direction has negligible amplitude at the 

observation point. In Ref. [42], it was found that the atten-
uation of this space harmonic can be approximated as 
αz2π/p. Based on additional considerations motivated 
by numerical experiments, an approximate lower bound 
for the observation point can then be set as z > p [42]. If 
both homogenization conditions are met, an analytical 
model based on effective conductivity tensors and homog-
enized Green’s function is accurate and can be used to 
predict the near-field interaction of a point source with an 
arbitrary metasurface.

2.2  �Metasurfaces as surface-impedance 
sheets, and limits on wavefront shaping

To complete our theoretical discussion, in this section, 
we briefly present two intuitive models of a metasurface 
in terms of surface-impedance sheets (see Figure 3) and 
discuss their applicability and usefulness in different 
problems. To make our discussion simpler, we assume 
here that the considered metasurface is purely electric, 
with no magnetic conductivity tensor and no magneto-
electric coupling.

In the literature, different methods have been used 
to model a metasurface as a surface impedance sheet 
depending on the specific problem at hand. These are 
generally based on either “one-sided” or “two-sided” 
surface-impedance conditions. In the one-sided surface-
impedance modeling approach (Figure 3A), the metas-
urface, and the entire half-space behind it, which may 
include multiple layers, is modeled as a single impen-
etrable impedance sheet that acts as the load of a trans-
mission line representing propagating/evanescent waves 
impinging on the metasurface (Figure 3A, right). Clearly, 
this model is suitable to study metasurfaces operating in 
reflection mode and, more generally, to problems that are 
concerned with the back-scattering properties of a multi-
layered system, as in the classical problem of calculating 
the modified emission rate (Purcell factor or PF) of a point 
dipole above a stratified medium [51]. In the one-sided 
surface-impedance approach, the boundary conditions in 
Eq. (1) can be reduced to × = ⋅1 1

T
ˆ H E ,ez σ  where a surface 

impedance tensor Zs can be introduced as 1Z ,s e
−= σ  which 

is generally “spatially dispersive” (namely, it depends on 
the incident wavevector) [46]. As an example, for a metas-
urface composed of square periodic elements, the conduc-
tivity tensor is given by [54]

	

2 2 2 2 ˆ ˆˆ ˆ[( ) ( )

ˆ ˆˆ ˆ( ) ( )]

TE TM TM TE
e s x s y s x s y

TE TM
s s x y

K Z k Z k xx Z k Z k yy
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where 21 /( ),TE TM
s s TK Z Z k=  and TE

sZ  and TM
sZ  indicate the 

parallel connection of the metasurface impedance Zg 
and the input impedance of the entire region below the 
surface Zd (namely, Zs = Zg | | Zd, where ||  indicates a par-
allel connection, as indicated in Figure 3A). In general, 
these impedances are different for TE and TM incidence. 
The expressions for the metasurface impedances, TE

gZ  and 
,TM

gZ  for typical metallization patterns can be found in 
Refs. [41, 42], and the transmission and reflection coeffi-
cients entering the Green’s function expansion in Eq. (3), 
as a function of surface impedance, are given in Ref. [46]. 
Moreover, as mentioned above, the one-sided surface-
impedance tensor is generally spatially dispersive, which 
should be taken into account when calculating the power 
flow along the surface, as thoroughly discussed in Ref. [55] 
for a one-sided surface impedance model of a patterned 
metallic cladding over a grounded dielectric substrate.

The “two-sided surface-impedance method” instead 
simply models the metasurface as an impedance sheet 
Zg, suspended in a host medium or host structure, and 
considers both the wave reflected and transmitted by the 
metasurface. An example is depicted in Figure 3B for the 
specific case of a metasurface on a grounded dielectric 
slab. This is clearly the method of choice for metasurfaces 
operating in transmission mode, for example, metasur-
faces acting as flat lenses, designed to control the shape 
of the transmitted wavefront. For this modeling approach, 
the boundary conditions on the metasurface remain as in 
Eq. (1), with average fields on the right-hand side of the 

equations, avg
TJ Es

e e= ⋅σ  and avg
TJ H .s

m e= ⋅σ  The metasurface 
impedance tensor is again introduced as 1Z .s e

−= σ  We also 
would like to note that, if, by applying this modeling 
approach, the obtained metasurface impedance inher-
ently depends on the surrounding environment (e.g. the 
substrate), it is a clear sign that the employed metasurface 
homogenization process is inadequate (metamaterial or 
metasurface constitutive parameters are properly defined 
and meaningful only if they are an inherent property of 
the homogenized structure, independent of the surround-
ing environment [29, 56]).

In summary, when applied to the same geometry, as 
in Figure 3, either modeling approach, one-sided or two-
sided, leads to identical results in terms of reflected fields. 
Therefore, to calculate the fields in the region that con-
tains the source (backscattering or reflection problems), 
one can choose either the one-sided or the two-sided 
surface-impedance method. Instead, when calculating 
the transmitted fields through the metasurface, one needs 
to use the two-sided surface impedance approach and 
explicitly consider the presence of other layers behind 
the metasurface. In other words, the difference between 
these two modeling approaches originates from the two 
different forms of boundary conditions one may consider. 
In the case of one-sided surface impedance, there is no 
transmitted field, so the surface impedance we need to 
consider just connects the electric and magnetic fields 
above the impedance sheet, which therefore acts as the 
load of a transmission-line model of the structure under 

Figure 3: Modeling of metasurfaces in terms of surface-impedance sheets.
Left: Original problem of a metasurface (planar array of meta-atoms) in a host structure (in this example, a grounded slab). Right: Two 
models in terms of surface-impedance sheets based on different forms of boundary conditions, as discussed in the text: (A) one-sided 
surface-impedance model and (B) two-sided surface-impedance model, with the corresponding transmission-line representation shown 
on the right (thick lines represent transmission-line segments and black boxes indicate lumped impedances). A generic point sources is 
depicted above the metasurface. Adapted with permission from Ref. [46].
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consideration (Figure 3A, right). In this case, the imped-
ance of this load is composed of the actual metasurface 
impedance in parallel with the input impedance of the 
region below the metasurface. Conversely, in the two-
sided surface-impedance method, the boundary condi-
tions connect the electric and magnetic fields at the two 
sides of the metasurface through just the impedance of 
the metasurface itself, which therefore acts as a shunt 
impedance in a transmission-line model of the structure 
(Figure 3B, right). We refer the reader to Ref. [46] for addi-
tional details on these modeling approaches.

The idea of modeling a metasurface as a surface 
impedance suspended in free space has been used in Ref. 
[16] to derive “efficiency limits” on the ability of a generic 
passive metasurface to control the amplitude and phase 
of a propagating wave transmitted through it. In particu-
lar, for a single purely-electric metasurface, it was found 
that, (i) if the metasurface is isotropic, namely, with a 
scalar surface impedance, then the phase of the transmis-
sion coefficient t can be controlled only in a limited range 
[−90°, 90°] by varying the local properties of the metasur-
face, whereas, (ii) if the metasurface is anisotropic, with a 
tensorial impedance and polarization coupling, then the 
cross-polarized transmission phase ∠txy can be arbitrarily 
controlled, but its amplitude |txy |  cannot exceed 0.25 for 
any transmission phase [16]. This fact sets a strict limit on 
the ability of inhomogeneous purely-electric metasurfaces 
to mold a propagating wavefront, namely, their ability to 
act as flat lenses. The efforts to go beyond these limits 
have led to more advanced metasurface designs operating 
in transmission mode: (i) multiple electric metasurface 
layers, inspired by radiofrequency transmit-arrays [16, 19], 
(ii) metasurfaces with magnetic, in addition to electric, 
response, realizing so-called “Huygens metasurfaces” 
that enable zero reflection (due to impedance matching to 
the surrounding medium) and ideal control of the trans-
mission phase [18, 20–22], and (iii) metasurfaces with tai-
lored bianisotropy and spatial dispersion for more general 
field transformations [24–26]. These ideas are currently at 
the basis of modern metasurfaces acting as flat optical/
microwave components for far-field illumination.

3  �Controlling source radiation and 
surface-wave propagation on 
engineered metasurfaces

In the previous section, we have reviewed the analytical 
techniques that are used to study homogenized metasur-
faces under far-field or near-field illumination. An analysis 

of this type is valid for both isotopic and anisotropic meta-
surfaces provided that the homogenization conditions 
defined above are met. Using these methods, one can 
analyze the reflection/transmission response of arbitrary 
metasurfaces as well as the excitation of guided waves and 
leaky waves propagating along the artificial surface.

As mentioned in Section 1, metasurfaces have enabled 
unprecedented flexibility in controlling and molding the 
phase, amplitude, and polarization of propagating waves. 
Another possibility enabled by engineered metasurfaces 
that is gaining significant attention is represented by their 
ability to (a) enhance and control the radiation/emission 
of localized sources in the near field and (b) guide part 
of the radiated energy in arbitrary directions along the 
surface, through the controlled coupling with engineered 
surface modes, as illustrated in Figure 1. In this section, 
we review these exciting possibilities and their implemen-
tations based on 2D structures and materials.

3.1  �Metasurfaces and ultrathin planar 
structures to control the emission 
rate of a localized emitter

One of the cornerstones of the field of nanophotonics 
is represented by the ability of controlling and tailoring 
the photonic emission of an excited atom/molecule or 
quantum dot (theoretically, a point source), by engineer-
ing the surrounding environment, a phenomenon known 
as the Purcell effect [51]. When placed in the vicinity of an 
optical/electromagnetic emitter, a metasurface, together 
with the surrounding medium, forms the environment that 
interacts with the source. Depending on the metasurface 
properties, the emission rate of the source can be modified 
owing to the inhibited or enhanced density of available 
states for photons, i.e. the photonic local density of states 
(LDOS), given by LDOS

ˆ ˆ(6 / )Im[n G( , , ) n],r rρ πω ω= ⋅ ⋅  where 
n̂ represents the point-source polarization unit vector, and 
G(r, r, ω) is the total dyadic Green’s function at the source 
location [namely, the free-space Green’s function plus 
the scattered/reflected Green’s function given in Eq. (3)]. 
Based on the Green’s function analysis presented above, 
it is then relatively straightforward to investigate the effect 
of metasurfaces and any other stratified planar systems 
on the local density of photonic states, the spontaneous 
emission rate (i.e. the decay rate of a quantum emitter 
upon emission of photons due to interaction with the fluc-
tuating electromagnetic vacuum field), and the so-called 
Purcell factor 3

0
ˆ ˆPF (6 / )Im[n G( , , ) n]k r rπ ω= ⋅ ⋅  (i.e. the 

spontaneous emission rate with respect to the free-space 
scenario) [51].



1032      S.A. Hassani Gangaraj and F. Monticone: Molding light with metasurfaces

Indeed, metasurfaces have recently attracted inter-
est in the context of spontaneous emission control due 
to their guiding properties, optical resonances, and high 
field enhancements [57–60]. Recent works have investi-
gated the LDOS enhancement due to metasurfaces com-
posed of lattices of discrete magnetoelectric scatterers [59] 
and the possibility of controlling the LDOS of a source on 
different graphene-based planar structures [60]. As an 
example, Figure 4A shows the tunability of the PF for a 
suspended graphene monolayer over a range of chemical 
potentials. It is clear that, in the low terahertz regime, the 
LDOS and PF can be tuned considerably by an external 
voltage bias. Figure 4B and C shows the PF for a graphene 
layer supported by a thin substrate and for a metasurface 
composed of two layers of graphene (a parallel plate-like 
waveguide). Finally, Figure 4D shows the PF as a function 
of source position and frequency.

3.2  �Hyperbolic metasurfaces: extreme 
anisotropy on a surface

Simple isotropic metasurfaces (i.e. metasurfaces with 
scalar, not tensorial, conductivity) can support surface 

modes that are launched isotropically on the surface 
by a point source in the near field, resulting in in-plane 
omnidirectional surface-wave propagation (or quasi-
omnidirectional depending on the orientation of the point 
dipolar source). In general, isotropic or weakly anisotropic 
metasurfaces do not allow realizing the idea illustrated 
in Figure 1 of launching and controlling electromagnetic 
energy from the source location toward specific targets. In 
drastic contrast to the isotropic case, strongly anisotropic 
metasurfaces enable the ability of guiding the radiated 
energy along determined propagation channels on the 
metasurface [61–65], as we will see in the following. In this 
context, hyperbolic metamaterials and metasurfaces are 
uniaxial structures with extreme anisotropy characterized 
by an effective material tensor (metamaterial) or conduc-
tivity/impedance tensor (metasurface) with components 
having opposite sign for orthogonal electric field polari-
zations [63, 64] (the term “uniaxial” refers to anisotropic 
systems characterized by a diagonal constitutive tensor in 
a suitable coordinate system, with one diagonal element 
different from the others). As further discussed in the fol-
lowing, hyperbolic metamaterials/metasurfaces exhibit 
hyperbolic dispersion for wave propagation, as opposed 
to the usual elliptic dispersion, essentially combining the 

Figure 4: Emission-rate manipulation using graphene-based ultrathin planar structures.
(A) PF for a suspended graphene layer in vacuum with a point source at 10 nm above the surface. (B) PF for graphene on a substrate with 
thickness ds = 10 nm, ε = 4 and (C) for two layers of graphene separated by a 10 nm, ε = 4 spacer. (D) PF as a function of position (y0 is the 
point-source position above the surface) and frequency for the case in (b). Adapted with permission from Ref. [60].
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response of transparent dielectrics and reflective metals 
in different directions [66]. In the context of 3D metama-
terials, these exotic properties have led to new physical 
effects and novel optical devices for a wide range of appli-
cations, such as subwavelength imaging, nanolithog-
raphy, light-emission engineering [66], negative-index 
waveguides [67], subdiffraction photonic funnels [68], 
and novel nanoscale resonators [69]. While the complex-
ity of fabrication of 3D metamaterials, and their sensitiv-
ity to losses, have hindered the impact of these concepts, 
especially in the terahertz and optical regime [63, 64], 
planar metasurfaces may overcome many of these chal-
lenges [9, 15], offering a practical route to realize extreme 
hyperbolic dispersion.

Figure 5A shows a schematic of the geometry under 
consideration, which contains a hyperbolic metasurface 
with the following conductivity tensor:

	

0
0
xx

zz

σ

σ

 
=  

 
σ � (5)

at the interface of two different media with electric permit-
tivity and magnetic permeability ε1, μ1 and ε2, μ2. Although 
here the conductivity tensor is assumed to be diagonal, 
hence representing a uniaxial metasurface, in a general 
scenario, off-diagonal conductivity tensor elements may 
arise if the subwavelength meta-atoms are nonsymmetri-
cal with respect to the coordinate system [21, 28, 65], or 

Figure 5: Anisotropic and hyperbolic metasurfaces.
(A) Anisotropic surface with conductivity tensor σ at the interface of two isotropic materials. (B) Equifrequency contours, ω(k) = const, for 
hyperbolic metasurfaces having σxx = 0.003 + 0.25i mS and σzz = 0.03–0.76i mS (blue hyperbola) and σxx = 1.3 + 16.9i mS and σzz = 0.4–9.2i 
mS (green hyperbola). For comparison, the isotropic case for σxx = σzz = 0.03–0.76i mS (black circle) is also shown. The red dashed line at 
45° with respect to the x-axis is plotted for visual guidance. (C) Polar plot of the electric field amplitude |Ey |  excited by a y-directed dipole 
current above a graphene strip array, assuming chemical potential μc = 0.45 eV, width strip W = 56.1 nm, periodicity L = 62.4 nm, which 
yields σxx = 0.003 + 0.25i mS and σzz = 0.03–0.76i mS [blue hyperbola in (B)]. (D) Similar to (C), but for a graphene-strip array with μc = 1 eV, 
W = 196 nm and L = 200 nm, and σxx = 1.3 + 16.9i mS and σzz = 0.4–9.2i mS [green hyperbola in (B)]. Plots in (C) and (D) are calculated at 
frequency f = 10 THz, ρ = 0.2λ (radial distance from source) and y = 0.005λ (vertical distance from the surface). Solid blue line is for numerical 
calculation of the Green’s function, and dashed red line for residue-branch-cut evaluation. Adapted with permission from Ref. [64].
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because of the presence of magneto-optical effects [51, 
65], or also nonlocal effects due to finite Fermi veloc-
ity of the electrons in the metasurface elements [65, 70]. 
In the interest of clarity, here we only focus on diagonal 
conductivity tensors. For a point source radiating above 
the metasurface, the complete electromagnetic response 
could be computed using the general formalism provided 
in the previous section. Although the numerical evalua-
tion of the Green’s function (3) can be challenging [46, 62], 
advanced techniques based on complex analysis to effi-
ciently perform the integration have been reported in the 
literature (see, e.g. Ref. [64]). In particular, it was shown 
in Ref. [64] that the 2D integral in Eq. (3) can be reduced 
to (i) a pole residue associated with the surface-wave con-
tribution (representing the surface mode propagating on 
the metasurface) and (ii) a branch-cut integral associ-
ated with the so-called continuous-spectrum contribution 
(representing the radiation into the surrounding environ-
ment) [71, 72]. These two contributions represent well the 
electromagnetic response of the system: part of the energy 
radiated by the point dipole is coupled into the guided 
surface modes of the metasurface, whereas the rest is 
directly radiated into the environment.

To better understand the behavior of surface modes 
supported by an anisotropic hyperbolic metasurface with 
conductivity (5), it is insightful to inspect the surface-wave 
dispersion relation [64]:

	

2 2 2 2

2

( , ) 2 ( ) 2 ( )

14 1
4

x z xx x zz z

xx zz

D k k k k k k

kj p

σ σ

η σ σ
η

= − + −

 
− +  

� (6)

where ε1 = ε2 = ε, μ1 = μ2 = μ, k = ω(εμ)1/2, η =(μ/ε)1/2, and 
2 2 2 1/2( )x za k k k= + −  is the vertical attenuation of the surface 

wave. One of the main differences between surface modes 
in isotropic and anisotropic metasurfaces is that, in the 
isotropic case, surface modes could be found in the form 
of pure TE or pure TM modes, whereas the modes of ani-
sotropic metasurfaces are always a mixture of TE and TM 
field contributions. In addition, in an anisotropic struc-
ture, the direction of energy flow, defined by the group 
velocity vector [73], is not necessarily parallel to the direc-
tion of the wavevector k. As usually done, the direction 
of energy flow (equal to the group velocity in low-loss 
regions) can be determined by examining the “equifre-
quency surface” (EFS), ω(k) = const, of the surface mode 
[64]. Because the group velocity is defined as the gradient 
of the dispersion function ω(k) with respect to wavevec-
tor (i.e. ∇kω(k)), the direction of energy flow is necessarily 
orthogonal to the EFS contours. Assuming that the con-
ductivity is purely imaginary and lossless, ,ii iijσ σ= ′′  i = x, 

z, and that kx, kz  k, the zeros of Eq. (6) can be approxi-
mated as the solution of [64]
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 
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At a given frequency ω, this equation may describe 
either an ellipse or a hyperbola in the kx − ky plane depend-
ing on the relative sign of the two conductivity compo-
nents. For example, “elliptic EFS topology” arises when 

0xx zzσ σ⋅ >′′ ′′  corresponding to the black curve in Figure 5B. 
The length of the ellipse’s principal axes along kx and kz 
is proportional to zzσ′′  and ,xxσ′′  respectively. In this case, 
the modes might be associated with quasi-TM (induc-
tive surface Im[σxx] > 0, Im[σxx] > 0) or quasi-TE (capacitive 
surface Im[σxx] < 0, Im[σxx] < 0) polarization [65] [as men-
tioned above, the character of the modes can be purely TE 
or TM only if the metasurface is isotropic (σxx = σzz)]. It was 
shown in Ref. [65] that the quasi-TE surface modes present 
a free-space like dispersion, leading to weak light-matter 
interaction, whereas the quasi-TM modes exhibit more 
confinement near the surface and, therefore, stronger 
interaction.

If one of the two conductivity tensor components 
changes sign, such that 0,xx zzσ σ⋅ <′′ ′′  then the topology 
of the equifrequency contour drastically changes and 
becomes “hyperbolic”. In this regime, the anisotropic 
metasurface behaves like a dielectric in one direction 
and a metal in the orthogonal direction. Two examples of 
hyperbolic EFS are shown in Figure 5B for two values of 
surface conductivity (blue lines: σxx = 0.003 + 0.25i mS and 
σzz = 0.03–0.76i mS and green lines: σxx = 1. 3–16.9i mS and 
σzz = 0.4–9.2i mS). The hyperbola asymptotes are defined 
by | / |,z x xx zzk k σ σ= ± ′′ ′′  and the direction of energy flow of 
the surface mode is given by the angle [63, 64]

	

1tan zz

xx

σ
φ

σ
− ′′

= −
′′

� (8)

which is defined with respect to the z-axis (note that this 
is valid only in the hyperbolic regime in the asymptotic 
region, namely, for large enough wavenumber). A simple 
interpretation of the above equation is that the energy 
tends to flow mostly toward the direction with lower imag-
inary conductivity component [63].

Considering that the field radiated by a point dipole 
has, in theory, an infinite angular spectrum, containing 
all possible values of transverse wavenumber, this near-
field illumination can excite a continuous set of surface 
modes, with different wavenumber, according to the EQS 
in Figure 5B (we also would like to note that this hyperbolic 
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EQS has no cutoff at high values of spatial frequency, 
due to the “open” shape of the hyperbola, in drastic con-
trast with conventional elliptic dispersion; in practice, 
however, any realistic hyperbolic metasurface exhibits a 
high spatial-frequency cutoff, where the hyperbolic curve 
“closes” due to the effect of nonlocality, as the high spatial 
frequencies start “seeing” the discrete nature of the meta-
surface [70]). Because the vectors normal to the hyperbola 
point in roughly the same direction for a given sign of kx 
and kz, a dipole source will excite a narrow surface-wave 
beam confined on the surface of a hyperbolic metasurface 
[64]. For example, the asymptotes of the blue hyperbola in 
Figure 5B have an angle of 30° with respect to the z-axis, 
and thus the normal to the hyperbola (i.e. the group veloc-
ity vector) is pointing at 60° with respect to the z-axis.

As an example, an hyperbolic metasurface with the 
conductivity tensor corresponding to the blue hyper-
bola in Figure 5B can be implemented with an array of 
graphene strips, as shown in Figure 6A, with chemical 
potential μc = 0.45 eV, strip width W = 56.1 nm, and perio-
dicity L = 62.4 nm [64]. For this physical implementation, 
the electric field profile of the surface modes has been 
obtained in Ref. [64] using two methods: (i) numerically 
solving the Green’s function in Eq. (3), which is a compu-
tationally demanding operation, and (ii) using a faster 
residue-branch-cut evaluation, as discussed at the begin-
ning of this section. The results are reported in Figure 5C, 
showing that the two methods are in good agreement, 
hence justifying the faster evaluation in terms of residue 
and branch-cut contributions. As can be seen, most of 
the surface-wave energy is flowing toward φ = 60° from 
the z-axis (and mirror-symmetric directions with respect 
to the two axes), confirming the response predicted by 

the hyperbolic equifrequency contours. Figure 5D also 
shows a different case with energy flow toward an angle 
φ = 36°, corresponding to the steeper green hyperbola in 
Figure 5B. This response can be realized with an array 
of graphene strips having μc = 1 eV, W = 196  nm, and 
L = 200 nm [64].

Another case of particular relevance is when the 
hyperbolic metasurface exhibits an extreme anisotropy 
in which the imaginary conductivity along a specific 
direction becomes very small compared to the one in the 
orthogonal direction, | | | |,zz xxσ σ′′ ′′  which is sometimes 
called the “canalization regime”. In this extremely ani-
sotropic hyperbolic metasurface, the hyperbolic equifre-
quency contour tends to become flat, which implies that 
any surface wave excited by a near-field source, with any 
transverse wavenumber kx, would mostly propagate along 
the z-axis, yielding a narrow “diffraction-less” surface-
wave beam that almost does not spread out as it propagates 
along the surface [74]. In practice, this scenario may again 
be implemented with a suitably engineered array of paral-
lel graphene nanoribbons having complex conductivities. 
An analogous implementation has been studied in Ref. 
[74]: as shown in Figure 7A, the negative and positive con-
ductivities are created electronically by gating a graphene 
layer over a triangularly corrugated plane. Figure 7C and 
D shows the electric field amplitude distribution for two 
point sources, separated by a subwavelength distance, 
on the plane z = 0 over the modulated-graphene metasur-
face and over a homogenous graphene layer, respectively, 
clearly showing the surface-wave canalization in the mod-
ulated case. This behavior is of clear interest for imaging 
applications, as the surface waves avoid the usual dif-
fraction expected on a homogeneous layer, allowing to 

Figure 6: Graphene-based anisotropic and hyperbolic metasurfaces.
(A) Array of graphene strips of width W and period L. (B) Imaginary parts of σxx and σzz and (C) real parts of σxx and σzz (normalized by 
σ0 = e2/4ħ) for a graphene-strip array with τ = 0.35 ps, μc = 0.33 eV, W = 59 nm and L = 64 nm. Region 1 (light red) is hyperbolic and region 2 
(light blue) is anisotropic with elliptical dispersion. The yellow/green transition region is characterized by high losses in the x-direction. 
Adapted with permission from Ref. [64].
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distinguish the two point sources even at a large distance 
from the source plane.

Further details on the use of graphene, and other 2D 
materials, to implement metasurfaces with extreme ani-
sotropy are discussed in the next section.

3.3  �2D Materials as anisotropic and 
hyperbolic metasurfaces

The most straightforward approach to realize uniaxial and 
hyperbolic metasurfaces is to reduce the profile of well-
known bulk uniaxial materials resulting in thin layers that 
essentially act like 2D metasurfaces [65]. Even more inter-
esting, the emerging class of 2D atomic crystals [75] repre-
sents the ultimate embodiment of metasurfaces in terms 
of thinness, combined with exciting performance in terms 
of tunability, flexibility, quality factor, etc. [64]. Some 
notable examples of 2D layered crystals include graphene 
and transition metal dichalcogenides and trichalcoge-
nides [64]. Another crystal with similar properties is mag-
nesium diboride, in which graphene-like layers of boron 
are alternated by densely packed layers of magnesium 

[65,  76]. Hexagonal boron nitride (hBN) should also be 
mentioned as another promising material in this category 
[65], especially due to its excellent compatibility with 
graphene optoelectronics [77]. Notably, hBN has allowed 
the experimental demonstration of low-loss hyperbolic 
phonon polaritons in the infrared [78, 79].

One of the most popular approaches to realize uniax-
ial and hyperbolic metasurfaces at terahertz and infrared 
frequencies is the use of dense arrays of graphene strips 
[63, 80], as shown in Figure 6A. The dispersion topology of 
this structure may range from elliptical to hyperbolic as a 
function of its geometrical and electrical parameters. The 
in-plane effective conductivity tensor of this graphene-
based metasurface can be analytically calculated using 
an effective medium theory, obtaining [63]
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where L and W are the period and width of the strips, 
respectively, G = L − W is the separation distance between 
two consecutive strips, σ is the conductivity of homogene-

ous graphene, and 0 ln csc
2c

L Gj
L

ωε π
σ

π

 
=    is an equivalent 

Figure 7: Surface-wave canalization on a modulated-graphene metasurface.
(A) A graphene monolayer with fixed gating voltage over a triangularly perturbed ground plane that realizes a tailored conductivity modula-
tion. (B and C) Amplitude of the vertical component of the electric field for the surface plasmon polaritons launched by two closely located 
point sources over (B) modulated graphene and (C) homogeneous graphene. Adapted with permission from Ref. [74].
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conductivity associated with the near-field coupling 
between adjacent strips, obtained using an electrostatic 
approach [81]. These effective parameters are valid only 
when the homogenization condition L  λSW is satisfied, 
where λSW is the wavelength of the guided surface wave 
in the in-plane direction perpendicular to the strips (x in 
this case), thus leading to a homogeneous 2D metasur-
face [64]. Figure 6B and C shows the real and imaginary 
parts of σxx and σzz in a wide range of frequencies in the 
terahertz range, for a graphene-strip array with scatter-
ing time τ = 0.35 ps, chemical potential μc = 0.33 eV, and 
geometrical parameters W = 59  nm and L = 64  nm. As 
can be seen in Figure 6, the effective conductivities are 
mostly imaginary, except in the resonant lossy window 
near 15 THz. Most importantly, at frequencies below the 
resonance, the imaginary conductivities have opposite 
signs in the two directions, whereas they are both nega-
tive above the resonance. As a result, this structure can 
exhibit both a hyperbolic response at low frequencies and 
a nonhyperbolic (but still anisotropic) response at higher 
frequencies, separated by a lossy region in which surface 
waves are strongly attenuated.

Another promising material platform for metasur-
faces is represented by BP, which is also a layered material, 
similar to graphite, with each layer forming a “wrinkled” 
surface [64], as depicted in Figure 8A. BP is a thermo-
dynamically stable phase of phosphorus at ambient 
temperature and pressure [82], and it has recently been 
exfoliated into its multilayers [83, 84]. BP possesses excit-
ing optical and electrical properties, such as an intrinsic 
direct band gap that may range from ~2 eV in monolay-
ers (phosphorene) to 0.3 eV in its bulk configuration; 
tunable electric response versus thickness, or via exter-
nally applied electric/magnetic fields and mechanical 

strain; and the possibility to support confined surface 
plasmons in the mid-infrared to near-infrared range [64, 
65]. Similar to the case of graphene, the ultrathin nature 
of BP allows a simple electromagnetic characterization 
in terms of optical conductivity, which may be accurately 
derived applying the well-known Kubo formalism [85, 86]. 
Figure 8B and C shows the real and imaginary parts of the 
BP conductivity components.

Remarkably, a thin film of BP is an example of a 
natural hyperbolic metasurface. In fact, Figure 8B and C 
shows that, in the low-loss region where the conductivity 
is almost purely imaginary, BP can behave as either a hyper-
bolic or an elliptical anisotropic surface depending on the 
frequency and chemical potential. However, although BP 
exhibits a hyperbolic regime, the resulting values of con-
ductivity are rather small; therefore, although a hyper-
bolic surface plasmon can be excited, this is generally not 
the dominant response, as discussed in Ref. [64]. Larger 
values of conductivities can be obtained in the nonhyper-
bolic (Drude) regime. For example, a 10-nm-thick BP film 
with electron doping level 10 × 1013/cm2 has conductivity 
tensor components σxx = 0.0008–0.2923i and σzz = 0.0002–
0.0658i mS at f = 92.6 THz. As shown in Figure 9, this highly 
anisotropic, but nonhyperbolic, surface can support a 
directional surface wave mainly directed along one of the 
coordinate axes and tightly confined on the surface. In 
particular, Figure 9A shows the electric field profile of the 
surface plasmon polariton excited by a point source above 
the surface, calculated by numerically solving Maxwell’s 
equations using a finite-difference time-domain method 
(FDTD) provided by a commercial software (Lumerical 
[87]). Figure 9B shows the vertical variation of the field 
distribution calculated by Lumerical, showing strong light 
confinement near the surface.

Figure 8: Naturally anisotropic 2D materials: the case of black phosphorus (BP).
(A) Lattice structure of monolayer BP. Different colors are used for visual clarity. (B) Imaginary part of BP conductivity components versus 
frequency for several values of chemical potential. (C) Real part of BP conductivity components versus frequency for several values of chemi-
cal potential. Solid, dashed, and dotted lines correspond to chemical potentials of 0.005, 0.05, and 0.1 eV, respectively. The considered BP 
thickness is 10 nm, its direct band gap is 0.485 eV, damping 5 meV, at a temperature of 300 K. Adapted with permission from Ref. [65].
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4  �Conclusion
In this review article, we have discussed some excit-
ing research directions in the emerging field of metasur-
faces, with particular focus on the theoretical aspects of 
artificial engineered surfaces and their interaction with 
near-field sources. We have reviewed the analytical mod-
eling of metasurfaces in terms of homogenized effective 
surface conductivities/impedances, and presented the 
stricter homogenization conditions for the case of near-
field excitation, and some performance limits of electric 
metasurfaces. We have then discussed the possibility of 
controlling the emission/radiation from localized sources 
near an artificial surface, as well as the exciting possibil-
ity of guiding a portion of the radiated energy along the 
interface through a controlled coupling with the surface 
modes of the metasurface. In this context, particular atten-
tion has been devoted to surfaces with extreme anisotropy, 
known as hyperbolic metasurfaces, which enable unusual 
beam-like surface-wave propagation, and the possibility of 
imaging below the diffraction limit in the so-called canali-
zation regime. Finally, we have discussed the potential of 
2D materials, such as graphene and BP, to implement ani-
sotropic and hyperbolic dispersion on ultrathin surfaces.

We believe that the topics reviewed in this article rep-
resent some of the most promising and exciting directions 
in the field of metasurfaces. In the vision outlined here, 
future generations of metasurfaces will not only act as 
flat lenses to manipulate propagating waves but also as 
planar ultrathin platforms to control near-field interac-
tions with localized sources and tailor the propagation of 
highly confined surface waves in arbitrary directions.
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